
Roles and regulatory mechanisms of miR‑30b in cancer, cardiovascular disease, and metabolic disorders (Review)
- Authors:
- Qing Zhang
- Shousheng Liu
- Jie Zhang
- Xuefeng Ma
- Mengzhen Dong
- Baokai Sun
- Yongning Xin
-
Affiliations: Department of Infectious Disease, Qingdao Municipal Hospital, Qingdao University, Qingdao, Shandong 266011, P.R. China, Clinical Research Center, Qingdao Municipal Hospital, Qingdao University, Qingdao, Shandong 266011, P.R. China - Published online on: November 17, 2020 https://doi.org/10.3892/etm.2020.9475
- Article Number: 44
-
Copyright: © Zhang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
![]() |
Kim VN, Han J and Siomi MC: Biogenesis of small RNAs in animals. Nat Rev Mol Cell Biol. 10:126–139. 2009.PubMed/NCBI View Article : Google Scholar | |
Hammond SM: An overview of microRNAs. Adv Drug Deliv Rev. 87:3–14. 2015.PubMed/NCBI View Article : Google Scholar | |
Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J, Lee J, Provost P, Rådmark O, Kim S and Kim VN: The nuclear RNase III Drosha initiates microRNA processing. Nature. 425:415–419. 2003.PubMed/NCBI View Article : Google Scholar | |
Morlando M, Ballarino M, Gromak N, Pagano F, Bozzoni I and Proudfoot NJ: Primary microRNA transcripts are processed co-transcriptionally. Nat Struct Mol Biol. 15:902–909. 2008.PubMed/NCBI View Article : Google Scholar | |
Yang JS, Phillips MD, Betel D, Mu P, Ventura A, Siepel AC, Chen KC and Lai EC: Widespread regulatory activity of vertebrate microRNA* species. RNA. 17:312–326. 2011.PubMed/NCBI View Article : Google Scholar | |
Fabian MR and Sonenberg N: The mechanics of miRNA-mediated gene silencing: A look under the hood of miRISC. Nat Struct Mol Biol. 19:586–593. 2012.PubMed/NCBI View Article : Google Scholar | |
Pfaff J and Meister G: Argonaute and GW182 proteins: An effective alliance in gene silencing. Biochem Soc Trans. 41:855–860. 2013.PubMed/NCBI View Article : Google Scholar | |
Selbach M, Schwanhausser B, Thierfelder N, Fang Z, Khanin R and Rajewsky N: Widespread changes in protein synthesis induced by microRNAs. Nature. 455:58–63. 2008.PubMed/NCBI View Article : Google Scholar | |
Yates LA, Norbury CJ and Gilbert RJ: The long and short of microRNA. Cell. 153:516–519. 2013.PubMed/NCBI View Article : Google Scholar | |
Greenhill C: Adipose tissue: Exosomal microRNAs-novel adipokines. Nat Rev Endocrinol. 13(188)2017.PubMed/NCBI View Article : Google Scholar | |
Guay C and Regazzi R: Circulating microRNAs as novel biomarkers for diabetes mellitus. Nat Rev Endocrinol. 9:513–521. 2013.PubMed/NCBI View Article : Google Scholar | |
Lian JB, Stein GS, van Wijnen AJ, Stein JL, Hassan MQ, Gaur T and Zhang Y: MicroRNA control of bone formation and homeostasis. Nat Rev Endocrinol. 8:212–227. 2012.PubMed/NCBI View Article : Google Scholar | |
Cheng G: Circulating miRNAs: Roles in cancer diagnosis, prognosis and therapy. Adv Drug Deliv Rev. 81:75–93. 2015.PubMed/NCBI View Article : Google Scholar | |
Song CL, Liu B, Wang JP, Zhang BL, Zhang JC, Zhao LY, Shi YF, Li YX, Wang G, Diao HY, et al: Anti-apoptotic effect of microRNA-30b in early phase of rat myocardial ischemia-reperfusion injury model. J Cell Biochem. 116:2610–2619. 2015.PubMed/NCBI View Article : Google Scholar | |
Zhu ED, Li N, Li BS, Li W, Zhang WJ, Mao XH, Guo G, Zou QM and Xiao B: miR-30b, down-regulated in gastric cancer, promotes apoptosis and suppresses tumor growth by targeting plasminogen activator inhibitor-1. PLoS One. 9(e106049)2014.PubMed/NCBI View Article : Google Scholar | |
Mazzeo A, Beltramo E, Lopatina T, Gai C, Trento M and Porta M: Molecular and functional characterization of circulating extracellular vesicles from diabetic patients with and without retinopathy and healthy subjects. Exp Eye Res. 176:69–77. 2018.PubMed/NCBI View Article : Google Scholar | |
Gu D, Zou X, Ju G, Zhang G, Bao E and Zhu Y: Mesenchymal stromal cells derived extracellular vesicles ameliorate acute renal ischemia reperfusion injury by inhibition of mitochondrial fission through miR-30. Stem Cells Int. 2016(2093940)2016.PubMed/NCBI View Article : Google Scholar | |
Serafin A, Foco L, Zanigni S, Blankenburg H, Picard A, Zanon A, Giannini G, Pichler I, Facheris MF, Cortelli P, et al: Overexpression of blood microRNAs 103a, 30b, and 29a in L-dopa-treated patients with PD. Neurology. 84:645–653. 2015.PubMed/NCBI View Article : Google Scholar | |
Zheng Y, Wang Z, Tu Y, Shen H, Dai Z, Lin J and Zhou Z: miR-101a and miR-30b contribute to inflammatory cytokine-mediated β-cell dysfunction. Lab Invest. 95:1387–1397. 2015.PubMed/NCBI View Article : Google Scholar | |
Wa Q, He P, Huang S, Zuo J, Li X, Zhu J, Hong S, Lv G, Cai D, Xu D, et al: miR-30b regulates chondrogenic differentiation of mouse embryo-derived stem cells by targeting SOX9. Exp Ther Med. 14:6131–6137. 2017.PubMed/NCBI View Article : Google Scholar | |
Han F, Huo Y, Huang CJ, Chen CL and Ye J: MicroRNA-30b promotes axon outgrowth of retinal ganglion cells by inhibiting Semaphorin3A expression. Brain Res. 1611:65–73. 2015.PubMed/NCBI View Article : Google Scholar | |
Howe GA, Kazda K and Addison CL: MicroRNA-30b controls endothelial cell capillary morphogenesis through regulation of transforming growth factor beta 2. PLoS One. 12(e0185619)2017.PubMed/NCBI View Article : Google Scholar | |
Besteiro S, Brooks CF, Striepen B and Dubremetz JF: Autophagy protein Atg3 is essential for maintaining mitochonrial integrity and for normal intracellular development of Toxoplasma gondii tachyzoites. PLoS Pathog. 7(e1002416)2011.PubMed/NCBI View Article : Google Scholar | |
Parzych KR and Klionsky DJ: An overview of autophagy: Morphology, mechanism, and regulation. Antioxid Redox Signal. 20:460–473. 2014.PubMed/NCBI View Article : Google Scholar | |
Li SP, He JD, Wang Z, Yu Y, Fu SY, Zhang HM, Zhang JJ and Shen ZY: miR-30b inhibits autophagy to alleviate hepatic ischemia-reperfusion injury via decreasing the Atg12-Atg5 conjugate. World J Gastroenterol. 22:4501–4514. 2016.PubMed/NCBI View Article : Google Scholar | |
Wang J, Sun YT, Xu TH, Sun W, Tian BY, Sheng ZT, Sun L, Liu LL, Ma JF, Wang LN and Yao L: MicroRNA-30b regulates high phosphorus level-induced autophagy in vascular smooth muscle cells by targeting BECN1. Cell Physiol Biochem. 42:530–536. 2017.PubMed/NCBI View Article : Google Scholar | |
Chen Z, Jin T and Lu Y: AntimiR-30b Inhibits TNF-α mediated apoptosis and attenuated cartilage degradation through enhancing autophagy. Cell Physiol Biochem. 40:883–894. 2016.PubMed/NCBI View Article : Google Scholar | |
Naqvi AR, Fordham JB and Nares S: MicroRNA target Fc receptors to regulate Ab-dependent Ag uptake in primary macrophages and dendritic cells. Innate Immun. 22:510–521. 2016.PubMed/NCBI View Article : Google Scholar | |
Naqvi AR, Fordham JB and Nares S: miR-24, miR-30b, and miR-142-3p regulate phagocytosis in myeloid inflammatory cells. J Immunol. 194:1916–1927. 2015.PubMed/NCBI View Article : Google Scholar | |
Fordham JB, Naqvi AR and Nares S: Regulation of miR-24, miR-30b, and miR-142-3p during macrophage and dendritic cell differentiation potentiates innate immunity. J Leukoc Biol. 98:195–207. 2015.PubMed/NCBI View Article : Google Scholar | |
Sun Y, Guo D, Liu B, Yin X, Wei H, Tang K and Bi H: Regulatory role of rno-miR-30b-5p in IL-10 and Toll-like receptor 4 expressions of T lymphocytes in experimental autoimmune uveitis in vitro. Mediators Inflamm. 2018(2574067)2018.PubMed/NCBI View Article : Google Scholar | |
Duan ZQ, Shi JD, Wu MN, Hu NZ and Hu YZ: Influence of miR-30b regulating humoral immune response by genetic difference. Immunol Res. 64:181–190. 2016.PubMed/NCBI View Article : Google Scholar | |
Liu H, Zhang N and Tian D: miR-30b is involved in methylglyoxal-induced epithelial-mesenchymal transition of peritoneal mesothelial cells in rats. Cell Mol Biol Lett. 19:315–329. 2014.PubMed/NCBI View Article : Google Scholar | |
Xiong Y, Wang Y, Wang L, Huang Y, Xu Y, Xu L, Guo Y, Lu J, Li X, Zhu M and Qian H: MicroRNA-30b targets Snail to impede epithelial-mesenchymal transition in pancreatic cancer stem cells. J Cancer. 9:2147–2159. 2018.PubMed/NCBI View Article : Google Scholar | |
Sun X, Zhao S, Li H, Chang H, Huang Z, Ding Z, Dong L, Chen J, Zang Y and Zhang J: MicroRNA-30b suppresses epithelial-mesenchymal transition and metastasis of hepatoma cells. J Cell Physiol. 232:625–634. 2017.PubMed/NCBI View Article : Google Scholar | |
Van Cutsem E, Sagaert X, Topal B, Haustermans K and Prenen H: Gastric cancer. Lancet. 388:2654–2664. 2016.PubMed/NCBI View Article : Google Scholar | |
Siegel RL, Miller KD and Jemal A: Cancer statistics, 2019. CA Cancer J Clin. 69:7–34. 2019.PubMed/NCBI View Article : Google Scholar | |
Qiao F, Zhang K, Gong P, Wang L, Hu J, Lu S and Fan H: Decreased miR-30b-5p expression by DNMT1 methylation regulation involved in gastric cancer metastasis. Mol Biol Rep. 41:5693–5700. 2014.PubMed/NCBI View Article : Google Scholar | |
Tian SB, Yu JC, Liu YQ, Kang WM, Ma ZQ, Ye X and Yan C: miR-30b suppresses tumor migration and invasion by targeting EIF5A2 in gastric cancer. World J Gastroenterol. 21:9337–9347. 2015.PubMed/NCBI View Article : Google Scholar | |
Xi Z, Si J and Nan J: LncRNA MALAT1 potentiates autophagy-associated cisplatin resistance by regulating the microRNA30b/autophagy-related gene 5 axis in gastric cancer. Int J Oncol. 54:239–248. 2019.PubMed/NCBI View Article : Google Scholar | |
Huang YH, Lin KH, Chen HC, Chang ML, Hsu CW, Lai MW, Chen TC, Lee WC, Tseng YH and Yeh CT: Identification of postoperative prognostic microRNA predictors in hepatocellular carcinoma. PLoS One. 7(e37188)2012.PubMed/NCBI View Article : Google Scholar | |
Qin X, Chen J, Wu L and Liu Z: miR-30b-5p acts as a tumor suppressor, repressing cell proliferation and cell cycle in human hepatocellular carcinoma. Biomed Pharmacother. 89:742–750. 2017.PubMed/NCBI View Article : Google Scholar | |
Hur K, Toiyama Y, Boland CR and Goel A: Identification of a novel metastasis-specific microRNA signature in human colorectal cancer. Gastroenterology. 142:S525–S526. 2012. | |
Perez-Villamil B, Paz-Cabezas M, Calvo-López T, Ogando-Castro J, Sastre J, Mañes S and Díaz-Rubio E: microRNA(miR) subtypes correlates with colorectal cancer(CRC) molecular subtypes: Validation of miR-30b interaction with genes up-regulated in the high-stroma subtype. Ann Oncol. 28 (Suppl 5):v194–v195. 2017. | |
van den Braak RRC, Sieuwerts AM, Lalmahomed ZS, Smid M, de Weerd V, van der Vlugt-Daane M, van Galen A, Xiang S, Biermann K, Foekens JA, et al: Validation and pathway analysis of a metastasis-specific microRNA signature in primary colon cancer. Cancer Res. 77 (13 Suppl)(S2530)2017. | |
Coebergh van den Braak RRJ, Sieuwerts AM, Lalmahomed ZS, Smid M, Wilting SM, Bril SI, Xiang S, van der Vlugt-Daane M, de Weerd V, van Galen A, et al: Confirmation of a metastasis-specific microRNA signature in primary colon cancer. Sci Rep. 8(5242)2018.PubMed/NCBI View Article : Google Scholar | |
Tryndyak V, Kindrat I, McDannell B, Beland FA and Pogribny IP: A microRNA signature panel predicts differential sensitivity of liver cancer cells to chemotherapeutic drugs. Cancer Res. 78 (13 Suppl)(S5887)2018. | |
Zhuo LJ, Chen H, Wu MX, Gao MQ, Chen SP and Huang AM: Morphology and microRNA expression profiles of drug-resistant cells in hepatocellular carcinoma. Zhonghua Bing Li Xue Za Zhi. 42:604–608. 2013.PubMed/NCBI(In Chinese). | |
Yeh CT and Huang YH: Extraneous delivery of anti-miR-30b by polyethyleneimine or antagomir-based strategies inhibits hepatoma growth in a xenograft model. J Gastroenterol Hepatol (Australia). 31 (Suppl 3)(S419)2016. | |
Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D and Bray F: Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 136:E359–E386. 2015.PubMed/NCBI View Article : Google Scholar | |
Yilmaz U, Yilmaz N, Ergen A, Aksakal N and Zeybek U: Expression levels of Micrornas related to autophaphy pathway in tumor and adjacent normal tissues of colorectal cancer patients. Acta Physiologica. 221(36)2017. | |
Yoon SM, Park SY, Bae JA, Ko YS, Kim HG and Kim KK: A strategy to screen and subsequently identify therapeutically valuable microRNAs that target a clinically established KITENIN oncogene in colorectal cancer. Eur J Cancer. 50 (Suppl 5)(S189)2014. | |
Park SY, Kim H, Yoon S, Bae JA, Choi SY, Jung YD and Kim KK: KITENIN-targeting microRNA-124 suppresses colorectal cancer cell motility and tumorigenesis. Mol Ther. 22:1653–1664. 2014.PubMed/NCBI View Article : Google Scholar | |
Liao WT, Ye YP, Zhang NJ, Li TT, Wang SY, Cui YM, Qi L, Wu P, Jiao HL, Xie YJ, et al: MicroRNA-30b functions as a tumour suppressor in human colorectal cancer by targeting KRAS, PIK3CD and BCL2. J Pathol. 232:415–427. 2014.PubMed/NCBI View Article : Google Scholar | |
Zhao H, Xu Z, Qin H, Gao Z and Gao L: miR-30b regulates migration and invasion of human colorectal cancer via SIX1. Biochem J. 460:117–125. 2014.PubMed/NCBI View Article : Google Scholar | |
Wu P, Ye Y, Ding Y and Liao W: The function of miR-30b in colorectal cancer metastasis. Chin J Clin Oncol. 41:679–683. 2014. | |
Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA and Jemal A: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 68:394–424. 2018.PubMed/NCBI View Article : Google Scholar | |
Hu L, Ai J, Long H, Liu W, Wang X, Zuo Y, Li Y, Wu Q and Deng Y: Integrative microRNA and gene profiling data analysis reveals novel biomarkers and mechanisms for lung cancer. Oncotarget. 7:8441–8454. 2016.PubMed/NCBI View Article : Google Scholar | |
Zhong K, Chen K, Han L and Li B: MicroRNA-30b/c inhibits non-small cell lung cancer cell proliferation by targeting Rab18. BMC Cancer. 14(703)2014.PubMed/NCBI View Article : Google Scholar | |
Chen S, Li P, Yang R, Cheng R, Zhang F, Wang Y, Chen X, Sun Q, Zang W, Du Y, et al: microRNA-30b inhibits cell invasion and migration through targeting collagen triple helix repeat containing 1 in non-small cell lung cancer. Cancer Cell Int. 15(85)2015.PubMed/NCBI View Article : Google Scholar | |
Park G, Son B, Kang J, Lee S, Jeon J, Kim JH, Yi GR, Youn H, Moon C, Nam SY and Youn B: LDR-induced miR-30a and miR-30b target the PAI-1 pathway to control adverse effects of NSCLC radiotherapy. Mol Ther. 27:342–354. 2019.PubMed/NCBI View Article : Google Scholar | |
Li C, Qin F, Hu F, Xu H, Sun G, Han G, Wang T and Guo M: Characterization and selective incorporation of small non-coding RNAs in non-small cell lung cancer extracellular vesicles. Cell Biosci. 8(2)2018.PubMed/NCBI View Article : Google Scholar | |
Hojbjerg JA, Ebert EBF, Clement MS, Winther-Larsen A, Meldgaard P and Sorensen B: Circulating miR-30b and miR-30c predict erlotinib response in EGFR-mutated non-small cell lung cancer patients. Lung Cancer. 135:92–96. 2019.PubMed/NCBI View Article : Google Scholar | |
Gu YF, Zhang H, Su D, Mo ML, Song P, Zhang F and Zhang SC: miR-30b and miR-30c expression predicted response to tyrosine kinase inhibitors as first line treatment in non-small cell lung cancer. Chin Med J (Engl). 126:4435–4439. 2013.PubMed/NCBI | |
Qi Z, Zhang B, Zhang J, Hu Q, Xu F, Chen B and Zhu C: MicroRNA-30b inhibits non-small cell lung cancer cell growth by targeting the epidermal growth factor receptor. Neoplasma. 65:192–200. 2018.PubMed/NCBI View Article : Google Scholar | |
Garofalo M, Romano G, Di Leva G, Nuovo G, Jeon YJ, Ngankeu A, Sun J, Lovat F, Alder H, Condorelli G, et al: EGFR and MET receptor tyrosine kinase-altered microRNA expression induces tumorigenesis and gefitinib resistance in lung cancers. Nat Med. 18:74–82. 2011.PubMed/NCBI View Article : Google Scholar | |
Chen JC, Su YH, Chiu CF, Chang YW, Yu YH, Tseng CF, Chen HA and Su JL: Suppression of Dicer increases sensitivity to gefitinib in human lung cancer cells. Ann Surg Oncol. 21 (Suppl 4):S555–S563. 2014.PubMed/NCBI View Article : Google Scholar | |
Donagh LM, Gray S, Cuffe S, Finn S, Fitzgerald N, Young V, Ryan R, Nicholson S, Leonard N, O'Byrne K and Barr M: MA02.02 A novel 5-miR signature shows promise as a diagnostic tool and as a predictor of cisplatin response in NSCLC. J Thorac Oncol. 12 (1 Suppl):S348–S349. 2017. | |
Antoni S, Ferlay J, Soerjomataram I, Znaor A, Jemal A and Bray F: Bladder cancer incidence and mortality: A global overview and recent trends. Eur Urol. 71:96–108. 2017.PubMed/NCBI View Article : Google Scholar | |
Wszolek MF, Gould JJ, Kenney PA, Rieger-Christ KM, Neto BS, LaVoie AK, Libertino JA, Lavoie K, Libertino JA and Summerhayes IC: A microrna expression profile involved in the invasive bladder tumor phenotype. J Urol. 181(347)2009.PubMed/NCBI View Article : Google Scholar | |
Mahdavinezhad A, Mousavibahar SH, Poorolajal J, Yadegarazari R, Jafari M, Shabab N and Saidijam M: Association between tissue miR-141, miR-200c and miR-30b and bladder cancer: A matched case-control study. Urol J. 12:2010–2013. 2015.PubMed/NCBI | |
Mahdavinezhad A, Mousavi-Bahar SH, Poorolajal J, Yadegarazari R, Jafari M, Shabab N and Saidijam M: Evaluation of miR-141, miR-200c, miR-30b expression and clinicopathological features of bladder cancer. Int J Mol Cell Med. 4:32–39. 2015.PubMed/NCBI | |
Wei S, Yao Y, Gupta PK and Bing Z: miRNA expression in lower and upper urothelial carcinoma and the potential clinical application. Lab Investigation. 93(A257)2013. | |
Brisuda A, Pospíšilová Š, Soukup V, Hrbáček J, Čapoun O, Mareš J, Pazourková E, Korabečná M, Hořínek T A, Hanuš T and Babjuk M: C221: The differences in expression of microRNA in urine of bladder cancer patients and healthy controls. Eur Urol Suppl. 13:e1385–e1385a. 2014. | |
Wszolek MF, Rieger-Christ KM, Kenney PA, Gould JJ, Silva Neto B, LaVoie AK, Logvinenko T and Summerhayes IC: A MicroRNA expression profile defining the invasive bladder tumor phenotype. Urol Oncol. 29:794–801.e1. 2011.PubMed/NCBI View Article : Google Scholar | |
Pospisilova S, Pazzourkova E, Horinek A, Brisuda A, Svobodova I, Soukup V, Hrbacek J, Capoun O, Hanus T, Mares J, et al: MicroRNAs in urine supernatant as potential non-invasive markers for bladder cancer detection. Neoplasma. 63:799–808. 2016.PubMed/NCBI View Article : Google Scholar | |
Torre LA, Islami F, Siegel RL, Ward EM and Jemal A: Global cancer in women: Burden and trends. Cancer Epidemiol Biomarkers Prev. 26:444–457. 2017.PubMed/NCBI View Article : Google Scholar | |
Hafez MM, Hassan ZK, Zekri AR, Gaber AA, Al Rejaie SS, Sayed-Ahmed MM and Al Shabanah O: MicroRNAs and metastasis-related gene expression in Egyptian breast cancer patients. Asian Pac J Cancer Prev. 13:591–598. 2012.PubMed/NCBI View Article : Google Scholar | |
Zhang K, Wang YW, Wang YY, Song Y, Zhu J, Si PC and Ma R: Identification of microRNA biomarkers in the blood of breast cancer patients based on microRNA profiling. Gene. 619:10–20. 2017.PubMed/NCBI View Article : Google Scholar | |
Ribas G, Peña-Chilet M, Sanchis SO, Martinez MT, Lluch A and Ayala G: Differential microRNA expression in breast cancer patients aged 35 years or younger. Ann Oncol. 26 (Suppl 3)(iii12)2015. | |
Croset M, Pantano F, Kan CWS, Bonnelye E, Descotes F, Alix-Panabieres C, Lecellier CH, Bachelier R, Allioli N, Hong SS, et al: miRNA-30 family members inhibit breast cancer invasion, osteomimicry, and bone destruction by directly targeting multiple bone metastasis-associated genes. Cancer Res. 78:5259–5273. 2018.PubMed/NCBI View Article : Google Scholar | |
Luo J, Zhao Q, Zhang W, Zhang Z, Gao J, Zhang C, Li Y and Tian Y: A novel panel of microRNAs provides a sensitive and specific tool for the diagnosis of breast cancer. Mol Med Rep. 10:785–791. 2014.PubMed/NCBI View Article : Google Scholar | |
Costa B, Amorim I, Gärtner F and Vale N: Understanding breast cancer: From conventional therapies to repurposed drugs. Eur J Pharm Sci. 151(105401)2020.PubMed/NCBI View Article : Google Scholar | |
Espin E, Perez-Fidalgo JA, Tormo E, Pineda B, Cejalvo JM, Sabbaghi MA, Alonso E, Rovira A, Rojo F, Albanell J, et al: Effect of trastuzumab on the antiproliferative effects of PI3K inhibitors in HER2+ breast cancer cells with de novo resistance to trastuzumab. J Clin Oncol. 33 (Suppl 15)(e11592)2015. | |
Guo QS, Wang P, Huang Y, Guo YB, Zhu MY and Xiong YC: Regulatory effect of miR-30b on migration and invasion of pancreatic cancer stem cells. Zhonghua Yi Xue Za Zhi. 99:3019–3023. 2019.PubMed/NCBI View Article : Google Scholar : (In Chinese). | |
Li Q, Zhang X, Li N, Liu Q and Chen D: miR-30b inhibits cancer cell growth, migration, and invasion by targeting homeobox A1 in esophageal cancer. Biochem Biophys Res Commun. 485:506–512. 2017.PubMed/NCBI View Article : Google Scholar | |
Xu J, Lv H, Zhang B, Xu F, Zhu H, Chen B, Zhu C and Shen J: miR-30b-5p acts as a tumor suppressor microRNA in esophageal squamous cell carcinoma. J Thorac Dis. 11:3015–3029. 2019.PubMed/NCBI View Article : Google Scholar | |
Liu W, Li H, Wang Y, Zhao X, Guo Y, Jin J and Chi R: miR-30b-5p functions as a tumor suppressor in cell proliferation, metastasis and epithelial-to-mesenchymal transition by targeting G-protein subunit α-13 in renal cell carcinoma. Gene. 626:275–281. 2017.PubMed/NCBI View Article : Google Scholar | |
Reddemann K, Gola D, Schillert A, Knief J, Kuempers C, Ribbat-Idel J, Ber S, Schemme J, Bernard V, Gebauer N, et al: Dysregulation of microRNAs in angioimmunoblastic T-cell lymphoma. Anticancer Res. 35:2055–2061. 2015.PubMed/NCBI | |
Oduor CI, Kaymaz Y, Chelimo K, Otieno JA, Ong'echa JM, Moormann AM and Bailey JA: Integrative microRNA and mRNA deep-sequencing expression profiling in endemic Burkitt lymphoma. BMC Cancer. 17(761)2017.PubMed/NCBI View Article : Google Scholar | |
Xu G and Li JY: Differential expression of PDGFRB and EGFR in microvascular proliferation in glioblastoma. Tumour Biol. 37:10577–10586. 2016.PubMed/NCBI View Article : Google Scholar | |
Li Z, Guo J, Ma Y, Zhang L and Lin Z: Oncogenic role of MicroRNA-30b-5p in glioblastoma through targeting proline-rich transmembrane protein 2. Oncol Res. 26:219–230. 2018.PubMed/NCBI View Article : Google Scholar | |
Zhang D, Liu Z, Zheng N, Wu H, Zhang Z and Xu J: miR-30b-5p modulates glioma cell proliferation by direct targeting MTDH. Saudi J Biol Sci. 25:947–952. 2018.PubMed/NCBI View Article : Google Scholar | |
Jian Y, Xu CH, Li YP, Tang B, Xie SH and Zeng EM: Down-regulated microRNA-30b-3p inhibits proliferation, invasion and migration of glioma cells via inactivation of the AKT signaling pathway by up-regulating RECK. Biosci Rep. 39(BSR20182226)2019.PubMed/NCBI View Article : Google Scholar | |
Hu Y, Zhang X, Cui M, Su Z, Wang M, Liao Q and Zhao Y: Verification of candidate microRNA markers for parathyroid carcinoma. Endocrine. 60:246–254. 2018.PubMed/NCBI View Article : Google Scholar | |
Li L and Wang B: Overexpression of microRNA-30b improves adenovirus-mediated p53 cancer gene therapy for laryngeal carcinoma. Int J Mol Sci. 15:19729–19740. 2014.PubMed/NCBI View Article : Google Scholar | |
Wang N, Xiang X, Chen K, Liu P and Zhu A: Targeting of NT5E by miR-30b and miR-340 attenuates proliferation, invasion and migration of gallbladder carcinoma. Biochimie. 146:56–67. 2018.PubMed/NCBI View Article : Google Scholar | |
Cui H, Miao S, Esworthy T, Zhou X, Lee SJ, Liu C, Yu ZX, Fisher JP, Mohiuddin M and Zhang LG: 3D bioprinting for cardiovascular regeneration and pharmacology. Adv Drug Deliv Rev. 132:252–269. 2018.PubMed/NCBI View Article : Google Scholar | |
Li T, Sun ZL and Xie QY: Protective effect of microRNA-30b on hypoxia/reoxygenation-induced apoptosis in H9C2 cardiomyocytes. Gene. 561:268–275. 2015.PubMed/NCBI View Article : Google Scholar | |
Li F, Chen Q, Song X, Zhou L and Zhang J: miR-30b is involved in the homocysteine-induced apoptosis in human coronary artery endothelial cells by regulating the expression of caspase 3. Int J Mol Sci. 16:17682–17695. 2015.PubMed/NCBI View Article : Google Scholar | |
Li B, Hu J and Chen X: MicroRNA-30b protects myocardial cell function in patients with acute myocardial ischemia by targeting plasminogen activator inhibitor-1. Exp Ther Med. 15:5125–5132. 2018.PubMed/NCBI View Article : Google Scholar | |
Shen Y, Shen Z, Miao L, Xin X, Lin S, Zhu Y, Guo W and Zhu YZ: miRNA-30 family inhibition protects against cardiac ischemic injury by regulating cystathionine-γ-lyase expression. Antioxid Redox Signal. 22:224–240. 2015.PubMed/NCBI View Article : Google Scholar | |
Wei C, Li L and Gupta S: NF-KB-mediated miR-30b regulation in cardiomyocytes cell death by targeting Bcl-2. Mol Cell Biochem. 387:135–141. 2014.PubMed/NCBI View Article : Google Scholar | |
Ma F, Li T, Zhang H and Wu G: miR-30s family inhibit the proliferation and apoptosis in human coronary artery endothelial cells through targeting the 3'UTR region of ITGA4 and PLCG1. J Cardiovasc Pharmacol. 68:327–333. 2016.PubMed/NCBI View Article : Google Scholar | |
Kim NH, Ahn J, Choi YM, Son HJ, Choi WH, Cho HJ, Yu JH, Seo JA, Jang YJ, Jung CH and Ha TY: Differential circulating and visceral fat microRNA expression of non-obese and obese subjects. Clin Nutr. 39:910–916. 2020.PubMed/NCBI View Article : Google Scholar | |
Kirby TJ, Walton RG, Finlin B, Zhu B, Unal R, Rasouli N, Peterson CA and Kern PA: Integrative mRNA-microRNA analyses reveal novel interactions related to insulin sensitivity in human adipose tissue. Physiol Genomics. 48:145–153. 2016.PubMed/NCBI View Article : Google Scholar | |
Stepien EL, Durak-Kozica M, Kaminska A, Targosz-Korecka M, Libera M, Tylko G, Opalinska A, Kapusta M, Solnica B, Georgescu A, et al: Circulating ectosomes: Determination of angiogenic microRNAs in type 2 diabetes. Theranostics. 8:3874–3890. 2018.PubMed/NCBI View Article : Google Scholar | |
Zang J, Maxwell AP, Simpson DA and McKay GJ: Differential expression of urinary exosomal microRNAs miR-21-5p and miR-30b-5p in individuals with diabetic kidney disease. Sci Rep. 9(10900)2019.PubMed/NCBI View Article : Google Scholar | |
Dai LL, Li SD, Ma YC, Tang JR, Lv JY, Zhang YQ, Miu YL, Ma YQ, Li CM, Chu YY, et al: MicroRNA-30b regulates insulin sensitivity by targeting SERCA2b in non-alcoholic fatty liver disease. Liver Int. 39:1504–1513. 2019.PubMed/NCBI View Article : Google Scholar | |
Latorre J, Moreno-Navarrete JM, Mercader JM, Sabater M, Rovira O, Girones J, Ricart W, Fernández-Real JM and Ortega FJ: Decreased lipid metabolism but increased FA biosynthesis are coupled with changes in liver microRNAs in obese subjects with NAFLD. Int J Obes (Lond). 41:620–630. 2017.PubMed/NCBI View Article : Google Scholar |