1
|
Burton GJ, Redman CW, Roberts JM and
Moffett A: Pre-eclampsia: Pathophysiology and clinical
implications. BMJ. 366(l2381)2019.PubMed/NCBI View Article : Google Scholar
|
2
|
Bujold E, Chaillet N and Kingdom J:
Placental growth factor testing for suspected pre-eclampsia.
Lancet. 393:1775–1776. 2019.PubMed/NCBI View Article : Google Scholar
|
3
|
Nakashima A, Yamanaka-Tatematsu M, Fujita
N, Koizumi K, Shima T, Yoshida T, Nikaido T, Okamoto A, Yoshimori T
and Saito S: Impaired autophagy by soluble endoglin, under
physiological hypoxia in early pregnant period, is involved in poor
placentation in preeclampsia. Autophagy. 9:303–316. 2013.PubMed/NCBI View Article : Google Scholar
|
4
|
Ananth Cande V, Keyes Katherine M and
Wapner Ronald J: Pre-eclampsia rates in the United States,
1980-2010: Age-period-cohort analysis. BMJ.
347(f6564)2013.PubMed/NCBI View Article : Google Scholar
|
5
|
Stevens W, Shih T, Incerti D, Ton TGN, Lee
HC, Peneva D, Macones GA, Sibai BM and Jena AB: Short-term costs of
preeclampsia to the United States health care system. Am J Obstet
Gynecol. 217:237–248.e16. 2017.PubMed/NCBI View Article : Google Scholar
|
6
|
Murphy SP, Tayade C, Ashkar AA, Hatta K,
Zhang J and Croy BA: Interferon gamma in successful pregnancies.
Biol Reprod. 80:848–859. 2009.PubMed/NCBI View Article : Google Scholar
|
7
|
Lash GE, Otun HA, Innes BA, Kirkley M, De
Oliveira L, Searle RF, Robson SC and Bulmer JN: Interferon-gamma
inhibits extravillous trophoblast cell invasion by a mechanism that
involves both changes in apoptosis and protease levels. FASEB J.
20:2512–2518. 2006.PubMed/NCBI View Article : Google Scholar
|
8
|
Lockwood CJ, Basar M, Kayisli UA,
Guzeloglu-Kayisli O, Murk W, Wang J, De Paz N, Shapiro JP, Masch
RJ, Semerci N, et al: Interferon-gamma protects first-trimester
decidual cells against aberrant matrix metalloproteinases 1, 3, and
9 expression in preeclampsia. Am J Pathol. 184:2549–2559.
2014.PubMed/NCBI View Article : Google Scholar
|
9
|
Midgley AC, Morris G, Phillips AO and
Steadman R: 17β-estradiol ameliorates age-associated loss of
fibroblast function by attenuating IFN-γ/STAT1-dependent miR-7
upregulation. Aging Cell. 15:531–541. 2016.PubMed/NCBI View Article : Google Scholar
|
10
|
Stark GR: How cells respond to interferons
revisited: From early history to current complexity. Cytokine
Growth Factor Rev. 18:419–423. 2007.PubMed/NCBI View Article : Google Scholar
|
11
|
Verma S, Pal R and Gupta SK: Decrease in
invasion of HTR-8/SVneo trophoblastic cells by interferon gamma
involves cross-communication of STAT1 and BATF2 that regulates the
expression of JUN. Cell Adh Migr. 12:432–446. 2018.PubMed/NCBI View Article : Google Scholar
|
12
|
Nita-Lazar M, Banerjee A, Feng C and Vasta
GR: Galectins regulate the inflammatory response in airway
epithelial cells exposed to microbial neuraminidase by modulating
the expression of SOCS1 and RIG1. Mol Immunol. 68:194–202.
2015.PubMed/NCBI View Article : Google Scholar
|
13
|
Yoshimura A, Naka T and Kubo M: SOCS
proteins, cytokine signalling and immune regulation. Nat Rev
Immunol. 7:454–465. 2007.PubMed/NCBI View
Article : Google Scholar
|
14
|
Seif F, Khoshmirsafa M, Aazami H,
Mohsenzadegan M, Sedighi G and Bahar M: The role of JAK-STAT
signaling pathway and its regulators in the fate of T helper cells.
Cell Commun Signal. 15(23)2017.PubMed/NCBI View Article : Google Scholar
|
15
|
Poehlmann TG, Busch S, Mussil B, Winzer H,
Weinert J, Mebes I, Schaumann A, Fitzgerald JS and Markert UR: The
possible role of the Jak/STAT pathway in lymphocytes at the
fetomaternal interface. Chem Immunol Allergy. 89:26–35.
2005.PubMed/NCBI View Article : Google Scholar
|
16
|
Li Y, Chu N, Rostami A and Zhang GX:
Dendritic cells transduced with SOCS-3 exhibit a tolerogenic/DC2
phenotype that directs type 2 Th cell differentiation in vitro and
in vivo. J Immunol. 177:1679–1688. 2006.PubMed/NCBI View Article : Google Scholar
|
17
|
Endo TA, Masuhara M, Yokouchi M, Suzuki R,
Sakamoto H, Mitsui K, Matsumoto A, Tanimura S, Ohtsubo M, Misawa H,
et al: A new protein containing an SH2 domain that inhibits JAK
kinases. Nature. 387:921–924. 1997.PubMed/NCBI View
Article : Google Scholar
|
18
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408.
2001.PubMed/NCBI View Article : Google Scholar
|
19
|
Gerashchenko TS, Zolotaryova SY, Kiselev
AM, Tashireva LA, Novikov NM, Krakhmal NV, Cherdyntseva NV,
Zavyalova MV, Perelmuter VM and Denisov EV: The activity of KIF14,
Mieap, and EZR in a new type of the invasive component,
torpedo-like structures, predetermines the metastatic potential of
breast cancer. Cancers (Basel). 12(1909)2020.PubMed/NCBI View Article : Google Scholar
|
20
|
Sun T, Yin L and Kuang H: miR-181a/b-5p
regulates human umbilical vein endothelial cell angiogenesis by
targeting PDGFRA. Cell Biochem Funct. 38:222–230. 2020.PubMed/NCBI View
Article : Google Scholar
|
21
|
Turco MY, Gardner L, Kay RG, Hamilton RS,
Prater M, Hollinshead MS, McWhinnie A, Esposito L, Fernando R,
Skelton H, et al: Trophoblast organoids as a model for
maternal-fetal interactions during human placentation. Nature.
564:263–267. 2018.PubMed/NCBI View Article : Google Scholar
|
22
|
Choudhury RH, Dunk CE, Lye SJ, Aplin JD,
Harris LK and Jones RL: Extravillous trophoblast and endothelial
cell crosstalk mediates leukocyte infiltration to the early
remodeling decidual spiral arteriole wall. J Immunol.
198:4115–4128. 2017.PubMed/NCBI View Article : Google Scholar
|
23
|
Knöfler M, Haider S, Saleh L, Pollheimer
J, Gamage TKJB and James J: Human placenta and trophoblast
development: Key molecular mechanisms and model systems. Cell Mol
Life Sci. 76:3479–3496. 2019.PubMed/NCBI View Article : Google Scholar
|
24
|
Wang Y and Zhao S: Placental Blood
Circulation. In: Vascular Biology of the Placenta. San Rafael (ed).
Chapter 2. Morgan & Claypool Life Sciences, pp3-11, 2010.
|
25
|
Chen Y, Zhang Y, Deng Q, Shan N, Peng W,
Luo X, Zhang H, Baker PN, Tong C and Qi H: Wnt5a inhibited human
trophoblast cell line HTR8/SVneo invasion: Implications for early
placentation and preeclampsia. J Matern Fetal Neonatal Med.
29:3532–3538. 2016.PubMed/NCBI View Article : Google Scholar
|
26
|
Malik A, Pal R and Gupta SK:
Interdependence of JAK-STAT and MAPK signaling pathways during
EGF-mediated HTR-8/SVneo cell invasion. PLoS One.
12(e0178269)2017.PubMed/NCBI View Article : Google Scholar
|
27
|
Laganà AS, Giordano D, Loddo S, Zoccali G,
Vitale SG, Santamaria A, Buemi M and D'Anna R: Decreased
endothelial progenitor cells (EPCs) and increased Natural Killer
(NK) cells in peripheral blood as possible early markers of
preeclampsia: A case-control analysis. Arch Gynecol Obstet.
295:867–872. 2017.PubMed/NCBI View Article : Google Scholar
|
28
|
Guleria I and Pollard JW: The trophoblast
is a component of the innate immune system during pregnancy. Nat
Med. 6:589–593. 2000.PubMed/NCBI View
Article : Google Scholar
|
29
|
Szarka A, Rigó J Jr, Lázár L, Beko G and
Molvarec A: Circulating cytokines, chemokines and adhesion
molecules in normal pregnancy and preeclampsia determined by
multiplex suspension array. BMC Immunol. 11(59)2010.PubMed/NCBI View Article : Google Scholar
|
30
|
Nicolaides KH, Bindra R, Turan OM, Chefetz
I, Sammar M, Meiri H, Tal J and Cuckle HS: A novel approach to
first-trimester screening for early pre-eclampsia combining serum
PP-13 and Doppler ultrasound. Ultrasound Obstet Gynecol. 27:13–7.
2006.PubMed/NCBI View
Article : Google Scholar
|
31
|
Molvarec A, Rigó J Jr, Lázár L, Balogh K,
Makó V, Cervenak L, Mézes M and Prohászka Z: Increased serum
heat-shock protein 70 levels reflect systemic inflammation,
oxidative stress and hepatocellular injury in preeclampsia. Cell
Stress Chaperones. 14:151–159. 2009.PubMed/NCBI View Article : Google Scholar
|
32
|
Molvarec A, Kalabay L, Derzsy Z, Szarka A,
Halmos A, Stenczer B, Arnaud P, Karádi I, Prohászka Z and Rigó J
Jr: Preeclampsia is associated with decreased serum alpha(2)-HS
glycoprotein (fetuin-A) concentration. Hypertens Res. 32:665–669.
2009.PubMed/NCBI View Article : Google Scholar
|
33
|
Laganà AS, Favilli A, Triolo O, Granese R
and Gerli S: Early serum markers of pre-eclampsia: Are we stepping
forward? J Matern Fetal Neonatal Med. 29:3019–3023. 2016.PubMed/NCBI View Article : Google Scholar
|
34
|
Laird SM, Tuckerman EM, Cork BA, Linjawi
S, Blakemore AI and Li TC: A review of immune cells and molecules
in women with recurrent miscarriage. Hum Reprod Update. 9:163–174.
2003.PubMed/NCBI View Article : Google Scholar
|
35
|
Banerjee S, Smallwood A, Moorhead J,
Chambers AE, Papageorghiou A, Campbell S and Nicolaides K:
Placental expression of interferon-gamma (IFN-gamma) and its
receptor IFN-gamma R2 fail to switch from early hypoxic to late
normotensive development in preeclampsia. J Clin Endocrinol Metab.
90:944–952. 2005.PubMed/NCBI View Article : Google Scholar
|
36
|
Santner-Nanan B, Peek MJ, Khanam R,
Richarts L, Zhu E, Fazekas de St Groth B and Nanan R: Systemic
increase in the ratio between Foxp3+ and IL-17-producing
CD4+ T cells in healthy pregnancy but not in
preeclampsia. J Immunol. 183:7023–7030. 2009.PubMed/NCBI View Article : Google Scholar
|
37
|
Laresgoiti-Servitje E, Gómez-López N and
Olson DM: An immunological insight into the origins of
pre-eclampsia. Hum Reprod Update. 16:510–524. 2010.PubMed/NCBI View Article : Google Scholar
|
38
|
Pinheiro MB, Martins-Filho OA, Mota AP,
Alpoim PN, Godoi LC, Silveira AC, Teixeira-Carvalho A, Gomes KB and
Dusse LM: Severe preeclampsia goes along with a cytokine network
disturbance towards a systemic inflammatory state. Cytokine.
62:165–173. 2013.PubMed/NCBI View Article : Google Scholar
|
39
|
Aota K, Yamanoi T, Kani K and Azuma M:
Cepharanthine inhibits IFN-gamma-induced CXCL10 by suppressing the
JAK2/STAT1 signal pathway in human salivary gland ductal cells.
Inflammation. 41:50–58. 2018.PubMed/NCBI View Article : Google Scholar
|
40
|
Coombs MR, Harrison ME and Hoskin DW:
Apigenin inhibits the inducible expression of programmed death
ligand 1 by human and mouse mammary carcinoma cells. Cancer Lett.
380:424–433. 2016.PubMed/NCBI View Article : Google Scholar
|
41
|
Verma S, Kang AK, Pal R and Gupta SK: BST2
regulates interferon gamma-dependent decrease in invasion of
HTR-8/SVneo cells via STAT1 and AKT signaling pathways and
expression of E-cadherin. Cell Adh Migr. 14:24–41. 2020.PubMed/NCBI View Article : Google Scholar
|
42
|
Qin S, Zhang Y, Zhang J, Tian F, Sun L, He
X, Ma X, Zhang J, Liu XR, Zeng W and Lin Y: SPRY4 regulates
trophoblast proliferation and apoptosis via regulating
IFN-γ-induced STAT1 expression and activation in recurrent
miscarriage. Am J Reprod Immunol. 83(e13234)2020.PubMed/NCBI View Article : Google Scholar
|
43
|
Nguyen H, Ramana CV, Bayes J and Stark GR:
Roles of phosphatidylinositol 3-kinase in
interferon-gamma-dependent phosphorylation of STAT1 on serine 727
and activation of gene expression. J Biol Chem. 276:33361–33368.
2001.PubMed/NCBI View Article : Google Scholar
|
44
|
Yu CR, Mahdi RM, Ebong S, Vistica BP, Gery
I and Egwuagu CE: Suppressor of cytokine signaling 3 regulates
proliferation and activation of T-helper cells. J Biol Chem.
278:29752–29759. 2003.PubMed/NCBI View Article : Google Scholar
|
45
|
Bachmann J, Raue A, Schilling M, Böhm ME,
Kreutz C, Kaschek D, Busch H, Gretz N, Lehmann WD, Timmer J and
Klingmüller U: Division of labor by dual feedback regulators
controls JAK2/STAT5 signaling over broad ligand range. Mol Syst
Biol. 7(516)2011.PubMed/NCBI View Article : Google Scholar
|
46
|
Lindemann C, Hackmann O, Delic S, Schmidt
N, Reifenberger G and Riemenschneider MJ: SOCS3 promoter
methylation is mutually exclusive to EGFR amplification in gliomas
and promotes glioma cell invasion through STAT3 and FAK activation.
Acta Neuropathol. 122:241–251. 2011.PubMed/NCBI View Article : Google Scholar
|
47
|
Yasukawa H, Nagata T, Oba T and Imaizumi
T: SOCS3: A novel therapeutic target for cardioprotection. JAKSTAT.
1:234–240. 2012.PubMed/NCBI View Article : Google Scholar
|
48
|
Liang Y, Xu WD, Peng H, Pan HF and Ye DQ:
SOCS signaling in autoimmune diseases: Molecular mechanisms and
therapeutic implications. Eur J Immunol. 44:1265–1275.
2014.PubMed/NCBI View Article : Google Scholar
|
49
|
Doti N, Scognamiglio PL, Madonna S,
Scarponi C, Ruvo M, Perretta G, Albanesi C and Marasco D: New
mimetic peptides of the kinase-inhibitory region (KIR) of SOCS1
through focused peptide libraries. Biochem J. 443:231–240.
2012.PubMed/NCBI View Article : Google Scholar
|
50
|
Skjesol A, Liebe T, Iliev DB, Thomassen
EI, Tollersrud LG, Sobhkhez M, Lindenskov Joensen L, Secombes CJ
and Jørgensen JB: Functional conservation of suppressors of
cytokine signaling proteins between teleosts and mammals: Atlantic
salmon SOCS1 binds to JAK/STAT family members and suppresses type I
and II IFN signaling. Dev Comp Immunol. 45:177–189. 2014.PubMed/NCBI View Article : Google Scholar
|
51
|
Alexander WS, Starr R, Fenner JE, Scott
CL, Handman E, Sprigg NS, Corbin JE, Cornish AL, Darwiche R,
Owczarek CM, et al: SOCS1 is a critical inhibitor of interferon
gamma signaling and prevents the potentially fatal neonatal actions
of this cytokine. Cell. 98:597–608. 1999.PubMed/NCBI View Article : Google Scholar
|
52
|
DiGiandomenico A, Wylezinski LS and
Hawiger J: Intracellular delivery of a cell-penetrating SOCS1 that
targets IFN-gamma signaling. Sci Signal. 2(ra37)2009.PubMed/NCBI View Article : Google Scholar
|
53
|
Laganà AS, Vitale SG, Sapia F, Valenti G,
Corrado F, Padula F, Rapisarda AMC and D'Anna R: miRNA expression
for early diagnosis of preeclampsia onset: Hope or hype? J Matern
Fetal Neonatal Med. 31:817–821. 2018.PubMed/NCBI View Article : Google Scholar
|
54
|
Chiofalo B, Laganà AS, Vaiarelli A, La
Rosa VL, Rossetti D, Palmara V, Valenti G, Rapisarda AMC, Granese
R, Sapia F, et al: Do miRNAs play a role in fetal growth
restriction? A fresh look to a busy corner. Biomed Res Int.
2017(6073167)2017.PubMed/NCBI View Article : Google Scholar
|