Confronting the threat of SARS‑CoV‑2: Realities, challenges and therapeutic strategies (Review)
- Authors:
- Ruixue Wang
- Xiaoshan Luo
- Fang Liu
- Shuhong Luo
-
Affiliations: Department of Basic Medicine and Biomedical Engineering, School of Stomatology and Medicine, Foshan University, Foshan, Guangdong 528000, P.R. China, Department of Laboratory Medicine, School of Stomatology and Medicine, Foshan University, Foshan, Guangdong 528000, P.R. China - Published online on: December 17, 2020 https://doi.org/10.3892/etm.2020.9587
- Article Number: 155
-
Copyright: © Wang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
World Health Organization. WHO Director-General's remarks at the media briefing on 2019-nCoV on 11 February 2020. Available from: urihttps://www.who.int/dg/speeches/detail/who-director-general-s-remarks-at-the-media-briefing-on-2019-ncov-on-11-february-2020simplehttps://www.who.int/dg/speeches/detail/who-director-general-s-remarks-at-the-media-briefing-on-2019-ncov-on-11-february-2020. | |
Lu H, Stratton CW and Tang YW: Outbreak of pneumonia of unknown etiology in Wuhan, China: The mystery and the miracle. J Med Virol. 92:401–402. 2020.PubMed/NCBI View Article : Google Scholar | |
World Health Organization. WHO Director-General's opening remarks at the media briefing on COVID-19-11 March 2020. Available from: urihttps://www.who.int/dg/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19-11-march-2020simplehttps://www.who.int/dg/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19-11-march-2020. | |
World Health Organization. WHO Director-General's opening remarks at the media briefing on COVID-19-11 October 2020. Available from: urihttps://www.who.int/docs/default-source/coronaviruse/situation-reports/20201012-weekly-epi-update-9.pdf?sfvrsn=49dc56e1_4&download=truesimplehttps://www.who.int/docs/default-source/coronaviruse/situation-reports/20201012-weekly-epi-update-9.pdf?sfvrsn=49dc56e1_4&download=true. | |
Chan JF, Yuan S, Kok KH, To KK, Chu H, Yang J, Xing F, Liu J, Yip CC, Poon RW, et al: A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: A study of a family cluster. Lancet. 395:514–523. 2020.PubMed/NCBI View Article : Google Scholar | |
Li Q, Guan X, Wu P, Wang X, Zhou L, Tong Y, Ren R, Leung KSM, Lau EHY, Wong JY, et al: Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia. N Engl J Med. 382:1199–1207. 2020.PubMed/NCBI View Article : Google Scholar | |
Farsalinos K, Niaura R, Le Houezec J, Barbouni A, Tsatsakis A, Kouretas D, Vantarakis A and Poulas K: Editorial: Nicotine and SARS-CoV-2: COVID-19 may be a disease of the nicotinic cholinergic system. Toxicol Rep. 7:658–663. 2020.PubMed/NCBI View Article : Google Scholar | |
Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, Zhang L, Fan G, Xu J, Gu X, et al: Clinical features of patients infected with 2019 novel coronavirusin Wuhan, China. Lancet. 395:497–506. 2020.PubMed/NCBI View Article : Google Scholar | |
Ioannidis JPA, Axfors C and Contopoulos-Ioannidis DG: Population-level COVID-19 mortality risk for non-elderly individuals overall and for non-elderly individuals without underlying diseases in pandemic epicenters. Environ Res. 188(109890)2020.PubMed/NCBI View Article : Google Scholar | |
Nasi A, McArdle S, Gaudernack G, Westman G, Melief C, Rockberg J, Arens R, Kouretas D, Sjölin J and Mangsbo S: Reactive oxygen species as an initiator of toxic innate immune responses in retort to SARS-CoV-2 in an ageing population, consider N-acetylcysteine as early therapeutic intervention. Toxicol Rep. 7:768–771. 2020.PubMed/NCBI View Article : Google Scholar | |
Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, Zhao X, Huang B, Shi W, Lu R, et al: A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med. 382:727–733. 2020.PubMed/NCBI View Article : Google Scholar | |
Amini Pouya M, Afshani SM, Maghsoudi AS, Hassani S and Mirnia K: Classification of the present pharmaceutical agents based on the possible effective mechanism on the COVID-19 infection. Daru: Jul 30, 2020 (Epub ahead of print). doi: 10.1007/s40199-020-00359-4. | |
Park WB, Kwon NJ, Choi SJ, Kang CK, Choe PG, Kim JY, Yun J, Lee GW, Seong MW, Kim NJ, et al: Virus isolation from the first patient with SARS-CoV-2 in Korea. J Korean Med Sci. 35(e84)2020.PubMed/NCBI View Article : Google Scholar | |
Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W, Si HR, Zhu Y, Li B, Huang CL, et al: A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 579:270–273. 2020.PubMed/NCBI View Article : Google Scholar | |
Tian X, Li C, Huang A, Xia S, Lu S, Shi Z, Lu L, Jiang S, Yang Z, Wu Y and Ying T: Potent binding of 2019 novel coronavirus spike protein by a SARS coronavirus-specific human monoclonal antibody. Emerg Microbes Infect. 9:382–385. 2020.PubMed/NCBI View Article : Google Scholar | |
Meo SA, Alhowikan AM, Al-Khlaiwi T, Meo IM, Halepoto DM, Iqbal M, Usmani AM, Hajjar W and Ahmed N: Novel coronavirus 2019-nCoV: Prevalence, biological and clinical characteristics comparison with SARS-CoV and MERS-CoV. Eur Rev Med Pharmacol Sci. 24:2012–2019. 2020.PubMed/NCBI View Article : Google Scholar | |
Ji W, Wang W, Zhao X, Zai J and Li X: Cross-species transmission of the newly identified coronavirus 2019-nCoV. J Med Virol. 92:433–440. 2020.PubMed/NCBI View Article : Google Scholar | |
Wang J, Liang J, Cheng J, Guo Y and Zeng L: Deep learning based image reconstruction algorithm for limited-angle translational computed tomography. PLoS One. 15(e0226963)2020.PubMed/NCBI View Article : Google Scholar | |
Sundararaman A, Ray M, Ravindra PV and Halami PM: Role of probiotics to combat viral infections with emphasis on COVID-19. Appl Microbiol Biotechnol. 104:8089–8104. 2020.PubMed/NCBI View Article : Google Scholar | |
Wang C, Hornby PW, Hayden FG and Gao GF: A novel coronavirus outbreak of global health concern. Lancet. 395:470–473. 2020.PubMed/NCBI View Article : Google Scholar | |
Business Daily: China locks down two cities to curb virus outbreak. Available from: urihttps://www.businessdailyafrica.com/news/world/China-locks-down-two-cities-to-curb-virus-outbreak/4259366-5428676-xkv9uo/index.htmlsimplehttps://www.businessdailyafrica.com/news/world/China-locks-down-two-cities-to-curb-virus-outbreak/4259366-5428676-xkv9uo/index.html. | |
Goumenou M, Sarigiannis D, Tsatsakis A, Anesti O, Docea AO, Petrakis D, Tsoukalas D, Kostoff R, Rakitskii V, Spandidos DA, et al: COVID-19 in Northern Italy: An integrative overview of factors possibly influencing the sharp increase of the outbreak (Review). Mol Med Rep. 22:20–32. 2020.PubMed/NCBI View Article : Google Scholar | |
Torequl Islam M, Nasiruddin M, Khan IN, Mishra SK, Kudrat-E-Zahan M, Alam Riaz T, Ali ES, Rahman MS, Mubarak MS, Martorell M, et al: A perspective on emerging therapeutic interventions for COVID-19. Front Public Health. 8(281)2020.PubMed/NCBI View Article : Google Scholar | |
Tsatsakis A, Petrakis D, Nikolouzakis TK, Docea AO, Calina D, Vinceti M, Goumenou M, Kostoff RN, Mamoulakis C, Aschner M and Hernández AF: COVID-19, an opportunity to reevaluate the correlation between long-term effects of anthropogenic pollutants on viral epidemic/pandemic events and prevalence. Food Chem Toxicol. 141(111418)2020.PubMed/NCBI View Article : Google Scholar | |
Del Rio C and Malani PN: COVID-19-New insights on a rapidly changing epidemic. JAMA. 323:1339–1340. 2020.PubMed/NCBI View Article : Google Scholar | |
Lukassen S, Chua RL, Trefzer T, Kahn NC, Schneider MA, Muley T, Winter H, Meister M, Veith C, Boots AW, et al: SARS-CoV-2 receptor ACE2 and TMPRSS2 are primarily expressed in bronchial transient secretory cells. EMBO J. 39(e105114)2020.PubMed/NCBI View Article : Google Scholar | |
Izaguirre G: The proteolytic regulation of virus cell entry by furin and other proprotein convertases. Viruses. 11(837)2019.PubMed/NCBI View Article : Google Scholar | |
Kirchdoerfer RN, Cottrell CA, Wang N, Pallesen J, Yassine HM, Turner HL, Corbett KS, Graham BS, McLellan JS and Ward AB: Pre-fusion structure of a human coronavirus spike protein. Nature. 531:118–121. 2016.PubMed/NCBI View Article : Google Scholar | |
Li F: Structure, function, and evolution of coronavirus spike proteins. Annu Rev Virol. 3:237–261. 2016.PubMed/NCBI View Article : Google Scholar | |
Walls AC, Tortorici MA, Snijder J, Xiong X, Bosch BJ, Rey FA and Veesler D: Tectonic conformational changes of a coronavirus spike glycoprotein promote membrane fusion. Proc Natl Acad Sci USA. 114:11157–11162. 2017.PubMed/NCBI View Article : Google Scholar | |
Park JE, Li K, Barlan A, Fehr AR, Perlman S, McCray PB Jr and Gallagher T: Proteolytic processing of Middle East respiratory syndrome coronavirus spikes expands virus tropism. Proc Natl Acad Sci USA. 113:12262–12267. 2016.PubMed/NCBI View Article : Google Scholar | |
Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S, Schiergens TS, Herrler G, Wu NH, Nitsche A, et al: SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 181:271–280.e8. 2020.PubMed/NCBI View Article : Google Scholar | |
Kawase M, Kataoka M, Shirato K and Matsuyama S: Biochemical analysis of coronavirus spike glycoprotein conformational intermediates during membrane fusion. J Virol. 93:e00785–19. 2019.PubMed/NCBI View Article : Google Scholar | |
Walls AC, Park YJ, Tortorici MA, Wall A, McGuire AT and Veesler D: Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell. 181:281–292.e6. 2020.PubMed/NCBI View Article : Google Scholar | |
Heurich A, Hofmann-Winkler H, Gierer S, Liepold T, Jahn O and Pohlmann S: TMPRSS2 and ADAM17 cleave ACE2 differentially and only proteolysis by TMPRSS2 augments entry driven by the severe acute respiratory syndrome coronavirus spike protein. J Virol. 88:1293–1307. 2014.PubMed/NCBI View Article : Google Scholar | |
Wrapp D, Wang N, Corbett KS, Goldsmith JA, Hsieh CL, Abiona O, Graham BS and McLellan JS: Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science. 367:1260–1263. 2020.PubMed/NCBI View Article : Google Scholar | |
Zhao Y, Zhao Z, Wang Y, Zhou Y, Ma Y and Zuo W: Single-Cell RNA expression profiling of ACE2, the receptor of SARS-CoV-2. Am J Respir Crit Care Med. 202:756–759. 2020.PubMed/NCBI View Article : Google Scholar | |
Wang PH and Chen Y: Increasing host cellular receptor-angiotensin-converting enzyme 2(ACE2) expression by coronavirus may facilitate 2019-nCoV infection. bioRxiv: Feb 27, 2020 (Epub ahead of print). doi: urihttps://doi.org/10.1101/2020.02.24.963348simplehttps://doi.org/10.1101/2020.02.24.963348. | |
Zhang H, Kang Z, Gong H, Xu D, Wang J, Li Z, Cui X, Xiao J, Meng T, Zhou W, et al: The digestive system is a potential route of 2019-nCov infection: A bioinformatics analysis based on single-cell transcriptomes. bioRxiv: Jan 31, 2020 (Epub ahead of print). doi: urihttps://doi.org/10.1101/2020.01.30.927806simplehttps://doi.org/10.1101/2020.01.30.927806. | |
Zu ZY, Jiang MD, Xu PP, Chen W, Ni QQ, Lu GM and Zhang LJ: Coronavirus disease 2019 (COVID-19): A perspective from China. Radiology. 296:E15–E25. 2020.PubMed/NCBI View Article : Google Scholar | |
Zhang G, Zhang J, Wang B, Zhu X, Wang Q and Qiu S: Analysis of clinical characteristics and laboratory findings of 95 cases of 2019 novel coronavirus pneumonia in Wuhan, China: A retrospective analysis. Respir Res. 21(74)2020.PubMed/NCBI View Article : Google Scholar | |
Tang A, Tong ZD, Wang HL, Dai YX, Li KF, Liu JN, Wu WJ, Yuan C, Yu ML, Li P and Yan JB: Detection of novel coronavirus by RT-PCR in stool specimen from asymptomatic child, China. Emerg Infect Dis. 26:1337–1339. 2020.PubMed/NCBI View Article : Google Scholar | |
Corman VM, Landt O, Kaiser M, Molenkamp R, Meijer A, Chu DK, Bleicker T, Brünink S, Schneider J, Schmidt ML, et al: Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Euro Surveill. 25(2000045)2020.PubMed/NCBI View Article : Google Scholar | |
Chu DK, Pan Y, Cheng SM, Hui KP, Krishnan P, Liu Y, Ng DY, Wan CKC, Yang P, Wang Q, et al: Molecular diagnosis of a novel coronavirus (2019-nCoV) causing an outbreak of pneumonia. Clin Chem. 66:549–555. 2020.PubMed/NCBI View Article : Google Scholar | |
Xiao SY, Wu Y and Liu H: Evolving status of the 2019 novel coronavirus infection: Proposal of conventional serologic assays for disease diagnosis and infection monitoring. J Med Virol. 92:464–467. 2020.PubMed/NCBI View Article : Google Scholar | |
Tahmasebi S, Khosh E and Esmaeilzadeh A: The outlook for diagnostic purposes of the 2019-novel coronavirus disease. J Cell Physiol. 235:9211–9229. 2020.PubMed/NCBI View Article : Google Scholar | |
Liu R, Liu X, Yuan L, Han H, Shereen MA, Zhen J, Niu Z, Li D, Liu F, Wu K, et al: Analysis of adjunctive serological detection to nucleic acid test for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection diagnosis. Int Immunopharmacol. 86(106746)2020.PubMed/NCBI View Article : Google Scholar | |
Perera RA, Mok CK, Tsang OT, Lv H, Ko RL, Wu NC, Yuan M, Leung WS, Chan JM, Chik TS, et al: Serological assays for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), March 2020. Euro Surveill. 25(2000421)2020.PubMed/NCBI View Article : Google Scholar | |
Vieira MA, Vieira CP, Borba AS, Melo MC, Oliveira MS, Melo RM, Nunes VV, Santana WS and Aguiar YA: Sequential serological surveys in the early stages of the coronavirus disease epidemic: Limitations and perspectives. Rev Soc Bras Med Trop. 53(e20200351)2020.PubMed/NCBI View Article : Google Scholar | |
Wang Q, Du Q, Guo B, Mu D, Lu X, Ma Q, Guo Y, Fang L, Zhang B, Zhang G and Guo X: A method to prevent SARS-CoV-2 IgM false positives in gold immunochromatography and enzyme-linked immunosorbent assays. J Clin Microbiol. 58:e00375–20. 2020.PubMed/NCBI View Article : Google Scholar | |
Thachil A, Gerber PF, Xiao CT, Huang YW and Opriessnig T: Development and application of an ELISA for the detection of porcine deltacoronavirus IgG antibodies. PLoS One. 10(e0124363)2015.PubMed/NCBI View Article : Google Scholar | |
Zhao S, Smits C, Schuurman N, Barnum S, Pusterla N, Kuppeveld FV, Bosch BJ, Maanen KV and Egberink H: Development and validation of a S1 protein-based ELISA for the specific detection of antibodies against equine coronavirus. Viruses. 11(1109)2019.PubMed/NCBI View Article : Google Scholar | |
Sunwoo HH, Palaniyappan A, Ganguly A, Bhatnagar PK, Das D, El-Kadi AO and Suresh MR: Quantitative and sensitive detection of the SARS-CoV spike protein using bispecific monoclonal antibody-based enzyme-linked immunoassay. J Virol Methods. 187:72–78. 2013.PubMed/NCBI View Article : Google Scholar | |
He Y, Lu H, Siddiqui P, Zhou Y and Jiang S: Receptor-binding domain of severe acute respiratory syndrome coronavirus spike protein contains multiple conformation-dependent epitopes that induce highly potent neutralizing antibodies. J Immunol. 174:4908–4915. 2005.PubMed/NCBI View Article : Google Scholar | |
Lu H: Drug treatment options for the 2019-new coronavirus (2019-nCoV). Biosci Trends. 14:69–71. 2020.PubMed/NCBI View Article : Google Scholar | |
Chu CM, Cheng VC, Hung IF, Wong MM, Chan KH, Chan KS, Kao RY, Poon LL, Wong CL, Guan Y, et al: Role of lopinavir/ritonavir in the treatment of SARS: Initial virological and clinical findings. Thorax. 59:252–256. 2004.PubMed/NCBI View Article : Google Scholar | |
Chan JF, Yao Y, Yeung ML, Deng W, Bao L, Jia L, Li F, Xiao C, Gao H, Yu P, et al: Treatment with Lopinavir/Ritonavir or Interferon-β1b improves outcome of MERS-CoV infection in a nonhuman primate model of common marmoset. J Infect Dis. 212:1904–1913. 2015.PubMed/NCBI View Article : Google Scholar | |
Tu YF, Chien CS, Yarmishyn AA, Lin YY, Luo YH, Lin YT, Lai WY, Yang DM, Chou SJ, Yang YP, et al: A Review of SARS-CoV-2 and the ongoing clinical trials. Int J Mol Sci. 21(2657)2020.PubMed/NCBI View Article : Google Scholar | |
Cao B, Zhang D and Wang C: A trial of lopinavir-ritonavir in covid-19. Reply. N Engl J Med. 382(e68)2020.PubMed/NCBI View Article : Google Scholar | |
Warren TK, Jordan R, Lo MK, Ray AS, Mackman RL, Soloveva V, Siegel D, Perron M, Bannister R, Hui HC, et al: Therapeutic efficacy of the small molecule GS-5734 against Ebola virus in rhesus monkeys. Nature. 531:381–385. 2016.PubMed/NCBI View Article : Google Scholar | |
Gordon CJ, Tchesnokov EP, Feng JY, Porter DP and Gotte M: The antiviral compound remdesivir potently inhibits RNA-dependent RNA polymerase from Middle East respiratory syndrome coronavirus. J Biol Chem. 295:4773–4779. 2020.PubMed/NCBI View Article : Google Scholar | |
Sheahan TP, Sims AC, Graham RL, Menachery VD, Gralinski LE, Case JB, Leist SR, Pyrc K, Feng JY, Trantcheva I, et al: Broad-spectrum antiviral GS-5734 inhibits both epidemic and zoonotic coronaviruses. Sci Transl Med. 9(eaal3653)2017.PubMed/NCBI View Article : Google Scholar | |
Martinez MA: Compounds with therapeutic potential against novel respiratory 2019 coronavirus. Antimicrob Agents Chemother. 64:e00399–20. 2020.PubMed/NCBI View Article : Google Scholar | |
Jean SS, Lee PI and Hsueh PR: Treatment options for COVID-19: The reality and challenges. J Microbiol Immunol Infect. 53:436–443. 2020.PubMed/NCBI View Article : Google Scholar | |
Lo MK, Jordan R, Arvey A, Sudhamsu J, Shrivastava-Ranjan P, Hotard AL, Flint M, McMullan LK, Siegel D, Clarke MO, et al: GS-5734 and its parent nucleoside analog inhibit Filo-, Pneumo-, and Paramyxoviruses. Sci Rep. 7(43395)2017.PubMed/NCBI View Article : Google Scholar | |
Mulangu S, Dodd LE, Davey RT Jr, Tshiani Mbaya O, Proschan M, Mukadi D, Lusakibanza Manzo M, Nzolo D, Tshomba Oloma A, Ibanda A, et al: A randomized, controlled trial of ebola virus disease therapeutics. N Engl J Med. 381:2293–2303. 2019.PubMed/NCBI View Article : Google Scholar | |
Brown AJ, Won JJ, Graham RL, Dinnon KH III, Sims AC, Feng JY, Cihlar T, Denison MR, Baric RS and Sheahan TP: Broad spectrum antiviral remdesivir inhibits human endemic and zoonotic deltacoronaviruses with a highly divergent RNA dependent RNA polymerase. Antiviral Res. 169(104541)2019.PubMed/NCBI View Article : Google Scholar | |
Wang M, Cao R, Zhang L, Yang X, Liu J, Xu M, Shi Z, Hu Z, Zhong W and Xiao G: Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res. 30:269–271. 2020.PubMed/NCBI View Article : Google Scholar | |
Jordan PC, Stevens SK and Deval J: Nucleosides for the treatment of respiratory RNA virus infections. Antivir Chem Chemother. 26(2040206618764483)2018.PubMed/NCBI View Article : Google Scholar | |
de Wit E, Feldmann F, Cronin J, Jordan R, Okumura A, Thomas T, Scott D, Cihlar T and Feldmann H: Prophylactic and therapeutic remdesivir (GS-5734) treatment in the rhesus macaque model of MERS-CoV infection. Proc Natl Acad Sci USA. 117:6771–6776. 2020.PubMed/NCBI View Article : Google Scholar | |
Holshue ML, DeBolt C, Lindquist S, Lofy KH, Wiesman J, Bruce H, Spitters C, Ericson K, Wilkerson S, Tural A, et al: First Case of 2019 Novel Coronavirus in the United States. N Engl J Med. 382:929–936. 2020.PubMed/NCBI View Article : Google Scholar | |
Available from urihttps://times.hinet.net/mobile/news/22831665simplehttps://times.hinet.net/mobile/news/22831665. | |
Furuta Y, Komeno T and Nakamura T: Favipiravir (T-705), a broad spectrum inhibitor of viral RNA polymerase. Proc Jpn Acad Ser B Phys Biol Sci. 93:449–463. 2017.PubMed/NCBI View Article : Google Scholar | |
Du YX and Chen XP: Favipiravir: Pharmacokinetics and concerns about clinical trials for 2019-nCoV infection. Clin Pharmacol Ther. 108:242–247. 2020.PubMed/NCBI View Article : Google Scholar | |
Shannon A, Selisko B, Le N, Huchting J, Touret F, Piorkowski G, Fattorini V, Ferron F, Decroly E, Meier C, et al: Favipiravir strikes the SARS-CoV-2 at its Achilles heel, the RNA polymerase. bioRxiv: May 15, 2020 (Epub ahead of print). doi: 10.1101/2020.05.15.098731. | |
Nagata T, Lefor AK, Hasegawa M and Ishii M: Favipiravir: A new medication for the Ebola virus disease pandemic. Disaster Med Public Health Prep. 9:79–81. 2015.PubMed/NCBI View Article : Google Scholar | |
Dong L, Hu S and Gao J: Discovering drugs to treat coronavirus disease 2019 (COVID-19). Drug Discov Ther. 14:58–60. 2020.PubMed/NCBI View Article : Google Scholar | |
Korea Biomedical Review. Physicians work out treatment guidelines for coronavirus. 2020. Available from: urihttp://www.koreabiomed.com/news/articleView.html?idxno=7428simplehttp://www.koreabiomed.com/news/articleView.html?idxno=7428. | |
Notice on Adjusting the Usage and Dosage of Chloroquine Phosphate in Treating COVID-19 Pneumonia. Available from: urihttp://www.nhc.gov.cn/yzygj/s7653p/202002/0293d017621941f6b2a4890035243730.shtmlsimplehttp://www.nhc.gov.cn/yzygj/s7653p/202002/0293d017621941f6b2a4890035243730.shtml. | |
Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J, Wang B, Xiang H, Cheng Z, Xiong Y, et al: Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA. 323:1061–1069. 2020.PubMed/NCBI View Article : Google Scholar | |
Yao X, Ye F, Zhang M, Cui C, Huang B, Niu P, Liu X, Zhao L, Dong E, Song C, et al: In vitro antiviral activity and projection of optimized dosing design of hydroxychloroquine for the treatment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Clin Infect Dis. 71:732–739. 2020.PubMed/NCBI View Article : Google Scholar | |
Liu J, Cao R, Xu M, Wang X, Zhang H, Hu H, Li Y, Hu Z, Zhong W and Wang M: Hydroxychloroquine, a less toxic derivative of chloroquine, is effective in inhibiting SARS-CoV-2 infection in vitro. Cell Discov. 6(16)2020.PubMed/NCBI View Article : Google Scholar | |
Molina JM, Delaugerre C, Le Goff J, Mela-Lima B, Ponscarme D, Goldwirt L and de Castro N: No evidence of rapid antiviral clearance or clinical benefit with the combination of hydroxychloroquine and azithromycin in patients with severe COVID-19 infection. Med Mal Infect. 50(384)2020.PubMed/NCBI View Article : Google Scholar | |
Gautret P, Lagier JC, Parola P, Hoang VT, Meddeb L, Mailhe M, Doudier B, Courjon J, Giordanengo V, Vieira VE, et al: Hydroxychloroquine and azithromycin as a treatment of COVID-19: Results of an open-label non-randomized clinical trial. Int J Antimicrob Agents. 56(105949)2020.PubMed/NCBI View Article : Google Scholar | |
Interim clinical guidance for patients suspected of/confirmed with Covid-19 in Belgium. Availabe from: urihttps://epidemio.wiv-isp.be/ID/Documents/Covid19/COVID-19_InterimGuidelines_Treatment_ENG.pdf?fbclid=IwAR2PP0GEhBHm2m3zH7c-simplehttps://epidemio.wiv-isp.be/ID/Documents/Covid19/COVID-19_InterimGuidelines_Treatment_ENG.pdf?fbclid=IwAR2PP0GEhBHm2m3zH7c-. | |
Azioni intraprese per favorire la ricerca e l'accesso ai nuovi farmaci per il trat-tamento del COVID-19. Availabe from: urihttps://www.aifa.gov.it/-/azioni-intraprese-per-favorire-la-ricerca-e-l-accesso-ai-nuovi-farmaci-per-il-trattamento-del-covid-19simplehttps://www.aifa.gov.it/-/azioni-intraprese-per-favorire-la-ricerca-e-l-accesso-ai-nuovi-farmaci-per-il-trattamento-del-covid-19. | |
Hoffmann M, Mösbauer K, Hofmann-Winkler H, Kaul A, Kleine-Weber H, Krüger N, Gassen NC, Müller MA, Drosten C and Pöhlmann S: Chloroquine does not inhibit infection of human lung cells with SARS-CoV-2. Nature. 585:588–590. 2020.PubMed/NCBI View Article : Google Scholar | |
Maisonnasse P, Guedj J, Contreras V, Behillil S, Solas C, Marlin R, Naninck T, Pizzorno A, Lemaitre J, Gonçalves A, et al: Hydroxychloroquine use against SARS-CoV-2 infection in non-human primates. Nature. 585:584–587. 2020.PubMed/NCBI View Article : Google Scholar | |
Zhang S, Li L, Shen A, Chen Y and Qi Z: Rational use of tocilizumab in the treatment of novel coronavirus pneumonia. Clin Drug Investig. 40:511–518. 2020.PubMed/NCBI View Article : Google Scholar | |
Scott LJ: Tocilizumab: A review in rheumatoid arthritis. Drugs. 77:1865–1879. 2017.PubMed/NCBI View Article : Google Scholar | |
Venkiteshwaran A: Tocilizumab. MAbs. 1:432–438. 2009.PubMed/NCBI View Article : Google Scholar | |
Triestall News. Coronavirus, will ‘To-cilizumab’ be the drug of hope? Available from: urihttps://www.triesteallnews.it/2020/03/14/coronavirus-will-tocilizumab-be-the-drug-of-hope/64simplehttps://www.triesteallnews.it/2020/03/14/coronavirus-will-tocilizumab-be-the-drug-of-hope/64. | |
Costanzo M, De Giglio MAR and Roviello GN: SARS-CoV-2: Recent reports on antiviral therapies based on lopinavir/ritonavir, darunavir/umifenovir, hydroxychloroquine, remdesivir, favipiravir and other drugs for the treatment of the new coronavirus. Curr Med Chem. 7:4536–4541. 2020.PubMed/NCBI View Article : Google Scholar | |
Marinella MA: Routine antiemetic prophylaxis with dexamethasone during COVID-19: Should oncologists reconsider? J Oncol Pharm Pract. 26:1482–1485. 2020.PubMed/NCBI View Article : Google Scholar | |
Andreakos E, Papadaki M and Serhan CN: Dexamethasone, pro-resolving lipid mediators and resolution of inflammation in COVID-19. Allergy: Sep 21, 2020 (Epub ahead of print). doi: org/10.1111/all.14595. | |
Ledford H: Coronavirus breakthrough: Dexamethasone is first drug shown to save lives. Nature. 582(469)2020.PubMed/NCBI View Article : Google Scholar | |
Shang L, Zhao J, Hu Y, Du R and Cao B: On the use of corticosteroids for 2019-nCoV pneumonia. Lancet. 395:683–684. 2020.PubMed/NCBI View Article : Google Scholar | |
Mehta P, McAuley DF, Brown M, Sanchez E, Tattersall RS and Manson JJ: HLH Across Speciality Collaboration, UK. COVID-19: Consider cytokine storm syndromes and immunosuppression. Lancet. 395:1033–1034. 2020.PubMed/NCBI View Article : Google Scholar | |
Youssef J, Novosad SA and Winthrop KL: Infection risk and safety of corticosteroid use. Rheum Dis Clin North Am. 42:157–176, ix-x. 2016.PubMed/NCBI View Article : Google Scholar | |
Yang Z and Liu J, Zhou Y, Zhao X, Zhao Q and Liu J: The effect of corticosteroid treatment on patients with coronavirus infection: A systematic review and meta-analysis. J Infect. 81:e13–e20. 2020.PubMed/NCBI View Article : Google Scholar | |
Dong L, Xia JW, Gong Y, Chen Z, Yang HH, Zhang J, He J and Chen XD: Effect of lianhuaqingwen capsules on airway inflammation in patients with acute exacerbation of chronic obstructive pulmonary disease. Evid Based Complement Alternat Med. 2014(637969)2014.PubMed/NCBI View Article : Google Scholar | |
Hu K, Guan WJ, Bi Y, Zhang W, Li L, Zhang B, Liu Q, Song Y, Li X, Duan Z, et al: Efficacy and safety of Lianhuaqingwen capsules, a repurposed Chinese herb, in patients with coronavirus disease 2019: A multicenter, prospective, randomized controlled trial. Phytomedicine: May 16, 2020 (Epub ahead of print) doi: 10.1016/j.phymed.2020.153242. | |
Chen S: Clinical observation of Lianhua Qingwen capsule combined with ribavirin injection in the treatment of viral upper respiratory tract infection. Chin Community Doctors. 13(170)2011. | |
Zhao J, Tian SS, Yang J, Liu JF and Zhang WD: Investigating mechanism of Qing-Fei-Pai-Du-Tang for treatment of COVID-19 by network pharmacology. Chin Trad Herbal Drugs. 4:829–835. 2020.(In Chinese). | |
Ding Y, Zeng L, Li R, Chen Q, Zhou B, Chen Q, Cheng PL, Yutao W, Zheng J, Yang Z and Zhang F: The Chinese prescription lianhuaqingwen capsule exerts anti-influenza activity through the inhibition of viral propagation and impacts immune function. BMC Complement Altern Med. 17(130)2017.PubMed/NCBI View Article : Google Scholar | |
Yang Y, Islam MS, Wang J, Li Y and Chen X: Traditional Chinese medicine in the treatment of patients infected with 2019-new coronavirus (SARS-CoV-2): A review and perspective. Int J Biol Sci. 16:1708–1717. 2020.PubMed/NCBI View Article : Google Scholar | |
Xin S, Cheng X, Zhu B, Liao X, Yang F, Song L, Shi Y, Guan X, Su R, Wang J, et al: Clinical retrospective study on the efficacy of Qingfei Paidu decoction combined with Western medicine for COVID-19 treatment. Biomed Pharmacother. 129(110500)2020.PubMed/NCBI View Article : Google Scholar | |
Yende S, Milbrandt EB, Kellum JA, Kong L, Delude RL, Weissfeld LA and Angus DC: Understanding the potential role of statins in pneumonia and sepsis. Crit Care Med. 39:1871–1878. 2011.PubMed/NCBI View Article : Google Scholar | |
Chrusciel P, Sahebkar A, Rembek-Wieliczko M, Serban MC, Ursoniu S, Mikhailidis DP, Jones SR, Mosteoru S, Blaha MJ, Martin SS, et al: Impact of statin therapy on plasma adiponectin concentrations: A systematic review and meta-analysis of 43 randomized controlled trial arms. Atherosclerosis. 253:194–208. 2016.PubMed/NCBI View Article : Google Scholar | |
Reiner Z, Hatamipour M, Banach M, Pirro M, Al-Rasadi K, Jamialahmadi T, Radenkovic D, Montecucco F and Sahebkar A: Statins and the COVID-19 main protease: In silico evidence on direct interaction. Arch Med Sci. 16:490–496. 2020.PubMed/NCBI View Article : Google Scholar | |
Zhang XJ, Qin JJ, Cheng X, Shen L, Zhao YC, Yuan Y, Lei F, Chen MM, Yang H, Bai L, et al: In-Hospital use of statins is associated with a reduced risk of mortality among individuals with COVID-19. Cell Metab. 32:176–187.e4. 2020.PubMed/NCBI View Article : Google Scholar | |
Pillaiyar T, Manickam M, Namasivayam V, Hayashi Y and Jung SH: An overview of severe acute respiratory syndrome-coronavirus (SARS-CoV) 3CL protease inhibitors: Peptidomimetics and small molecule chemotherapy. J Med Chem. 59:6595–6628. 2016.PubMed/NCBI View Article : Google Scholar | |
Jin Z, Zhao Y, Sun Y, Zhang B, Wang H, Wu Y, Zhu Y, Zhu C, Hu T, Du X, et al: Structural basis for the inhibition of SARS-CoV-2 main protease by antineoplastic drug carmofur. Nat Struct Mol Biol. 27:529–532. 2020.PubMed/NCBI View Article : Google Scholar | |
Jin Z, Du X, Xu Y, Deng Y, Liu M, Zhao Y, Zhang B, Li X, Zhang L, Peng C, et al: Structure of M(pro) from SARS-CoV-2 and discovery of its inhibitors. Nature. 582:289–293. 2020.PubMed/NCBI View Article : Google Scholar | |
Gupta S, Singh AK, Kushwaha PP, Prajapati KS, Shuaib M, Senapati S and Kumar S: Identification of potential natural inhibitors of SARS-CoV2 main protease by molecular docking and simulation studies. J Biomol Struct Dyn: Jun 11, 2020 (Epub ahead of print). doi: 10.1080/07391102.2020.1776157. | |
Wong SK, Li W, Moore MJ, Choe H and Farzan M: A 193-amino acid fragment of the SARS coronavirus S protein efficiently binds angiotensin-converting enzyme 2. J Biol Chem. 279:3197–3201. 2004.PubMed/NCBI View Article : Google Scholar | |
Ju B, Zhang Q, Ge J, Wang R, Sun J, Ge X, Yu J, Shan S, Zhou B, Song S, et al: Human neutralizing antibodies elicited by SARS-CoV-2 infection. Nature. 584:115–119. 2020.PubMed/NCBI View Article : Google Scholar | |
Robbiani DF, Gaebler C, Muecksch F, Lorenzi JCC, Wang Z, Cho A, Agudelo M, Barnes CO, Gazumyan A, Finkin S, et al: Convergent antibody responses to SARS-CoV-2 in convalescent individuals. Nature. 584:437–442. 2020.PubMed/NCBI View Article : Google Scholar | |
Shi R, Shan C, Duan X, Chen Z, Liu P, Song J, Song T, Bi X, Han C, Wu L, et al: A human neutralizing antibody targets the receptor binding site of SARS-CoV-2. Nature. 584:120–124. 2020.PubMed/NCBI View Article : Google Scholar | |
Lei C, Qian K, Li T, Zhang S, Fu W, Ding M and Hu S: Neutralization of SARS-CoV-2 spike pseudotyped virus by recombinant ACE2-Ig. Nat Commun. 11(2070)2020.PubMed/NCBI View Article : Google Scholar | |
Kong Q, Wu Y, Gu Y, Lv Q, Qi F, Gong S and Chen X: Analysis of the molecular mechanism of Pudilan (PDL) treatment for COVID-19 by network pharmacology tools. Biomed Pharmacother. 128(110316)2020.PubMed/NCBI View Article : Google Scholar | |
Kumar V, Dhanjal JK, Bhargava P, Kaul A, Wang J, Zhang H, Kaul SC, Wadhwa R and Sundar D: Withanone and Withaferin-A are predicted to interact with transmembrane protease serine 2 (TMPRSS2) and block entry of SARS-CoV-2 into cells. J Biomol Struct Dyn: Jun 16, 2020 (Epub ahead of print). doi: 10.1080/07391102.2020.1775704. | |
Rahman N, Basharat Z, Yousuf M, Castaldo G, Rastrelli L and Khan H: Virtual screening of natural products against type ii transmembrane serine protease (TMPRSS2), the priming agent of coronavirus 2 (SARS-CoV-2). Molecules. 25(2271)2020.PubMed/NCBI View Article : Google Scholar | |
Xu K, Cai H, Shen Y, Ni Q, Chen Y, Hu S, Li J, Wang H, Yu L, Huang H, et al: Management of corona virus disease-19 (COVID-19): The Zhejiang experience. Zhejiang Da Xue Xue Bao Yi Xue Ban. 49:147–157. 2020.PubMed/NCBI View Article : Google Scholar : (In Chinese). | |
Morais AHA, Passos TS, Maciel BLL and da Silva Maia JK: Can probiotics and diet promote beneficial immune modulation and purine control in coronavirus infection? Nutrients. 12(1737)2020.PubMed/NCBI View Article : Google Scholar | |
Sharifi-Rad J, Rodrigues CF, Stojanovic-Radic Z, Dimitrijević M, Aleksić A, Neffe-Skocińska K, Zielińska D, Kołożyn-Krajewska D, Salehi B, Milton Prabu S, et al: Probiotics: Versatile bioactive components in promoting human health. Medicina (Kaunas). 56(433)2020.PubMed/NCBI View Article : Google Scholar | |
Infusino F, Marazzato M, Mancone M, Fedele F, Mastroianni CM, Severino P, Ceccarelli G, Santinelli L, Cavarretta E, Marullo AGM, et al: Diet supplementation, probiotics, and nutraceuticals in SARS-CoV-2 infection: A scoping review. Nutrients. 12(1718)2020.PubMed/NCBI View Article : Google Scholar | |
Wang M, Luo L, Bu H and Xia H: One case of coronavirus disease 2019 (COVID-19) in a patient co-infected by HIV with a low CD4+ T-cell count. Int J Infect Dis. 96:148–150. 2020.PubMed/NCBI View Article : Google Scholar | |
Luo Y, Xie Y, Zhang W, Lin Q, Tang G, Wu S, Huang M, Yin B, Huang J, Wei W, et al: Combination of lymphocyte number and function in evaluating host immunity. Aging (Albany NY). 11:12685–12707. 2019.PubMed/NCBI View Article : Google Scholar | |
Chen X, Liao B, Cheng L, Peng X, Xu X, Li Y, Hu T, Li J, Zhou X and Ren B: The microbial coinfection in COVID-19. Appl Microbiol Biotechnol. 104:7777–7785. 2020.PubMed/NCBI View Article : Google Scholar | |
Zhang G, Hu C, Luo L, Fang F, Chen Y, Li J, Peng Z and Pan H: Clinical features and short-term outcomes of 221 patients with COVID-19 in Wuhan, China. J Clin Virol. 127(104364)2020.PubMed/NCBI View Article : Google Scholar | |
Wu JH, Li X, Huang B, Su H, Li Y, Luo DJ, Chen S, Ma L, Wang SH, Nie X and Peng L: Pathological changes of fatal coronavirus disease 2019 (COVID-19) in the lungs: Report of 10 cases by postmortem needle autopsy. Zhonghua Bing Li Xue Za Zhi. 49:568–575. 2020.PubMed/NCBI View Article : Google Scholar : (In Chinese). | |
Wang Z, Hu X, Li Z, Tu C, Wang Y, Pang P, Zhang H, Zheng X, Liang Y, Shan H and Liu J: Effect of SARS-CoV-2 infection on the microbial composition of upper airway. Infect Drug Resist. 13:2637–2640. 2020.PubMed/NCBI View Article : Google Scholar | |
Piva S, Filippini M, Turla F, Cattaneo S, Margola A, De Fulviis S, Nardiello I, Beretta A, Ferrari L, Trotta R, et al: Clinical presentation and initial management critically ill patients with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in Brescia, Italy. J Crit Care. 58:29–33. 2020.PubMed/NCBI View Article : Google Scholar | |
Renteria AE, Endam Mfuna L, Adam D, Filali-Mouhim A, Maniakas A, Rousseau S, Brochiero E, Gallo S and Desrosiers M: Azithromycin downregulates gene expression of IL-1β and pathways involving TMPRSS2 and TMPRSS11D required by SARS-CoV-2. Am J Respir Cell Mol Biol. 63:707–709. 2020.PubMed/NCBI View Article : Google Scholar | |
Fanin A, Calegari J, Beverina A and Tiraboschi S: Gruppo di Autoformazione Metodologica (GrAM). Hydroxychloroquine and azithromycin as a treatment of COVID-19. Intern Emerg Med. 15:841–843. 2020.PubMed/NCBI View Article : Google Scholar | |
Parra-Lara LG, Martinez-Arboleda JJ and Rosso F: Azithromycin and SARS-CoV-2 infection: Where we are now and where we are going. J Glob Antimicrob Resist. 22:680–684. 2020.PubMed/NCBI View Article : Google Scholar | |
Ardal C, Balasegaram M, Laxminarayan R, McAdams D, Outterson K, Rex JH and Sumpradit N: Antibiotic development-economic, regulatory and societal challenges. Nat Rev Microbiol. 18:267–274. 2020.PubMed/NCBI View Article : Google Scholar | |
World Health Organization. Draft landscape of COVID-19 vaccine candidates. Available from: urihttps://www.who.int/publications/m/item/draft-landscape-of-covid-19-candidate-vaccinessimplehttps://www.who.int/publications/m/item/draft-landscape-of-covid-19-candidate-vaccines. | |
Krammer F: SARS-CoV-2 vaccines in development. Nature. 586:516–527. 2020.PubMed/NCBI View Article : Google Scholar | |
Bai ZH, Li XR, Wang RB, LIU XR, et al: Review of industrialized production technology of human inactivated vaccine based on mammalian cell culture. Chin J Cell Biol. 41:1986–1993. 2019. | |
Gao Q, Bao L, Mao H, Wang L, Xu K, Yang M, Li Y, Zhu L, Wang N, Lv Z, et al: Development of an inactivated vaccine candidate for SARS-CoV-2. Science. 369:77–81. 2020.PubMed/NCBI View Article : Google Scholar | |
World's First Phase III clinical trial of COVID-19 inactivated vaccine begins in UAE. Journal 2020. Available from: urihttps://www.businesswire.com/news/home/20200717005085/en/simplehttps://www.businesswire.com/news/home/20200717005085/en/. | |
Sinovac. Safety and immunogenicity study of inactivated vaccine for prophylaxis of SARS-CoV-2 infection (COVID-19). 2020-04-20. Available from: urihttps://clinicaltrials.gov/ct2/show/NCT04352608?cond=COVID+vaccine&draw=2simplehttps://clinicaltrials.gov/ct2/show/NCT04352608?cond=COVID+vaccine&draw=2. | |
Sinovac. Safety and immunogenicity study of inactivated vaccine for prophylaxis of SARS-CoV-2 infection (COVID-19). 2020-05-12. Available from: urihttps://clinicaltrials.gov/ct2/show/NCT04383574simplehttps://clinicaltrials.gov/ct2/show/NCT04383574. | |
Wan Y, Shang J, Sun S, Tai W, Chen J, Geng Q, He L, Chen Y, Wu J, Shi Z, et al: Molecular mechanism for antibody-dependent enhancement of coronavirus entry. J Virol. 94:e02015–19. 2020.PubMed/NCBI View Article : Google Scholar | |
Guo ZY, Liu J and Liu X: Progress in severe acute respiratory syndrome coronavirus 2 vaccine. Chin J Viral Dis. 10:249–254. 2020. | |
A Study Looking at the Effectiveness and Safety of a COVID-19 Vaccine in South African Adults. (2020-08-31). Available from: urihttps://clinicaltrials.gov/ct2/show/NCT04533399?term=vaccine&cond=covid-19&draw=7simplehttps://clinicaltrials.gov/ct2/show/NCT04533399?term=vaccine&cond=covid-19&draw=7. | |
Clover Initiates Phase 1 Clinical Trial for COVID-19 Vaccine Candidate. (2020-06-19). Available from: urihttp://www.cloverbiopharma.com/index.php?m=content&c=index&a=show&catid=11&id=48&langId=1simplehttp://www.cloverbiopharma.com/index.php?m=content&c=index&a=show&catid=11&id=48&langId=1. | |
Geall AJ, Mandl CW and Ulmer JB: RNA: The new revolution in nucleic acid vaccines. Semin Immunol. 25:152–159. 2013.PubMed/NCBI View Article : Google Scholar | |
Ferraro B, Morrow MP, Hutnick NA, Shin TH, Lucke CE and Weiner DB: Clinical applications of DNA vaccines: Current progress. Clin Infect Dis. 53:296–302. 2011.PubMed/NCBI View Article : Google Scholar | |
Mclvor RS: Therapeutic delivery of mRNA: The medium is the message. Mol Ther. 19:822–823. 2011.PubMed/NCBI View Article : Google Scholar | |
Moderna Announces Phase 3 COVE Study of mRNA Vaccine Against COVID-19 (mRNA-1273) Begins. (2020-07-27). Available from: urihttps://investors.modernatx.com/news-releases/news-release-details/moderna-announces-phase-3-cove-study-mrna-vaccine-against-covidsimplehttps://investors.modernatx.com/news-releases/news-release-details/moderna-announces-phase-3-cove-study-mrna-vaccine-against-covid. | |
Study to Describe the Safety, Tolerability Immunogenicity, Efficacy of RNA Vaccine Candidates Against COVID-19 in Healthy Adults. (2020-09-29). Available from: urihttps://clinicaltrials.gov/ct2/show/NCT04368728simplehttps://clinicaltrials.gov/ct2/show/NCT04368728. | |
COVID-19 vaccine developed by military medical academy approved for clinical trials. Available from: urihttp://www.chinadaily.com.cn/a/202003/17/WS5e70b732a31012821727fd62.htmsimplehttp://www.chinadaily.com.cn/a/202003/17/WS5e70b732a31012821727fd62.htm. | |
Zhu FC, Li YH, Guan XH, Hou LH, Wang WJ, Li JX, Wu SP, Wang BS, Wang Z, Wang L, et al: Safety, tolerability, and immunogenicity of a recombinant adenovirus type-5 vectored COVID-19 vaccine: A dose-escalation, open-label, non-randomised, first-in-human trial. Lancet. 395:1845–1854. 2020.PubMed/NCBI View Article : Google Scholar | |
Li X, Giorgi EE, Marichannegowda MH, Foley B, Xiao C, Kong XP, Chen Y, Gnanakaran S, Korber B and Gao F: Emergence of SARS-CoV-2 through recombination and strong purifying selection. Sci Adv. 6(eabb9153)2020.PubMed/NCBI View Article : Google Scholar | |
Han G and Zhou YH: Possibly critical role of wearing masks in general population in controlling COVID-19. J Med Virol: Apr 15, 2020 (Epub ahead of print). doi: 10.1002/jmv.25886. | |
Rabaan AA, Al-Ahmed SH, Sah R, Tiwari R, Yatoo MI, Patel SK, Pathak M, Malik YS, Dhama K, Singh KP, et al: SARS-CoV-2/COVID-19 and advances in developing potential therapeutics and vaccines to counter this emerging pandemic. Ann Clin Microbiol Antimicrob. 19(40)2020.PubMed/NCBI View Article : Google Scholar | |
Calina D, Hartung T, Docea AO, Spandidos DA, Egorov AM, Shtilman MI, Carvalho F and Tsatsakis A: COVID-19 vaccines: Ethical framework concerning human challenge studies. Daru: Aug 27, 2020 (Epub ahead of print). doi: 10.1007/s40199-020-00371-8. |