1
|
Bray F, Ferlay J, Soerjomataram I, Siegel
RL, Torre LA and Jemal A: Global cancer statistics 2018: GLOBOCAN
estimates of incidence and mortality worldwide for 36 cancers in
185 countries. CA Cancer J Clin. 68:394–424. 2018.PubMed/NCBI View Article : Google Scholar : Erratum in: CA
Cancer J Clin 70, 313, 2020.
|
2
|
Song HJ, Qiu ZL, Shen CT, Wei WJ and Luo
QY: Pulmonary metastases in differentiated thyroid cancer: Efficacy
of radioiodine therapy and prognostic factors. Eur J Endocrinol.
173:399–408. 2015.PubMed/NCBI View Article : Google Scholar
|
3
|
Agrawal N, Akbani R, Aksoy BA, Ally A,
Arachchi H, Asa SL, Auman JT, Balasundaram M, Balu S, Baylin SB, et
al: Cancer Genome Atlas Research Network: Integrated genomic
characterization of papillary thyroid carcinoma. Cell. 159:676–690.
2014.PubMed/NCBI View Article : Google Scholar
|
4
|
Van Nostrand D: Radioiodine refractory
differentiated thyroid cancer: Time to update the classifications.
Thyroid. 28:1083–1093. 2018.PubMed/NCBI View Article : Google Scholar
|
5
|
Treiber T, Treiber N and Meister G:
Regulation of microRNA biogenesis and its crosstalk with other
cellular pathways. Nat Rev Mol Cell Biol. 20:5–20. 2019.PubMed/NCBI View Article : Google Scholar : Erratum in: Nat Rev
Mol Cell Biol 19, 808, 2018.
|
6
|
Tsikrika FD, Avgeris M, Levis PK, Tokas T,
Stravodimos K and Scorilas A: miR-221/222 cluster expression
improves clinical stratification of non-muscle invasive bladder
cancer (TaT1) patients' risk for short-term relapse and
progression. Genes Chromosomes Cancer. 57:150–161. 2018.PubMed/NCBI View Article : Google Scholar
|
7
|
Chen WX, Hu Q, Qiu MT, Zhong SL, Xu JJ,
Tang JH and Zhao JH: miR-221/222: Promising biomarkers for breast
cancer. Tumour Biol. 34:1361–1370. 2013.PubMed/NCBI View Article : Google Scholar
|
8
|
Amini S, Abak A, Sakhinia E and Abhari A:
MicroRNA-221 and microRNA-222 in common human cancers: Expression,
function, and triggering of tumor progression as a key modulator.
Lab Med. 50:333–347. 2019.PubMed/NCBI View Article : Google Scholar
|
9
|
Xu CH, Liu Y, Xiao LM, Chen LK, Zheng SY,
Zeng EM, Li DH and Li YP: Silencing microRNA-221/222 cluster
suppresses glioblastoma angiogenesis by suppressor of cytokine
signaling-3-dependent JAK/STAT pathway. J Cell Physiol.
234:22272–22284. 2019.PubMed/NCBI View Article : Google Scholar
|
10
|
Jikuzono T, Kawamoto M, Yoshitake H,
Kikuchi K, Akasu H, Ishikawa H, Hirokawa M, Miyauchi A, Tsuchiya S,
Shimizu K, et al: The miR-221/222 cluster, miR-10b and miR-92a are
highly upregulated in metastatic minimally invasive follicular
thyroid carcinoma. Int J Oncol. 42:1858–1868. 2013.PubMed/NCBI View Article : Google Scholar
|
11
|
Zhang X, Mao H and Lv Z: MicroRNA role in
thyroid cancer pathogenesis. Front Biosci. 18:734–739.
2013.PubMed/NCBI View
Article : Google Scholar
|
12
|
Braun J, Hoang-Vu C, Dralle H and
Hüttelmaier S: Downregulation of microRNAs directs the EMT and
invasive potential of anaplastic thyroid carcinomas. Oncogene.
29:4237–4244. 2010.PubMed/NCBI View Article : Google Scholar
|
13
|
Yu S, Liu Y, Wang J, Guo Z, Zhang Q, Yu F,
Zhang Y, Huang K, Li Y, Song E, et al: Circulating microRNA
profiles as potential biomarkers for diagnosis of papillary thyroid
carcinoma. J Clin Endocrinol Metab. 97:2084–2092. 2012.PubMed/NCBI View Article : Google Scholar
|
14
|
Gómez-Pérez AM, Cornejo Pareja IM, García
Alemán J, Coín Aragüez L, Sebastián Ochoa A, Alcaide Torres J,
Molina Vega M, Clu Fernández C, Mancha Doblas I and Tinahones FJ:
New molecular biomarkers in differentiated thyroid carcinoma:
Impact of miR-146, miR-221 and miR-222 levels in the evolution of
the disease. Clin Endocrinol (Oxf). 91:187–194. 2019.PubMed/NCBI View Article : Google Scholar
|
15
|
Ravegnini G, Cargnin S, Sammarini G,
Zanotti F, Bermezo JL, Hrelia P, Terrazzino S and Angelini S:
Prognostic role of miR-221 and miR-222 expression in cancer
patients: A systematic review and meta-analysis. Cancers (Basel).
11(970)2019.PubMed/NCBI View Article : Google Scholar
|
16
|
Tseng LM, Huang PI, Chen YR, Chen YC, Chou
YC, Chen YW, Chang YL, Hsu HS, Lan YT, Chen KH, et al: Targeting
signal transducer and activator of transcription 3 pathway by
cucurbitacin I diminishes self-renewing and radiochemoresistant
abilities in thyroid cancer-derived CD133+ cells. J
Pharmacol Exp Ther. 341:410–423. 2012.PubMed/NCBI View Article : Google Scholar
|
17
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) Method. Methods. 25:402–408.
2001.PubMed/NCBI View Article : Google Scholar
|
18
|
Kozomara A, Birgaoanu M and
Griffiths-Jones S: miRBase: From microRNA sequences to function.
Nucleic Acids Res. 47 (D1):D155–D162. 2019.PubMed/NCBI View Article : Google Scholar
|
19
|
TargetScanHuman 5.2 Custom. http://www.targetscan.org/vert_50/seedmatch.html.
Accessed April 14, 2021.
|
20
|
Rhodes DR, Kalyana-Sundaram S, Mahavisno
V, Varambally R, Yu J, Briggs BB, Barrette TR, Anstet MJ,
Kincead-Beal C, Kulkarni P, et al: Oncomine 3.0: Genes, pathways,
and networks in a collection of 18,000 cancer gene expression
profiles. Neoplasia. 9:166–180. 2007.PubMed/NCBI View Article : Google Scholar
|
21
|
Franken NA, Rodermond HM, Stap J, Haveman
J and van Bree C: Clonogenic assay of cells in vitro. Nat Protoc.
1:2315–2319. 2006.PubMed/NCBI View Article : Google Scholar
|
22
|
Wu C, Guo E, Ming J, Sun W, Nie X, Sun L,
Peng S, Luo M, Liu D, Zhang L, et al: Radiation-induced DNMT3B
promotes radioresistance in nasopharyngeal carcinoma through
methylation of p53 and p21. Mol Ther Oncolytics. 17:306–319.
2020.PubMed/NCBI View Article : Google Scholar
|
23
|
Xie C, Wu Y, Fei Z, Fang Y, Xiao S and Su
H: MicroRNA-1275 induces radiosensitization in oesophageal cancer
by regulating epithelial-to-mesenchymal transition via
Wnt/β-catenin pathway. J Cell Mol Med. 24:747–759. 2020.PubMed/NCBI View Article : Google Scholar
|
24
|
Zhou S, Zhang M, Zhou C, Wang W, Yang H
and Ye W: The role of epithelial-mesenchymal transition in
regulating radioresistance. Crit Rev Oncol Hematol.
150(102961)2020.PubMed/NCBI View Article : Google Scholar
|
25
|
Gomez-Casal R, Bhattacharya C, Ganesh N,
Bailey L, Basse P, Gibson M, Epperly M and Levina V: Non-small cell
lung cancer cells survived ionizing radiation treatment display
cancer stem cell and epithelial-mesenchymal transition phenotypes.
Mol Cancer. 12(94)2013.PubMed/NCBI View Article : Google Scholar
|
26
|
Zhao Y, Zhong L and Yi H: A review on the
mechanism of iodide metabolic dysfunction in differentiated thyroid
cancer. Mol Cell Endocrinol. 479:71–77. 2019.PubMed/NCBI View Article : Google Scholar
|
27
|
Marini F, Luzi E and Brandi ML: MicroRNA
role in thyroid cancer development. J Thyroid Res.
2011(407123)2011.PubMed/NCBI View Article : Google Scholar
|
28
|
Li S, Li Q, Lü J, Zhao Q, Li D, Shen L,
Wang Z, Liu J, Xie D, Cho WC, et al: Targeted inhibition of
miR-221/222 promotes cell sensitivity to cisplatin in
triple-negative breast cancer MDA-MB-231 cells. Front Genet.
10(1278)2020.PubMed/NCBI View Article : Google Scholar
|
29
|
Ying X, Wu Q, Wu X, Zhu Q and Wang X,
Jiang L, Chen X and Wang X: Epithelial ovarian cancer-secreted
exosomal miR-222-3p induces polarization of tumor-associated
macrophages. Oncotarget. 7:43076–43087. 2016.PubMed/NCBI View Article : Google Scholar
|
30
|
Xie J, Wen JT, Xue XJ, Zhang KP, Wang XZ
and Cheng HH: miR-221 inhibits proliferation of pancreatic cancer
cells via down regulation of SOCS3. Eur Rev Med Pharmacol Sci.
22:1914–1921. 2018.PubMed/NCBI View Article : Google Scholar
|
31
|
Zhou QY, Peng PL and Xu YH: miR-221
affects proliferation and apoptosis of gastric cancer cells through
targeting SOCS3. Eur Rev Med Pharmacol Sci. 24(7565)2020.PubMed/NCBI View Article : Google Scholar
|
32
|
Wang H, Zhan M, Liu Q and Wang J:
Glycochenodeoxycholate promotes the metastasis of gallbladder
cancer cells by inducing epithelial to mesenchymal transition via
activation of SOCS3/JAK2/STAT3 signaling pathway. J Cell Physiol.
235:1615–1623. 2020.PubMed/NCBI View Article : Google Scholar
|
33
|
Riesco-Eizaguirre G, Rodríguez I, De la
Vieja A, Costamagna E, Carrasco N, Nistal M and Santisteban P: The
BRAFV600E oncogene induces transforming growth factor beta
secretion leading to sodium iodide symporter repression and
increased malignancy in thyroid cancer. Cancer Res. 69:8317–8325.
2009.PubMed/NCBI View Article : Google Scholar
|
34
|
Zhou QX, Jiang XM, Wang ZD, Li CL and Cui
YF: Enhanced expression of suppresser of cytokine signaling 3
inhibits the IL-6-induced epithelial-to-mesenchymal transition and
cholangiocarcinoma cell metastasis. Med Oncol.
32(105)2015.PubMed/NCBI View Article : Google Scholar
|