1
|
Bernardi J, Aromolaran KA, Zhu H and
Aromolaran AS: Circadian Mechanisms: Cardiac Ion Channel Remodeling
and Arrhythmias. Front Physiol. 11(611860)2021.PubMed/NCBI View Article : Google Scholar
|
2
|
Sattler SM, Skibsbye L, Linz D, Lubberding
AF, Tfelt-Hansen J and Jespersen T: Ventricular Arrhythmias in
First Acute Myocardial Infarction: Epidemiology, Mecha-nisms, and
Interventions in Large Animal Models. Front Cardiovasc Med.
6(158)2019.PubMed/NCBI View Article : Google Scholar
|
3
|
Donahue JK: Current state of the art for
cardiac arrhythmia gene therapy. Pharmacol Ther. 176:60–65.
2017.PubMed/NCBI View Article : Google Scholar
|
4
|
Jazayeri MA and Emert MP: Sudden Cardiac
Death: Who Is at Risk? Med Clin North Am. 103:913–930.
2019.PubMed/NCBI View Article : Google Scholar
|
5
|
Haqqani HM, Chan KH, Kumar S, Denniss AR
and Gregory AT: The Contemporary Era of Sudden Cardiac Death and
Ventricular Arrhythmias: Basic Concepts, Recent Developments and
Future Directions. Heart Lung Circ. 28:1–5. 2019.PubMed/NCBI View Article : Google Scholar
|
6
|
AlMahameed ST and Ziv O: Ventricular
Arrhythmias. Med Clin North Am. 103:881–895. 2019.PubMed/NCBI View Article : Google Scholar
|
7
|
Markman TM and Nazarian S: Treatment of
ventricular arrhythmias: What's New? Trends Cardiovasc Med.
29:249–261. 2019.PubMed/NCBI View Article : Google Scholar
|
8
|
Skogestad J and Aronsen JM:
Hypokalemia-Induced Arrhythmias and Heart Failure: New Insights and
Implications for Therapy. Front Physiol. 9(1500)2018.PubMed/NCBI View Article : Google Scholar
|
9
|
Weiss JN, Garfinkel A, Karagueuzian HS,
Chen PS and Qu Z: Early afterdepolariza-tions and cardiac
arrhythmias. Heart Rhythm. 7:1891–1899. 2010.PubMed/NCBI View Article : Google Scholar
|
10
|
Di Diego JM and Antzelevitch C: Ischemic
ventricular arrhythmias: Experimental models and their clinical
relevance. Heart Rhythm. 8:1963–1968. 2011.PubMed/NCBI View Article : Google Scholar
|
11
|
Landstrom AP, Dobrev D and Wehrens XHT:
Calcium Signaling and Cardiac Arrhythmias. Circ Res. 120:1969–1993.
2017.PubMed/NCBI View Article : Google Scholar
|
12
|
Mollenhauer M, Mehrkens D, Klinke A, Lange
M, Remane L, Friedrichs K, Brau-mann S, Geißen S, Simsekyilmaz S,
Nettersheim FS, et al: Nitro-fatty acids suppress ischemic
ventricular arrhythmias by preserving calcium homeostasis. Sci Rep.
10(15319)2020.PubMed/NCBI View Article : Google Scholar
|
13
|
Joviano-Santos JV, Santos-Miranda A,
Botelho AFM, de Jesus ICG, Andrade JN, de Oliveira Barreto T,
Magalhães-Gomes MPS, Valadão PAC, Cruz JDS, Melo MM, et al:
Increased oxidative stress and CaMKII activity contribute to
electro-mechanical defects in cardiomyocytes from a murine model of
Huntington's disease. FEBS J. 286:110–123. 2019.PubMed/NCBI View Article : Google Scholar
|
14
|
Bers DM: Calcium cycling and signaling in
cardiac myocytes. Annu Rev Physiol. 70:23–49. 2008.PubMed/NCBI View Article : Google Scholar
|
15
|
Hegyi B, Bers DM and Bossuyt J: CaMKII
signaling in heart diseases: Emerging role in diabetic
cardiomyopathy. J Mol Cell Cardiol. 127:246–259. 2019.PubMed/NCBI View Article : Google Scholar
|
16
|
Greer-Short A, Musa H, Alsina KM, Ni L,
Word TA, Reynolds JO, Gratz D, Lane C, El-Refaey M, Unudurthi S, et
al: Calmodulin kinase II regulates atrial myocyte late sodium
current, calcium handling, and atrial arrhythmia. Heart Rhythm.
17:503–511. 2020.PubMed/NCBI View Article : Google Scholar
|
17
|
Pyun JH, Kim HJ, Jeong MH, Ahn BY, Vuong
TA, Lee DI, Choi S, Koo SH, Cho H and Kang JS: Cardiac specific
PRMT1 ablation causes heart failure through CaMKII dysregulation.
Nat Commun. 9(5107)2018.PubMed/NCBI View Article : Google Scholar
|
18
|
Wood BM, Simon M, Galice S, Alim CC,
Ferrero M, Pinna NN, Bers DM and Bossuyt J: Cardiac CaMKII
activation promotes rapid translocation to its extra-dyadic
targets. J Mol Cell Cardiol. 125:18–28. 2018.PubMed/NCBI View Article : Google Scholar
|
19
|
Yoo S, Aistrup G, Shiferaw Y, Ng J, Mohler
PJ, Hund TJ, Waugh T, Browne S, Gussak G, Gilani M, et al:
Oxidative stress creates a unique, CaMKII-mediated sub-strate for
atrial fibrillation in heart failure. JCI Insight.
3(3)2018.PubMed/NCBI View Article : Google Scholar
|
20
|
Howard T, Greer-Short A, Satroplus T,
Patel N, Nassal D, Mohler PJ and Hund TJ: CaMKII-dependent late
Na+ current increases electrical dispersion and
arrhythmia in ischemia-reperfusion. Am J Physiol Heart Circ
Physiol. 315:H794–H801. 2018.PubMed/NCBI View Article : Google Scholar
|
21
|
Motloch LJ, Cacheux M, Ishikawa K, Xie C,
Hu J, Aguero J, Fish KM, Hajjar RJ and Akar FG: Primary Effect of
SERCA 2a Gene Transfer on Conduction Reserve in Chronic Myocardial
Infarction. J Am Heart Assoc. 7(e009598)2018.PubMed/NCBI View Article : Google Scholar
|
22
|
Johnson CN, Pattanayek R, Potet F, Rebbeck
RT, Blackwell DJ, Nikolaienko R, Sequeira V, Le Meur R, Radwański
PB, Davis JP, et al: The CaMKII inhibitor KN93-calmodulin
interaction and implications for calmodulin tuning of NaV1.5 and
RyR2 function. Cell Calcium. 82(102063)2019.PubMed/NCBI View Article : Google Scholar
|
23
|
Nassal D, Gratz D and Hund TJ: Challenges
and Opportunities for Therapeutic Targeting of Calmodulin Kinase II
in Heart. Front Pharmacol. 11(35)2020.PubMed/NCBI View Article : Google Scholar
|
24
|
Wong MH, Samal AB, Lee M, Vlach J, Novikov
N, Niedziela-Majka A, Feng JY, Koltun DO, Brendza KM, Kwon HJ, et
al: The KN-93 Molecule Inhibits Calcium/Calmodulin-Dependent
Protein Kinase II (CaMKII) Activity by Binding to
Ca2+/CaM. J Mol Biol. 431:1440–1459. 2019.PubMed/NCBI View Article : Google Scholar
|
25
|
Erickson JR, Joiner ML, Guan X, Kutschke
W, Yang J, Oddis CV, Bartlett RK, Lowe JS, O'Donnell SE,
Aykin-Burns N, et al: A dynamic pathway for calcium-independent
activation of CaMKII by methionine oxidation. Cell. 133:462–474.
2008.PubMed/NCBI View Article : Google Scholar
|
26
|
Erickson JR, Pereira L, Wang L, Han G,
Ferguson A, Dao K, Copeland RJ, Despa F, Hart GW, Ripplinger CM, et
al: Diabetic hyperglycaemia activates CaMKII and arrhythmias by
O-linked glycosylation. Nature. 502:372–376. 2013.PubMed/NCBI View Article : Google Scholar
|
27
|
Hegyi B, Bányász T, Izu LT, Belardinelli
L, Bers DM and Chen-Izu Y: β-adrenergic regulation of late
Na+ current during cardiac action potential is mediated
by both PKA and CaMKII. J Mol Cell Cardiol. 123:168–179.
2018.PubMed/NCBI View Article : Google Scholar
|
28
|
Wagner S, Dybkova N, Rasenack EC,
Jacobshagen C, Fabritz L, Kirchhof P, Maier SK, Zhang T, Hasenfuss
G, Brown JH, et al: Ca2+/calmodulin-dependent protein
ki-nase II regulates cardiac Na+ channels. J Clin
Invest. 116:3127–3138. 2006.PubMed/NCBI View Article : Google Scholar
|
29
|
El Refaey M, Musa H, Murphy NP, Lubbers
ER, Skaf M, Han M, Cavus O, Koenig SN, Wallace MJ, Gratz D, et al:
Protein Phosphatase 2A Regulates Cardiac Na+ Channels.
Circ Res. 124:737–746. 2019.PubMed/NCBI View Article : Google Scholar
|
30
|
Hegyi B, Morotti S, Liu C, Ginsburg KS,
Bossuyt J, Belardinelli L, Izu LT, Chen-Izu Y, Bányász T, Grandi E,
et al: Enhanced Depolarization Drive in Failing Rabbit Ventricular
Myocytes: Calcium-Dependent and β-Adrenergic Effects on Late
Sodium, L-Type Calcium, and Sodium-Calcium Exchange Currents. Circ
Arrhythm Electrophysiol. 12(e007061)2019.PubMed/NCBI View Article : Google Scholar
|
31
|
Valverde CA, Mazzocchi G, Di Carlo MN,
Ciocci Pardo A, Salas N, Ragone MI, Felice JI, Cely-Ortiz A,
Consolini AE, Portiansky E, et al: Ablation of phospholamban
rescues reperfusion arrhythmias but exacerbates myocardium
infarction in hearts with Ca2+/calmodulin kinase II
constitutive phosphorylation of ryanodine receptors. Cardio-vasc
Res. 115:556–569. 2019.PubMed/NCBI View Article : Google Scholar
|
32
|
Coppini R, Ferrantini C, Mugelli A,
Poggesi C and Cerbai E: Altered Ca2+ and Na+
Homeostasis in Human Hypertrophic Cardiomyopathy: Implications for
Arrhythmogenesis. Front Physiol. 9(1391)2018.PubMed/NCBI View Article : Google Scholar
|
33
|
Nie J, Duan Q, He M, Li X, Wang B, Zhou C,
Wu L, Wen Z, Chen C, Wang DW, et al: Ranolazine prevents pressure
overload-induced cardiac hypertrophy and heart failure by restoring
aberrant Na+ and Ca2+ handling. J Cell
Physiol. 234:11587–11601. 2019.PubMed/NCBI View Article : Google Scholar
|
34
|
Alday A, Ahyayauch H, Fernández-López V,
Echeazarra L, Urrutia J, Casis O and Gallego M: CaMKII Modulates
the Cardiac Transient Outward K+ current through its
Association with Kv4 Channels in Non-Caveolar Membrane Rafts. Cell
Physiol Bio-chem. 54:27–39. 2020.PubMed/NCBI View Article : Google Scholar
|
35
|
Zhai X, Qiao X, Zhang L, Wang D, Zhang L,
Feng Q, Wu B, Cao J and Liu Q: IK1 channel agonist zacopride
suppresses ventricular arrhythmias in conscious rats with healing
myocardial infarction. Life Sci. 239(117075)2019.PubMed/NCBI View Article : Google Scholar
|
36
|
Hegyi B, Bossuyt J, Ginsburg KS, Mendoza
LM, Talken L, Ferrier WT, Pogwizd SM, Izu LT, Chen-Izu Y and Bers
DM: Altered Repolarization Reserve in Failing Rabbit Ventricular
Myocytes: Calcium and β-Adrenergic Effects on Delayed- and
Inward-Rectifier Potassium Currents. Circ Arrhythm Electrophysiol.
11(e005852)2018.PubMed/NCBI View Article : Google Scholar
|
37
|
Liu QH, Qiao X, Zhang LJ, Wang J, Zhang L,
Zhai XW, Ren XZ, Li Y, Cao XN, Feng QL, et al: IK1 Channel Agonist
Zacopride Alleviates Cardiac Hypertrophy and Failure via
Alterations in Calcium Dyshomeostasis and Electrical Remodeling in
Rats. Front Pharmacol. 10(929)2019.PubMed/NCBI View Article : Google Scholar
|
38
|
Elnakish MT, Canan BD, Kilic A, Mohler PJ
and Janssen PM: Effects of zacopride, a moderate IK1 channel
agonist, on triggered arrhythmia and contractility in human
ventricular myocardium. Pharmacol Res. 115:309–318. 2017.PubMed/NCBI View Article : Google Scholar
|
39
|
Shugg T, Johnson DE, Shao M, Lai X,
Witzmann F, Cummins TR, Rubart-Von-der Lohe M, Hudmon A and
Overholser BR: Calcium/calmodulin-dependent protein kinase II
regulation of IKs during sustained β-adrenergic receptor
stimulation. Heart Rhythm. 15:895–904. 2018.PubMed/NCBI View Article : Google Scholar
|
40
|
Park SJ, Zhang D, Qi Y, Li Y, Lee KY,
Bezzerides VJ, Yang P, Xia S, Kim SL, Liu X, et al: Insights Into
the Pathogenesis of Catecholaminergic Polymorphic Ventricular
Tachycardia From Engineered Human Heart Tissue. Circulation.
140:390–404. 2019.PubMed/NCBI View Article : Google Scholar
|
41
|
Lee TI, Chen YC, Lin YK, Chung CC, Lu YY,
Kao YH and Chen YJ: Empagliflozin Attenuates Myocardial Sodium and
Calcium Dysregulation and Reverses Cardiac Remodeling in
Streptozotocin-Induced Diabetic Rats. Int J Mol Sci.
20(20)2019.PubMed/NCBI View Article : Google Scholar
|
42
|
Kamada R, Yokoshiki H, Mitsuyama H,
Watanabe M, Mizukami K, Tenma T, Takahashi M, Takada S and Anzai T:
Arrhythmogenic β-adrenergic signaling in cardiac hypertrophy: The
role of small-conductance calcium-activated potassium channels via
activation of CaMKII. Eur J Pharmacol. 844:110–117. 2019.PubMed/NCBI View Article : Google Scholar
|
43
|
Popescu I, Yin G, Velmurugan S, Erickson
JR, Despa F and Despa S: Lower sarcoplasmic reticulum
Ca2+ threshold for triggering afterdepolarizations in
diabetic rat hearts. Heart Rhythm. 16:765–772. 2019.PubMed/NCBI View Article : Google Scholar
|
44
|
Soliman H, Nyamandi V, Garcia-Patino M,
Zhang PC, Lin E, Jia ZP, Tibbits GF, Hove-Madsen L and MacLeod KM:
ROCK2 promotes ryanodine receptor phosphorylation and arrhythmic
calcium release in diabetic cardiomyocytes. Int J Cardiol.
281:90–98. 2019.PubMed/NCBI View Article : Google Scholar
|
45
|
Johnson CN: Calcium modulation of cardiac
sodium channels. J Physiol. 598:2835–2846. 2020.PubMed/NCBI View Article : Google Scholar
|
46
|
Zhong P, Quan D, Huang Y and Huang H:
CaMKII Activation Promotes Cardiac Electrical Remodeling and
Increases the Susceptibility to Arrhythmia Induction in High-fat
Diet-Fed Mice With Hyperlipidemia Conditions. J Cardiovasc
Pharmacol. 70:245–254. 2017.PubMed/NCBI View Article : Google Scholar
|
47
|
Sun L, Chen Y, Luo H, Xu M, Meng G and
Zhang W: Ca2+/calmodulin-dependent protein kinase II
regulation by inhibitor 1 of protein phosphatase 1 alleviates
necropto-sis in high glucose-induced cardiomyocytes injury. Biochem
Pharmacol. 163:194–205. 2019.PubMed/NCBI View Article : Google Scholar
|
48
|
Tzimas C, Terrovitis J, Lehnart SE,
Kranias EG and Sanoudou D: Calcium/calmodulin-dependent protein
kinase II (CaMKII) inhibition ameliorates arrhythmias elicited by
junctin ablation under stress conditions. Heart Rhythm.
12:1599–1610. 2015.PubMed/NCBI View Article : Google Scholar
|
49
|
Cao L, Chen Y, Lu L, Liu Y, Wang Y, Fan J
and Yin Y: Angiotensin II upregu-lates fibroblast-myofibroblast
transition through Cx43-dependent CaMKII and TGF-β1 signaling in
neonatal rat cardiac fibroblasts. Acta Biochim Biophys Sin
(Shanghai). 50:843–852. 2018.PubMed/NCBI View Article : Google Scholar
|
50
|
Himelman E, Lillo MA, Nouet J, Gonzalez
JP, Zhao Q, Xie LH, Li H, Liu T, Wehrens XH, Lampe PD, et al:
Prevention of connexin-43 remodeling protects against Duchenne
muscular dystrophy cardiomyopathy. J Clin Invest. 130:1713–1727.
2020.PubMed/NCBI View Article : Google Scholar
|
51
|
Huang RY, Laing JG, Kanter EM, Berthoud
VM, Bao M, Rohrs HW, Townsend RR and Yamada KA: Identification of
CaMKII phosphorylation sites in Connexin43 by high-resolution mass
spectrometry. J Proteome Res. 10:1098–1109. 2011.PubMed/NCBI View Article : Google Scholar
|
52
|
Li W, Gao H, Gao J and Wang Z:
Upregulation of MMP-9 and CaMKII prompts cardiac
electrophysiological changes that predispose denervated
transplanted hearts to arrhythmogenesis after prolonged cold
ischemic storage. Biomed Pharmacother. 112(108641)2019.PubMed/NCBI View Article : Google Scholar
|
53
|
Takanari H, Bourgonje VJ, Fontes MS,
Raaijmakers AJ, Driessen H, Jansen JA, van der Nagel R, Kok B, van
Stuijvenberg L, Boulaksil M, et al: Calmodulin/CaMKII inhibition
improves intercellular communication and impulse propagation in the
heart and is antiarrhythmic under conditions when fibrosis is
absent. Cardiovasc Res. 111:410–421. 2016.PubMed/NCBI View Article : Google Scholar
|
54
|
Pasdois P, Beauvoit B, Tariosse L, Vinassa
B, Bonoron-Adèle S and Dos Santos P: Effect of diazoxide on
flavoprotein oxidation and reactive oxygen species generation
during ischemia-reperfusion: A study on Langendorff-perfused rat
hearts using optic fibers. Am J Physiol Heart Circ Physiol.
294:H2088–H2097. 2008.PubMed/NCBI View Article : Google Scholar
|
55
|
Warren M, Sciuto KJ, Taylor TG, Garg V,
Torres NS, Shibayama J, Spitzer KW and Zaitsev AV: Blockade of
CaMKII depresses conduction preferentially in the right ventricular
outflow tract and promotes ischemic ventricular fibrillation in the
rabbit heart. Am J Physiol Heart Circ Physiol. 312:H752–H767.
2017.PubMed/NCBI View Article : Google Scholar
|