Relationship between oxidative stress and nuclear factor‑erythroid‑2‑related factor 2 signaling in diabetic cardiomyopathy (Review)
- Authors:
- Xia Wu
- Leitao Huang
- Jichun Liu
-
Affiliations: Department of Pharmacy, Nanchang University, Nanchang, Jiangxi 330006, P.R. China, Department of Orthopedics, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210031, P.R. China - Published online on: April 25, 2021 https://doi.org/10.3892/etm.2021.10110
- Article Number: 678
-
Copyright: © Wu et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Schrier RW, Abdallah JG, Weinberger HH and Abraham WT: Therapy of heart failure. Kidney Int. 57:1418–1425. 2000.PubMed/NCBI View Article : Google Scholar | |
Rafeian-Kopaei M, Setorki M, Doudi M, Baradaran A and Nasri H: Atherosclerosis: Process, indicators, risk factors and new hopes. Int J Prev Med. 5:927–946. 2014.PubMed/NCBI | |
Majerczyk M, Choręza P, Mizia-Stec K, Bożentowicz-Wikarek M, Brzozowska A, Arabzada H, Owczarek AJ, Szybalska A, Grodzicki T, Więcek A, et al: Plasma level of retinol-binding protein 4, N-terminal proBNP and renal function in older patients hospitalized for heart failure. Cardiorenal Med. 8:237–248. 2018.PubMed/NCBI View Article : Google Scholar | |
McGillicuddy FC, Moll HP, Farouk S, Damrauer SM, Ferran C and Reilly MP: Translational studies of A20 in atherosclerosis and cardiovascular disease. Adv Exp Med Biol. 809:83–101. 2014.PubMed/NCBI View Article : Google Scholar | |
Lindblom R, Ververis K, Tortorella SM and Karagiannis TC: The early life origin theory in the development of cardiovascular disease and type 2 diabetes. Mol Biol Rep. 42:791–797. 2015.PubMed/NCBI View Article : Google Scholar | |
Eltzschig HK and Eckle T: Ischemia and reperfusion-from mechanism to translation. Nat Med. 17:1391–1401. 2011.PubMed/NCBI View Article : Google Scholar | |
Scolletta S and Biagioli BE: Nergetic myocardial metabolism and oxidative stress: Let's make them our friends in the fight against heart failure. Biomed Pharmacother. 64:203–207. 2010.PubMed/NCBI View Article : Google Scholar | |
Reczek CR and Chandel NS: ROS-dependent signal transduction. Curr Opin Cell Biol. 33C:8–13. 2014.PubMed/NCBI View Article : Google Scholar | |
Ichihara S: The pathological roles of environmental and redox stresses in cardiovascular diseases. Environ Health Prev Med. 18:177–184. 2013.PubMed/NCBI View Article : Google Scholar | |
Brahmanaidu P, Sathibabu U and Ganapathy S: Diabetic cardiomyopathy: Molecular mechanisms, detrimental effects of conventional treatment, and beneficial effects of natural therapy. Heart Fail Rev. 24:279–299. 2019.PubMed/NCBI View Article : Google Scholar | |
Chakraborty S and Ain R: Nitric-oxide synthase trafficking inducer is a pleiotropic regulator of endothelial cell function and signaling. J Biol Chem. 292:6600–6620. 2017.PubMed/NCBI View Article : Google Scholar | |
Balakumar P, Singh AP and Singh M: Rodent models of heart failure. J Pharmacol Toxicol Methods. 56:1–10. 2007.PubMed/NCBI View Article : Google Scholar | |
Furfaro AL, Traverso N, Domenicotti C, Piras S, Moretta L, Marinari UM, Pronzato MA and Nitti M: The NRF2/HO-1 axis in cancer cell growth andchemoresistance. Oxid Med Cell Longev. 2016(1958174)2016.PubMed/NCBI View Article : Google Scholar | |
Suzuki T and Yamamoto M: Molecular basis of the Keap1-Nrf2 system. Free Radic Biol Med. 88:93–100. 2015.PubMed/NCBI View Article : Google Scholar | |
Jay PY, Berul CI, Tanaka M, Ishii M, Kurachi Y and Izumo S: Cardiac conduction and arrhythmia: Insights from Nkx2.5 mutations in mouse and humans. Novartis Found Symp. 250:227–238. 2003.PubMed/NCBI | |
Namani A, Li Y, Wang XJ and Tang X: Modulation of Nrf2 signaling pathway by nuclear receptors: Implications for cancer. Biochim Biophys Acta. 1843:1875–1885. 2014.PubMed/NCBI View Article : Google Scholar | |
Yamamoto M, Kensler TW and Motohashi H: The KEAP1-NRF2 system: A thiol-based sensor-effector apparatus for maintaining redox homeostasis. Physiol Rev. 98:1169–1203. 2018.PubMed/NCBI View Article : Google Scholar | |
Li W and Kong AN: Molecular mechanisms of Nrf2-mediated antioxidant response. Mol Carcinog. 48:91–104. 2009.PubMed/NCBI View Article : Google Scholar | |
Nguyen T, Nioi P and Pickett CB: The Nrf2-antioxidant response element signaling pathway and its activation by oxidative stress. J Biol Chem. 284:13291–13295. 2009.PubMed/NCBI View Article : Google Scholar | |
Corradi D, Callegari S, Maestri R, Benussi S and Alfieri O: Structural remodeling in atrial fibrillation. Nat Clin Pract Cardiovasc Med. 5:782–796. 2008.PubMed/NCBI View Article : Google Scholar | |
Saracino MR and Lampe JW: Phytochemical regulation of UDP-glucuronosyltransferases: Implications for cancer prevention. Nutr Cancer. 59:121–141. 2007.PubMed/NCBI View Article : Google Scholar | |
Niture SK, Kaspar JW and Shen J: Nrf2 signaling and cell survival. Toxicol Appl Pharmacol. 244:37–42. 2010.PubMed/NCBI View Article : Google Scholar | |
Dhamodharan U, Ponjayanthi B, Sireesh D, Bhakkiyalakshmi E and Ramkumar KM: Association of single-nucleotide polymorphisms of the KEAP1 gene with the risk of various human diseases and its functional impact using in silico analysis. Pharmacol Res. 137:205–218. 2018.PubMed/NCBI View Article : Google Scholar | |
Tian W, Rojo de la Vega M, Schmidlin CJ, Ooi A and Zhang DD: Kelch-like ECH-associated protein 1 (KEAP1) differentially regulates nuclear factor erythroid-2-related factors 1 and 2 (NRF1 and NRF2). J Biol Chem. 293:2029–2040. 2018.PubMed/NCBI View Article : Google Scholar | |
Mohan S and Gupta D: Crosstalk of toll-like receptors signaling and Nrf2 pathway for regulation of inflammation. Biomed Pharmacother. 108:1866–1878. 2018.PubMed/NCBI View Article : Google Scholar | |
Niture SK, Khatri R and Jaiswal AK: Regulation of NRF2-an update. Free Radic Biol Med. 66:36–44. 2014.PubMed/NCBI View Article : Google Scholar | |
Katoh Y, Iida K, Kang MI, Kobayashi A, Mizukami M, Tong KI, McMahon M, Hayes JD, Itoh K and Yamamoto M: Evolutionary conserved N-terminal domain of Nrf2 is essential for the Keap1-mediated degradation of the protein by proteasome. Arch Biochem Biophys. 433:342–350. 2005.PubMed/NCBI View Article : Google Scholar | |
Baird L, Llères D, Swift S and Dinkova-Kostova AT: Regulatory flexibility in the Nrf2-mediated stress response is conferred by conformational cycling of the Keap1-Nrf2 protein complex. Proc Natl Acad Sci USA. 110:15259–15264. 2013.PubMed/NCBI View Article : Google Scholar | |
Hegedűs K, Nagy P, Gáspári Z and Juhász G: The putative HORMA domain protein Atg101 dimerizes and is required for starvation-induced and selective autophagy in Drosophila. Biomed Res Int. 2014(470482)2014.PubMed/NCBI View Article : Google Scholar | |
Baird L and Dinkova-Kostova AT: The cytoprotective role of the Keap1-Nrf2 pathway. Arch Toxicol. 85:241–272. 2011.PubMed/NCBI View Article : Google Scholar | |
Zhao Q, Liu Z and Huang B: PEDF improves cardiac function in rats subjected to myocardial ischemia/reperfusion injury by inhibiting ROS generation via PEDF-R. Int J Mol Med. 41:3243–3252. 2018.PubMed/NCBI View Article : Google Scholar | |
Sporn MB and Liby KT: NRF2 and cancer: The good, the bad and the importance of context. Nat Rev Cancer. 12:564–571. 2012.PubMed/NCBI View Article : Google Scholar | |
Cameron BD, Sekhar KR, Ofori M and Freeman ML: The role of Nrf2 in the response to normal tissue radiation injury. Radiat Res. 190:99–106. 2018.PubMed/NCBI View Article : Google Scholar | |
Xiang MJ, Namani A, Wu SJ and Wang XL: Nrf2: Bane or blessing in cancer? J Cancer Res Clin Oncol. 140:1251–1259. 2014.PubMed/NCBI View Article : Google Scholar | |
Lau YS, Ling WC, Murugan D and Mustafa MR: Boldine ameliorates vascular oxidative stress and endothelial dysfunction: Therapeutic implication for hypertension and diabetes. J Cardiovasc Pharmacol. 65:522–531. 2015.PubMed/NCBI View Article : Google Scholar | |
Gillet FX, Bournaud C, Antonino de Souza Júnior JD and Grossi-de-Sa MF: Plant-parasitic nematodes: Towards understanding molecular players in stress responses. Ann Bot. 119:775–789. 2017.PubMed/NCBI View Article : Google Scholar | |
Lu MC, Ji JA, Jiang ZY and You QD: The Keap1-Nrf2-ARE pathway as a potential preventive and therapeutic target: An update. Med Res Rev. 36:924–963. 2016.PubMed/NCBI View Article : Google Scholar | |
Cheng D, Wu R, Guo Y and Kong AN: Regulation of Keap1-Nrf2 signaling: The role of epigenetics. Curr Opin Toxicol. 1:134–138. 2016.PubMed/NCBI View Article : Google Scholar | |
Chiou YS, Huang Q, Ho CT, Wang YJ and Pan MH: Directly interact with Keap1 and LPS is involved in the anti-inflammatory mechanisms of (-)-epicatechin-3-gallate in LPS-induced macrophages and endotoxemia. Free Radic Biol Med. 94:1–16. 2016.PubMed/NCBI View Article : Google Scholar | |
Itoh K, Ye P, Matsumiya T, Tanji K and Ozaki T: Emerging functional cross-talk between the Keap1-Nrf2 system and mitochondria. J Clin Biochem Nutr. 56:91–97. 2015.PubMed/NCBI View Article : Google Scholar | |
Zenkov NK, Menshchikova EB and Tkachev VO: Keap1/Nrf2/ARE redox-sensitive signaling system as a pharmacological target. Biochemistry (Mosc). 78:19–36. 2013.PubMed/NCBI View Article : Google Scholar | |
Tu J, Zhang X, Zhu Y, Dai Y, Li N, Yang F, Zhang Q, Brann DW and Wang R: Cell-permeable peptide targeting the Nrf2-Keap1 interaction: A potential novel therapy for global cerebral ischemia. Neurosci. 35:14727–14739. 2015.PubMed/NCBI View Article : Google Scholar | |
Wakabayashi N, Slocum SL, Skoko JJ, Shin S and Kensler TW: When NRF2 talks, who's listening? Antioxid Redox Signal. 13:1649–1663. 2010.PubMed/NCBI View Article : Google Scholar | |
Thygesen K, Alpert JS, Jaffe AS, Simoons ML, Chaitman BR and White HD: Task Force for the Universal Definition of Myocardial Infarction. Third universal definition of myocardial infarction. Nat Rev Cardiol. 9:620–633. 2012.PubMed/NCBI View Article : Google Scholar | |
Ostadal B, Drahota Z, Houstek J, Milerova M, Ostadalova I, Hlavackova M and Kolar F: Developmental and sex difference in cardiac tolerance to ischemia/reperfusion injury: The role of mitochondria1. Can J Physiol Pharmacol. 97:808–814. 2019.PubMed/NCBI View Article : Google Scholar | |
Xue M, Momiji H, Rabbani N, Barker G, Bretschneider T, Shmygol A, Rand DA and Thornalley PJ: Frequency modulated translocational oscillations of Nrf2 mediate the antioxidant response element cytoprotective transcriptional response. Antioxid Redox Signal. 23:613–629. 2015.PubMed/NCBI View Article : Google Scholar | |
Chai D, Zhang L, Xi S, Cheng Y, Jiang H and Hu R: Nrf2 activation induced by Sirt1 ameliorates acute lung injury after intestinal ischemia/reperfusion through NOX4-mediated gene regulation. Cell Physiol Biochem. 46:781–792. 2018.PubMed/NCBI View Article : Google Scholar | |
Schwarz M, Lossow K, Kopp JF, Schwerdtle T and Kipp AP: Crosstalk of Nrf2 with the trace elements selenium, iron, zinc, and copper. Nutrients. 11(2112)2019.PubMed/NCBI View Article : Google Scholar | |
Mazzei L, Docherty NG and Manucha W: Mediators and mechanisms of heat shock protein 70 based cytoprotection in obstructive nephropathy. Cell Stress Chaperones. 20:893–906. 2015.PubMed/NCBI View Article : Google Scholar | |
Mann GE, Bonacasa B, Ishii T and Siow RC: Targeting the redox sensitive Nrf2-Keap1 defense pathway in cardiovascular disease: Protection afforded by dietary isoflavones. Curr Opin Pharmacol. 9:139–145. 2009.PubMed/NCBI View Article : Google Scholar | |
Xu B, Zhang J, Strom J, Lee S and Chen QM: Myocardial ischemic reperfusion induces de novo NRF2 protein translation. Biochim Biophys Acta. 1842:1638–1647. 2014.PubMed/NCBI View Article : Google Scholar | |
Ashrafian H, Czibik G, Bellahcene M, Aksentijević D, Smith AC, Mitchell SJ, Dodd MS, Kirwan J, Byme JJ, Ludwiq C, et al: Fumarate is cardioprotective via activation of the NRF2 antioxidant pathway. Cell Metab. 15:361–371. 2012.PubMed/NCBI View Article : Google Scholar | |
Farías JG, Carrasco-Pozo C, Carrasco Loza R, Sepúlveda N, Álvarez P, Quezada M, Quiñones J, Molina V and Castillo RL: Polyunsaturated fatty acid induces cardioprotection against ischemia- reperfusion through the inhibition of NF-kappaB and induction of NRF2. Exp Biol Med. 242:1104–1114. 2017.PubMed/NCBI View Article : Google Scholar | |
Bhogal RH, Weston CJ, Velduis S, G D Leuvenink H, Reynolds GM, Davies S, Nyguet-Thin L, Alfaifi M, Shepard EL, Boteon Y, et al: The reactive oxygen species-mitophagy signaling pathway regulates liver endothelial cell survival during ischemia/reperfusion injury. Liver Transpl. 24:1437–1452. 2018.PubMed/NCBI View Article : Google Scholar | |
Scherz-Shouval R and Elazar Z: ROS, mitochondria and the regulation of autophagy. Trends Cell Biol. 17:422–427. 2007.PubMed/NCBI View Article : Google Scholar | |
Dinkova-Kostova AT and Abramov AY: The emerging role of NRF2 in mitochondrial function. Free Radic Biol Med. 88:179–188. 2015.PubMed/NCBI View Article : Google Scholar | |
Ludtmann MH, Angelova PR, Zhang Y, Abramov AY and Dinkova-Kostova AT: NRF2 affects the efficiency of mitochondrial fatty acid oxidation. Biochem J. 457:415–424. 2014.PubMed/NCBI View Article : Google Scholar | |
Glinka YY and Youdim MB: Inhibition of mitochondrial complexes I and IV by 6-hydroxydopamine. Eur J Pharmacol. 292:329–332. 1995.PubMed/NCBI View Article : Google Scholar | |
Baechler BL, Bloemberg D and Quadrilatero J: Mitophagy regulates mitochondrial network signaling, oxidative stress, and apoptosis during myoblast differentiation. Autophagy. 15:1606–1619. 2019.PubMed/NCBI View Article : Google Scholar | |
Qiu M, Zhang S, Ke L, Tang H, Zeng X and Liu J: JS-K enhances chemosensitivity of prostate cancer cells to Taxol via reactive oxygen species activation. Oncol Lett. 17:757–764. 2019.PubMed/NCBI View Article : Google Scholar | |
Zhang Y, Sano M, Shinmura K, Tamaki K, Katsumata Y, Matsuhashi T, Morizane S, Ito H, Hishiki T, Endo J, et al: 4-hydroxy-2-nonenal protects against cardiac ischemiareperfusion injury via the NRF2-dependent pathway. J Mol Cell Cardiol. 49:576–586. 2010.PubMed/NCBI View Article : Google Scholar | |
Anedda A, López-Bernardo E, Acosta-Iborra B, Saadeh Suleiman M, Landázuri MO and Cadenas S: The transcription factor NRF2 promotes survival by enhancing the expression of uncoupling protein 3 under conditions of oxidative stress. Free Radic Biol Med. 61C:395–407. 2013.PubMed/NCBI View Article : Google Scholar | |
Curfman G: Stem cell therapy for heart failure: An unfulfilled promise? JAMA. 321:1186–1187. 2019.PubMed/NCBI View Article : Google Scholar | |
Chen YL, Fan J, Cao L, Han TL, Zeng M, Xu Y, Ling Z and Yin Y: Unique mechanistic insights into the beneficial effects of angiotensin-(1-7) on the prevention of cardiac fibrosis: A metabolomic analysis of primary cardiac fibroblasts. Exp Cell Res. 378:158–170. 2019.PubMed/NCBI View Article : Google Scholar | |
Ambrosi N, Guerrieri D, Caro F, Sanchez F, Haeublein G, Casadei D, Incardona C and Chuluyan E: Alpha lipoic acid: A therapeutic strategy that tend to limit the action of free radicals in transplantation. Int J Mol Sci. 19(102)2018.PubMed/NCBI View Article : Google Scholar | |
Kageyama S, Saito T, Obata M, Koide RH, Ichimura Y and Komatsu M: Negative regulation of the Keap1-Nrf2 pathway by a p62/Sqstm1 splicing variant. Mol Cell Biol. 38:e00642–17. 2018.PubMed/NCBI View Article : Google Scholar | |
Erpicum P, Rowart P, Defraigne JO, Krzesinski JM and Jouret F: What we need to know about lipid-associated injury in case of renal ischemia-reperfusion. Am J Physiol Renal Physiol. 315:F1714–F1719. 2018.PubMed/NCBI View Article : Google Scholar | |
Lee LY, Harberg C, Matkowskyj KA, Cook S, Roenneburg D, Werner S, Johnson J and Foley DP: Overactivation of the nuclear factor (erythroid-derived 2)-like 2-antioxidant response element pathway in hepatocytes decreases hepatic ischemia/reperfusion injury in mice. Liver Transpl. 22:91–102. 2015.PubMed/NCBI View Article : Google Scholar | |
Kaplinsky E: DAPA-HF trial: Dapagliflozin evolves from a glucose-lowering agent to a therapy for heart failure. Drugs Context. 9(2019-11-3)2020.PubMed/NCBI View Article : Google Scholar | |
Virani SA, Sharma V, McCann M, Koehler J, Tsang B and Zieroth S: Prospective evaluation of integrated device diagnostics for heart failure management: Results of the TRIAGE-HF study. ESC Heart Fail. 5:809–817. 2018.PubMed/NCBI View Article : Google Scholar | |
McMurray JJ, Adamopoulos S, Anker SD, Auricchio A, Böhm M, Dickstein K, Falk V, Filippatos G, Fonseca C, Gomez-Sanchez MA, et al: ESC guidelines for the diagnosis and treatment of acute and chronic heart failure 2012: The task force for the diagnosis and treatment of acute and chronic heart failure 2012 of the European Society of Cardiology. Developed in collaboration with the Heart Failure Association (HFA) of the ESC. Eur Heart J. 33:1787–1847. 2012.PubMed/NCBI View Article : Google Scholar | |
Zhu X, Oseghale AR, Nicole LH, Li B and Pace BS: Mechanisms of NRF2 activation to mediate fetal hemoglobin induction and protection against oxidative stress in sickle cell disease. Exp Biol Med (Maywood). 244:171–182. 2019.PubMed/NCBI View Article : Google Scholar | |
Rajasekaran NS, Varadharaj S, Khanderao GD, Davidson CJ, Kannan S, Firpo MA, Zweier JL and Benjamin IJ: Sustained activation of nuclear erythroid 2-related factor 2/antioxidant response element signaling promotes reductive stress in the human mutant protein aggregation cardiomyopathy in mice. Antioxid Redox Signal. 14:957–971. 2011.PubMed/NCBI View Article : Google Scholar | |
Ichikawa T, Li J, Meyer CJ, Janicki JS, Hannink M and Cui T: Dihydro-CDDO-trifluoroethyl amide (dh404), a novel Nrf2 activator, suppresses oxidative stress in cardiomyocytes. PLoS One. 4(e8391)2009.PubMed/NCBI View Article : Google Scholar | |
Li J, Zhang C, Xing Y, Janicki JS, Yamamoto M, Wang XL, Tang DQ and Cui T: Up-regulation of p27(kip1) contributes to Nrf2-mediated protection against angiotensin II-induced cardiac hypertrophy. Cardiovasc Res. 90:315–324. 2011.PubMed/NCBI View Article : Google Scholar | |
Burchfield JS, Xie M and Hill JA: Pathological ventricular remodeling: Mechanisms: Part 1 of 2. Circulation. 128:388–400. 2013.PubMed/NCBI View Article : Google Scholar | |
Takimoto E and Kass DA: Role of oxidative stress in cardiac hypertrophy and remodeling. Hypertension. 49:241–248. 2007.PubMed/NCBI View Article : Google Scholar | |
Guan Y, Zhou L, Zhang Y, Tian H, Li A and Han X: Effects of PP2A/Nrf2 on experimental diabetes mellitus-related cardiomyopathy by regulation of autophagy and apoptosis through ROS dependent pathway. Cell Signal. 62(109339)2019.PubMed/NCBI View Article : Google Scholar | |
Murdoch CE, Zhang M, Cave AC and Shah AM: NADPH oxidase-dependent redox signalling in cardiac hypertrophy, remodelling and failure. Cardiovasc Res. 71:208–215. 2006.PubMed/NCBI View Article : Google Scholar | |
Shuai W, Kong B, Fu H, Shen C, Jiang X and Huang H: MD1 Deficiency promotes inflammatory atrial remodelling induced by high-fat diets. Can J Cardiol. 35:208–216. 2019.PubMed/NCBI View Article : Google Scholar | |
Yu C, Lin H, Yang H, Kong SL, Zhang Q and Lee SW: Progression of systolic abnormalities in patients with ‘isolated’ diastolic heart failure and diastolic dysfunction. Circulation. 105:1195–1201. 2002.PubMed/NCBI View Article : Google Scholar | |
Cai L, Li W, Wang G, Guo L, Jiang Y and Kang YJ: Hyperglycemia-induced apoptosis in mouse myocardium: Mitochondrial cytochrome C-mediated caspase-3 activation pathway. Diabetes. 51:1938–1948. 2002.PubMed/NCBI View Article : Google Scholar | |
Fassett J, Xu X, Kwak D, Zhu G, Fassett EK, Zhang P, Wang H, Maver B, Bache RJ and Chen Y: Adenosine kinase attenuates cardiomyocyte microtubule stabilization and protects against pressure overload-induced hypertrophy and LV dysfunction. J Mol Cell Cardiol. 130:49–58. 2019.PubMed/NCBI View Article : Google Scholar | |
Hafstad AD, Nabeebaccus AA and Shah AM: Novel aspects of ROS signalling in heart failure. Basic Res Cardiol. 108(359)2013.PubMed/NCBI View Article : Google Scholar | |
Gupta S, Das B and Sen S: Cardiac hypertrophy: Mechanisms and therapeutic opportunities. Antioxid Redox Signal. 9:623–652. 2007.PubMed/NCBI View Article : Google Scholar | |
Sabri A, Hughie HH and Lucchesi PA: Regulation of hypertrophic and apoptotic signaling pathways by reactive oxygen species in cardiac myocytes. Antioxid Redox Signal. 5:731–740. 2003.PubMed/NCBI View Article : Google Scholar | |
Zhang X, Xiao Z, Yao J, Zhao G, Fa X and Niu J: Participation of protein kinase C in the activation of Nrf2 signaling by ischemic preconditioning in the isolated rabbit heart. Mol Cell Biochem. 372:169–179. 2013.PubMed/NCBI View Article : Google Scholar | |
Zhao WY, Zhao TQ, Chen YJ, Ahokas RA and Sun Y: Oxidative stress mediates cardiac fbrosis by enhancing transforming growth factor-beta1 in hypertensive rats. Mol Cell Biochem. 317:43–50. 2008.PubMed/NCBI View Article : Google Scholar | |
Yang T, Sun Y, Mao L, Zhang M, Li Q, Zhang L, Shi Y, Leak RK, Chen J and Zhang F: Brain ischemic preconditioning protects against ischemic injury and preserves the blood-brain barrier via oxidative signaling and Nrf2 activation. Redox Biol. 17:323–337. 2018.PubMed/NCBI View Article : Google Scholar | |
James PA, Oparil S, Carter BL, Cushman WC, Dennison-Himmelfarb C, Handler J, Lackland DT, LeFevre ML, MacKenzie TD, Oqedeqbe O, et al: Evidence-based guideline for the management of high blood pressure in adults: Report from the panel members appointed to the Eighth Joint National Committee. JAMA. 311:507–520. 2014.PubMed/NCBI View Article : Google Scholar | |
Hu CM, Chen YH, Chiang MT and Chau LY: Heme oxygenase-1 inhibits angiotensin II-induced cardiac hypertrophy in vitro and in vivo. Circulation. 110:309–316. 2004.PubMed/NCBI View Article : Google Scholar | |
Mancusi C, Canciello G, Izzo R, Damiano S, Grimaldi MG, Luca N, Simone G, Trimarco B and Losi MA: Left atrial dilatation: A target organ damage in young to middle-age hypertensive patients. The Campania Salute Network. Int J Cardiol. 265:229–233. 2018.PubMed/NCBI View Article : Google Scholar | |
Wang ZH, Liu JL, Wu L, Yu Z and Yang HT: Concentration-dependent wrestling between detrimental and protective effects of H2O2 during myocardial ischemia/reperfusion. Cell Death Dis. 5(e1297)2014.PubMed/NCBI View Article : Google Scholar | |
Yao SY, Liu J, Li Y, Wang M, Wang C and Xue H: Association between plasma microRNA-29a and left ventricular hypertrophy in patients with hypertension. Zhonghua Xin Xue Guan Bing Za Zhi. 47:215–220. 2019.PubMed/NCBI View Article : Google Scholar : (In Chinese). | |
Mitra A, Basak T, Datta K, Naskar S, Sengupta S and Sarkar S: Role of a-crystallin B as a regulatory switch in modulating cardiomyocyte apoptosis by mitochondria or endoplasmic reticulum during cardiac hypertrophy and myocardial infarction. Cell Death Dis. 4(e582)2013.PubMed/NCBI View Article : Google Scholar | |
Delmar M and Makita N: Cardiac connexins, mutations and arrhythmias. Curr Opin Cardiol. 27:236–241. 2012.PubMed/NCBI View Article : Google Scholar | |
Stout JM, Gousset MU, Drummond HA, Gray W III, Pruett BE and Stec DE: Sex-specific effects of heme oxygenase-2 deficiency on renovascular hypertension. J Am Soc Hypertens. 7:328–335. 2013.PubMed/NCBI View Article : Google Scholar | |
Tian C, Gao L, Zimmerman MC and Zucker IH: Myocardial infarction-induced microRNA-enriched exosomes contribute to cardiac Nrf2 dysregulation in chronic heart failure. Am J Physiol Heart Circ Physiol. 314:H928–H939. 2018.PubMed/NCBI View Article : Google Scholar | |
Tham YK, Bernardo BC, Ooi JY, Weeks KL and McMullen JR: Pathophysiology of cardiac hypertrophy and heart failure: Signaling pathways and novel therapeutic targets. Arch Toxicol. 89:1401–1438. 2015.PubMed/NCBI View Article : Google Scholar | |
Yang KC and Dudley JSC: Oxidative stress and atrial fibrillation: Finding a missing piece to the puzzle. Circulation. 128:1724–1726. 2013.PubMed/NCBI View Article : Google Scholar | |
Barry SP, Davidson SM and Townsend PA: Molecular regulation of cardiac hypertrophy. Int J Biochem Cell Biol. 40:2023–2039. 2008.PubMed/NCBI View Article : Google Scholar | |
Maulik SK and Kumar S: Oxidative stress and cardiac hypertrophy: A review. Toxicol Mech Methods. 22:359–366. 2012.PubMed/NCBI View Article : Google Scholar | |
Baruteau AE, Probst V and Abriel H: Inherited progressive cardiac conduction disorders. Curr Opin Cardiol. 30:33–39. 2015.PubMed/NCBI View Article : Google Scholar | |
Chang YJ, Hsiao HJ, Hsia SH, Lin JJ, Hwang MS, Chung HT, Chen CL, Huang YC and Tsai MH: Analysis of clinical parameters and echocardiography as predictors of fatal pediatric myocarditis. PLoS One. 14(e0214087)2019.PubMed/NCBI View Article : Google Scholar | |
Zhao YS, An JR, Yang S, Guan P, Yu FY, Li W, Li JR, Guo Y, Sun ZM and Ji ES: Hydrogen and oxygen mixture to improve cardiac dysfunction and myocardial pathological changes induced by intermittent hypoxia in rats. Oxid Med Cell Longev. 2019(7415212)2019.PubMed/NCBI View Article : Google Scholar | |
Nakamura M and Sadoshima J: Mechanisms of physiological and pathological cardiac hypertrophy. Nat Rev Cardiol. 15:387–407. 2018.PubMed/NCBI View Article : Google Scholar | |
Li J, Ichikawa T, Villacorta L, Janicki JS, Brower GL, Yamamoto M and Cui T: Nrf2 protects against maladaptive cardiac responses to hemodynamic stress. Arterioscler Thromb Vasc Biol. 29:1843–1850. 2009.PubMed/NCBI View Article : Google Scholar | |
Nakamura M and Sadoshima J: Cardiomyopathy in obesity, insulin resistance or diabetes. J Physiol. 598:2977–2993. 2020.PubMed/NCBI View Article : Google Scholar | |
Felker GM, Thompson RE, Hare JM, Hruban RH, Clemetson DE, Howard DL, Baughman K and Kasper EK: Underlying causes and long-term survival in patients with initially unexplained cardiomyopathy. N Engl J Med. 342:1077–1184. 2000.PubMed/NCBI View Article : Google Scholar | |
Quinaglia T, Oliveira DC, Matos-Souza JR and Sposito AC: Diabetic cardiomyopathy: Factual or factoid? Rev Assoc Med Bras (1992). 65:61–69. 2019.PubMed/NCBI View Article : Google Scholar | |
Cooper LT Jr: Myocarditis. N Engl J Med. 360:1526–1538. 2009.PubMed/NCBI View Article : Google Scholar | |
Althunibat OY, Al Hroob AM, Abukhalil MH, Germoush MO, Bin-Jumah M and Mahmoud AM: Fisetin ameliorates oxidative stress, inflammation and apoptosis in diabetic cardiomyopathy. Life Sci. 221:83–92. 2019.PubMed/NCBI View Article : Google Scholar | |
Zhao X, Cai A, Peng Z, Liang W, Xi H, Li P, Chen G, Yu J and Chen L: JS-K induces reactive oxygen species-dependent anti-cancer effects by targeting mitochondria respiratory chain complexes in gastric cancer. J Cell Mol Med. 23:2489–2504. 2019.PubMed/NCBI View Article : Google Scholar | |
Ansley DM and Wang B: Oxidative stress and myocardial injury in the diabetic heart. J Pathol. 229:232–241. 2013.PubMed/NCBI View Article : Google Scholar | |
Hernández M, Wicz S and Corral RS: Cardioprotective actions of curcumin on the pathogenic NFAT/COX-2/prostaglandin E2 pathway induced during Trypanosoma cruzi infection. Phytomedicine. 23:1392–1400. 2016.PubMed/NCBI View Article : Google Scholar | |
Ndisang JF, Lane N, Syed N and Jadhav A: Up-regulating the heme oxygenase system with hemin improves insulin sensitivity and glucose metabolism in adult spontaneously hypertensive rats. Endocrinology. 151:549–560. 2010.PubMed/NCBI View Article : Google Scholar | |
Jiménez-Osorio AS, García-Niño WR, González-Reyes S, Álvarez-Mejía AE, Guerra-León S, Salazar-Segovia J, Falcón I, Montes de Oca-Solano H, Madero M and Pedraza-Chaverri J: The effect of dietary supplementation with curcumin on redox status and Nrf2 activation in patients with nondiabetic or diabetic proteinuric chronic kidney disease: A pilot study. J Ren Nutr. 26:237–244. 2016.PubMed/NCBI View Article : Google Scholar | |
Soundararajan P and Kim JS: Anti-carcinogenic glucosinolates in cruciferous vegetables and their antagonistic effects on prevention of cancers. Molecules. 23(2983)2018.PubMed/NCBI View Article : Google Scholar | |
Wang J, Wang S, Wang W, Chen J, Zhang Z, Zheng Q, Liu Q and Cai L: Protection against diabetic cardiomyopathy is achieved using a combination of sulforaphane and zinc in type 1 diabetic OVE26 mice. J Cell Mol Med. 23:6319–6330. 2019.PubMed/NCBI View Article : Google Scholar | |
Zhang Z, Wang S, Zhou S, Yan X, Wang Y, Chen J, Mellen N, Kong M, Gu J, Tan Y, et al: Sulforaphane prevents the development of cardiomyopathy in type 2 diabetic mice probably by reversing oxidative stress-induced inhibition of LKB1/AMPK pathway. J Mol Cell Cardiol. 77:42–52. 2014.PubMed/NCBI View Article : Google Scholar | |
Bai Y, Wang X, Zhao S, Ma C, Cui J and Zheng Y: Sulforaphane protects against cardiovascular disease via Nrf2 activation. Oxid Med Cell Longev. 2015(407580)2015.PubMed/NCBI View Article : Google Scholar | |
Delucchi F, Berni R, Frati C, Cavalli S, Graiani G, Sala R, Chaponnier C, Gabbiani G, Calani L, Rio DD, et al: Resveratrol treatment reduces cardiac progenitor cell dysfunction and prevents morpho-functional ventricular remodeling in type-1 diabetic rats. PLoS One. 7(e39836)2012.PubMed/NCBI View Article : Google Scholar | |
Sun X, Shan A, Wei Z and Xu B: Intravenous mesenchymal stem cell-derived exosomes ameliorate myocardial inflammation in the dilated cardiomyopathy. Biochem Biophys Res Commun. 503:2611–2618. 2018.PubMed/NCBI View Article : Google Scholar | |
Ge ZD, Lian Q, Mao X and Xia Z: Current status and challenges of NRF2 as a potential therapeutic target for diabetic cardiomyopathy. Int Heart J. 60:512–520. 2019.PubMed/NCBI View Article : Google Scholar | |
El-Agamy DS, El-Harbi KM, Khoshhal S, Ahmed N, Elkablawy MA, Shaaban AA and Abo-Haded HM: Pristimerin protects against doxorubicin-induced cardiotoxicity and fibrosis through modulation of Nrf2 and MAPK/NF-κB signaling pathways. Cancer Manag Res. 11:47–61. 2018.PubMed/NCBI View Article : Google Scholar | |
Zhou S, Jin J, Bai T, Sachleben LR Jr, Cai L and Zheng Y: Potential drugs which activate nuclear factor E2-related factor 2 signaling to prevent diabetic cardiovascular complications: A focus on fumaric acid esters. Life Sci. 134:56–62. 2015.PubMed/NCBI View Article : Google Scholar | |
Saidu NE, Noé G, Cerles O, Cabel L, Kavian-Tessler N, Chouzenoux S, Bahuaud M, Chéreau C, Nicco C, Leroy K, et al: Dimethyl fumarate controls the NRF2/DJ-1 axis in cancer cells: Therapeutic applications. Mol Cancer Ther. 16:529–539. 2017.PubMed/NCBI View Article : Google Scholar | |
Brennan MS, Patel H, Allaire N, Thai A, Cullen P, Rvan S, Lukashev M, Bista P, Huang R, Rhodes KJ and Scannevin RH: Pharmacodynamics of dimethyl fumarate are tissue specific and involve Nrf2-dependent and -independent mechanisms. Antioxid Redox Signal. 24:1058–1071. 2016.PubMed/NCBI View Article : Google Scholar | |
Bomprezzi R: Dimethyl fumarate in the treatment of relapsing-remitting multiple sclerosis: An overview. Ther Adv Neurol Disord. 8:20–30. 2015.PubMed/NCBI View Article : Google Scholar | |
Ganeshpurkar A and Saluja AK: The pharmacological potential of rutin. Saudi Pharm J. 25:149–164. 2017.PubMed/NCBI View Article : Google Scholar | |
Moore PK, Griffiths RJ and Lofts FJ: The effect of some flavone drugs on the conversion of prostacyclin to 6-oxoprostaglandin E1. Biochem Pharmacol. 32:2813–2817. 1983.PubMed/NCBI View Article : Google Scholar | |
Gao HC, Zhu K, Gao HM, Miao CS, Zhang LN, Liu W and Xin H: Role of tissue transglutaminase in the pathogenesis of diabetic cardiomyopathy and the intervention effect of rutin. Exp Ther Med. 9:1103–1108. 2015.PubMed/NCBI View Article : Google Scholar | |
Sayed AS, Xia K, Salma U, Yang T and Peng J: Diagnosis, prognosis and therapeutic role of circulating miRNAs in cardiovascular diseases. Heart Lung Circ. 23:503–510. 2014.PubMed/NCBI View Article : Google Scholar | |
Chen S, Puthanveetil P, Feng B, Matkovich SJ, Dorn GW II and Chakrabarti S: Cardiac miR-133a overexpression prevents early cardiac fibrosis in diabetes. J Cell Mol Med. 18:415–421. 2014.PubMed/NCBI View Article : Google Scholar | |
Chen K, Ma Y, Wu S, Zhuang Y, Liu X, Lv L and Zhang G: Construction and analysis of a lncRNA-miRNA-mRNA network based on competitive endogenous RNA reveals functional lncRNAs in diabetic cardiomyopathy. Mol Med Rep. 20:1393–1403. 2019.PubMed/NCBI View Article : Google Scholar | |
Lin M and Mao ZJ: lncRNA-mRNA competing endogenous RNA network in IR-hepG2 cells ameliorated by APBBR decreasing ROS levels: A systematic analysis. PeerJ. 8(e8604)2020.PubMed/NCBI View Article : Google Scholar | |
Dludla PV, Nkambule BB, Dias SC and Johnson R: Cardioprotective potential of N-acetyl cysteine against hyperglycaemia-induced oxidative damage: A protocol for a systematic review. Syst Rev. 6(96)2017.PubMed/NCBI View Article : Google Scholar | |
Mansueto G, Benincasa G, Della Mura N, Nicoletti GF and Napoli C: Epigenetic-sensitive liquid biomarkers and personalised therapy in advanced heart failure: A focus on cell-free DNA and microRNAs. J Clin Pathol. 73:535–543. 2020.PubMed/NCBI View Article : Google Scholar | |
Zhang X, Dong S, Jia Q, Zhang A, Li Y, Zhu Y, Lv S and Zhang J: The microRNA in ventricular remodeling: The miR-30 family. Biosci Rep. 39(BSR20190788)2019.PubMed/NCBI View Article : Google Scholar | |
Raut SK, Singh GB, Rastogi B, Saikia UN, Mittal A, Dogra N, Singh S, Prasad R and Khullar M: miR-30c and miR-181a synergistically modulate p53-p21 pathway in diabetes induced cardiac hypertrophy. Mol Cell Biochem. 417:191–203. 2016.PubMed/NCBI View Article : Google Scholar | |
Li M, Chen X, Chen L, Chen K, Zhou J and Song J: MiR-1-3p that correlates with left ventricular function of HCM can serve as a potential target and differentiate HCM from DCM. J Transl Med. 16(161)2018.PubMed/NCBI View Article : Google Scholar |