Role of ARK5 in cancer and other diseases (Review)
- Authors:
- Guoheng Mo
- Bohan Zhang
- Qunguang Jiang
-
Affiliations: Department of Neurosurgery, Queen Mary College of Nanchang University, Nanchang, Jiangxi 330006, P.R. China, First Clinical Medical College, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China, Department of Gastrointestinal Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China - Published online on: May 2, 2021 https://doi.org/10.3892/etm.2021.10129
- Article Number: 697
-
Copyright: © Mo et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Esumi H, Izuishi K, Kato K, Hashimoto K, Kurashima Y, Kishimoto A, Ogura T and Ozawa T: Hypoxia and nitric oxide treatment confer tolerance to glucose starvation in a 5'-AMP-activated protein kinase-dependent manner. J Biol Chem. 277:32791–32798. 2002.PubMed/NCBI View Article : Google Scholar | |
Ivanov S, Liao SY, Ivanova A, Danilkovitch-Miagkova A, Tarasova N, Weirich G, Merrill MJ, Proescholdt MA, Oldfield EH, Lee J, et al: Expression of hypoxia-inducible cell-surface transmembrane carbonic anhydrases in human cancer. Am J Pathol. 158:905–919. 2001.PubMed/NCBI View Article : Google Scholar | |
Kaluz S, Kaluzova M, Chrastina A, Olive PL, Pastoreková S, Pastorek J, Lerman MI and Stanbridge EJ: Lowered oxygen tension induces expression of the hypoxia marker MN/carbonic anhydrase IX in the absence of hypoxia-inducible factor 1 alpha stabilization: A role for phosphatidylinositol 3'-kinase. Cancer Res. 62:4469–4477. 2002.PubMed/NCBI | |
Suzuki A, Kusakai G, Kishimoto A, Lu J, Ogura T, Lavin MF and Esumi H: Identification of a novel protein kinase mediating Akt survival signaling to the ATM protein. J Biol Chem. 278:48–53. 2003.PubMed/NCBI View Article : Google Scholar | |
Li B, Tsao SW, Li YY, Wang X, Ling MT, Wong YC, He QY and Cheung AL: Id-1 promotes tumorigenicity and metastasis of human esophageal cancer cells through activation of PI3K/AKT signaling pathway. Int J Cancer. 125:2576–2585. 2009.PubMed/NCBI View Article : Google Scholar | |
Ohta T, Isobe M, Takahashi T, Saitoh-Sekiguchi M, Motoyama T and Kurachi H: The Akt and ERK activation by platinum-based chemotherapy in ovarian cancer is associated with favorable patient outcome. Anticancer Res. 29:4639–4647. 2009.PubMed/NCBI | |
Renton A, Llanos S and Lu X: Hypoxia induces p53 through a pathway distinct from most DNA-damaging and stress-inducing agents. Carcinogenesis. 24:1177–1182. 2003.PubMed/NCBI View Article : Google Scholar | |
Suzuki A, Iida S, Kato-Uranishi M, Tajima E, Zhan F, Hanamura I, Huang Y, Ogura T, Takahashi S and Ueda R: ARK5 is transcriptionally regulated by the Large-MAF family and mediates IGF-1-induced cell invasion in multiple myeloma: ARK5 as a new molecular determinant of malignant multiple myeloma. Oncogene. 24:6936–6944. 2005.PubMed/NCBI View Article : Google Scholar | |
Simon PO Jr, McDunn JE, Kashiwagi H, Chang K, Goedegebuure PS, Hotchkiss RS and Hawkins WG: Targeting AKT with the proapoptotic peptide, TAT-CTMP: A novel strategy for the treatment of human pancreatic adenocarcinoma. Int J Cancer. 125:942–951. 2009.PubMed/NCBI View Article : Google Scholar | |
Kato K, Ogura T, Kishimoto A, Minegishi Y, Nakajima N, Miyazaki M and Esumi H: Critical roles of AMP-activated protein kinase in constitutive tolerance of cancer cells to nutrient deprivation and tumor formation. Oncogene. 21:6082–6090. 2002.PubMed/NCBI View Article : Google Scholar | |
Izuishi K, Kato K, Ogura T, Kinoshita T and Esumi H: Remarkable tolerance of tumor cells to nutrient deprivation: Possible new biochemical target for cancer therapy. Cancer Res. 60:6201–6207. 2000.PubMed/NCBI | |
Suzuki A, Kusakai G, Kishimoto A, Lu J, Ogura T and Esumi H: ARK5 suppresses the cell death induced by nutrient starvation and death receptors via inhibition of caspase 8 activation, but not by chemotherapeutic agents or UV irradiation. Oncogene. 22:6177–6182. 2003.PubMed/NCBI View Article : Google Scholar | |
Suzuki A, Kusakai G, Shimojo Y, Chen J, Ogura T, Kobayashi M and Esumi H: Involvement of transforming growth factor-beta 1 signaling in hypoxia-induced tolerance to glucose starvation. J Biol Chem. 280:31557–31563. 2005.PubMed/NCBI View Article : Google Scholar | |
Kuehl WM and Bergsagel PL: Molecular pathogenesis of multiple myeloma and its premalignant precursor. J Clin Invest. 122:3456–3463. 2012.PubMed/NCBI View Article : Google Scholar | |
Siegel R, Naishadham D and Jemal A: Cancer statistics, 2013. CA Cancer J Clin. 63:11–30. 2013.PubMed/NCBI View Article : Google Scholar | |
Benboubker L, Dimopoulos MA, Dispenzieri A, Catalano J, Belch AR, Cavo M, Pinto A, Weisel K, Ludwig H, Bahlis N, et al: Lenalidomide and dexamethasone in transplant-ineligible patients with myeloma. N Engl J Med. 371:906–917. 2014.PubMed/NCBI View Article : Google Scholar | |
Rajkumar SV, Blood E, Vesole D, Fonseca R and Greipp PR: Eastern Cooperative Oncology Group. Phase III clinical trial of thalidomide plus dexamethasone compared with dexamethasone alone in newly diagnosed multiple myeloma: A clinical trial coordinated by the Eastern Cooperative Oncology Group. J Clin Oncol. 24:431–436. 2006.PubMed/NCBI View Article : Google Scholar | |
Richardson PG, Weller E, Lonial S, Jakubowiak AJ, Jagannath S, Raje NS, Avigan DE, Xie W, Ghobrial IM, Schlossman RL, et al: Lenalidomide, bortezomib, and dexamethasone combination therapy in patients with newly diagnosed multiple myeloma. Blood. 116:679–686. 2010.PubMed/NCBI View Article : Google Scholar | |
San Miguel JF, Schlag R, Khuageva NK, Dimopoulos MA, Shpilberg O, Kropff M, Spicka I, Petrucci MT, Palumbo A, Samoilova OS, et al: Bortezomib plus melphalan and prednisone for initial treatment of multiple myeloma. N Engl J Med. 359:906–917. 2008.PubMed/NCBI View Article : Google Scholar | |
Kumar SK, Dispenzieri A, Lacy MQ, Gertz MA, Buadi FK, Pandey S, Kapoor P, Dingli D, Hayman SR, Leung N, et al: Continued improvement in survival in multiple myeloma: Changes in early mortality and outcomes in older patients. Leukemia. 28:1122–1128. 2014.PubMed/NCBI View Article : Google Scholar | |
Kawauchi S, Takahashi S, Nakajima O, Ogino H, Morita M, Nishizawa M, Nishizawa M, Yasuda K and Yamamoto M: Regulation of lens fiber cell differentiation by transcription factor c-Maf. J Biol Chem. 274:19254–19260. 1999.PubMed/NCBI View Article : Google Scholar | |
Kim JI, Li T, Ho IC, Grusby MJ and Glimcher LH: Requirement for the c-Maf transcription factor in crystallin gene regulation and lens development. Proc Natl Acad Sci USA. 96:3781–3785. 1999.PubMed/NCBI View Article : Google Scholar | |
Ring BZ, Cordes SP, Overbeek PA and Barsh GS: Regulation of mouse lens fiber cell development and differentiation by the Maf gene. Development. 127:307–317. 2000.PubMed/NCBI | |
Zhang Z, Tong J, Tang X, Juan J, Cao B, Hurren R, Chen G, Taylor P, Xu X, Shi CX, et al: The ubiquitin ligase HERC4 mediates c-Maf ubiquitination and delays the growth of multiple myeloma xenografts in nude mice. Blood. 127:1676–1686. 2016.PubMed/NCBI View Article : Google Scholar | |
Wang S, Juan J, Zhang Z, Du Y, Xu Y, Tong J, Cao B, Moran MF, Zeng Y and Mao X: Inhibition of the deubiquitinase USP5 leads to c-Maf protein degradation and myeloma cell apoptosis. Cell Death Dis. 8(e3058)2017.PubMed/NCBI View Article : Google Scholar | |
Qiang YW, Ye S, Chen Y, Buros AF, Edmonson R, van Rhee F, Barlogie B, Epstein J, Morgan GJ and Davies FE: MAF protein mediates innate resistance to proteasome inhibition therapy in multiple myeloma. Blood. 128:2919–2930. 2016.PubMed/NCBI View Article : Google Scholar | |
Schiller NR, Duchesneau CD, Lane LS, Reedy AR, Manzon ER and Hoppe PE: The Role of the UNC-82 protein kinase in organizing myosin filaments in striated muscle of caenorhabditis elegans. Genetics. 205:1195–1213. 2017.PubMed/NCBI View Article : Google Scholar | |
Perumal D, Kuo PY, Leshchenko VV, Jiang Z, Divakar SK, Cho HJ, Chari A, Brody J, Reddy MV, Zhang W, et al: Dual targeting of CDK4 and ARK5 using a novel kinase inhibitor ON123300 exerts potent anticancer activity against multiple myeloma. Cancer Res. 76:1225–1236. 2016.PubMed/NCBI View Article : Google Scholar | |
Liu L, Ulbrich J, Müller J, Wüstefeld T, Aeberhard L, Kress TR, Muthalagu N, Rycak L, Rudalska R, Moll R, et al: Deregulated MYC expression induces dependence upon AMPK-related kinase 5. Nature. 483:608–612. 2012.PubMed/NCBI View Article : Google Scholar | |
Hoppe S, Bierhoff H, Cado I, Weber A, Tiebe M, Grummt I and Voit R: AMP-activated protein kinase adapts rRNA synthesis to cellular energy supply. Proc Natl Acad Sci USA. 106:17781–17786. 2009.PubMed/NCBI View Article : Google Scholar | |
Kusakai G, Suzuki A, Ogura T, Miyamoto S, Ochiai A, Kaminishi M and Esumi H: ARK5 expression in colorectal cancer and its implications for tumor progression. Am J Pathol. 164:987–995. 2004.PubMed/NCBI View Article : Google Scholar | |
Li X, Zhang XA, Li X, Xie W and Huang S: MYC-mediated synthetic lethality for treating tumors. Curr Cancer Drug Targets. 15:99–115. 2015.PubMed/NCBI View Article : Google Scholar | |
Colon Cancer Treatment (PDQ®): Patient Version. PDQ Cancer Information Summaries. Bethesda, MD, 2002. | |
Peng JK, Shen SQ, Wang J, Jiang HW and Wang YQ: Ηypoxia-inducible factor 1-α promotes colon cell proliferation and migration by upregulating AMPK-related protein kinase 5 under hypoxic conditions. Oncol Lett. 15:3639–3645. 2018.PubMed/NCBI View Article : Google Scholar | |
Semenza GL: Defining the role of hypoxia-inducible factor 1 in cancer biology and therapeutics. Oncogene. 29:625–634. 2010.PubMed/NCBI View Article : Google Scholar | |
Semenza GL: Targeting HIF-1 for cancer therapy. Nat Rev Cancer. 3:721–732. 2003.PubMed/NCBI View Article : Google Scholar | |
Wang GL, Jiang BH, Rue EA and Semenza GL: Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci USA. 92:5510–5514. 1995.PubMed/NCBI View Article : Google Scholar | |
Wang JS, Jing CQ, Shan KS, Chen YZ, Guo XB, Cao ZX, Mu LJ, Peng LP, Zhou ML and Li LP: Semaphorin 4D and hypoxia-inducible factor-1alpha overexpression is related to prognosis in colorectal carcinoma. World J Gastroenterol. 21:2191–2198. 2015.PubMed/NCBI View Article : Google Scholar | |
Sirri E, Castro FA, Kieschke J, Jansen L, Emrich K, Gondos A, Holleczek B, Katalinic A, Urbschat I, Vohmann C and Brenner H: Recent trends in survival of patients with pancreatic cancer in Germany and the United States. Pancreas. 45:908–914. 2016.PubMed/NCBI View Article : Google Scholar | |
Rajamani D and Bhasin MK: Identification of key regulators of pancreatic cancer progression through multidimensional systems-level analysis. Genome Med. 8(38)2016.PubMed/NCBI View Article : Google Scholar | |
Von Hoff DD, Ervin T, Arena FP, Chiorean EG, Infante J, Moore M, Seay T, Tjulandin SA, Ma WW, Saleh MN, et al: Increased survival in pancreatic cancer with nab-paclitaxel plus gemcitabine. N Engl J Med. 369:1691–1703. 2013.PubMed/NCBI View Article : Google Scholar | |
Berlin JD, Catalano P, Thomas JP, Kugler JW, Haller DG and Benson AB III: Phase III study of gemcitabine in combination with fluorouracil versus gemcitabine alone in patients with advanced pancreatic carcinoma: Eastern Cooperative Oncology Group Trial E2297. J Clin Oncol. 20:3270–3275. 2002.PubMed/NCBI View Article : Google Scholar | |
Oettle H, Richards D, Ramanathan RK, van Laethem JL, Peeters M, Fuchs M, Zimmermann A, John W, Von Hoff D, Arning M and Kindler HL: A phase III trial of pemetrexed plus gemcitabine versus gemcitabine in patients with unresectable or metastatic pancreatic cancer. Ann Oncol. 16:1639–1645. 2005.PubMed/NCBI View Article : Google Scholar | |
Wang Y, Kuramitsu Y, Tokuda K, Baron B, Kitagawa T, Akada J, Maehara S, Maehara Y and Nakamura K: Gemcitabine induces poly (ADP-ribose) polymerase-1 (PARP-1) degradation through autophagy in pancreatic cancer. PLoS One. 9(e109076)2014.PubMed/NCBI View Article : Google Scholar | |
Gilkes DM, Semenza GL and Wirtz D: Hypoxia and the extracellular matrix: Drivers of tumour metastasis. Nat Rev Cancer. 14:430–439. 2014.PubMed/NCBI View Article : Google Scholar | |
Wu J, Yang B, Zhang Y, Feng X, He B, Xie H, Zhou L, Wu J and Zheng S: miR-424-5p represses the metastasis and invasion of intrahepatic cholangiocarcinoma by targeting ARK5. Int J Biol Sci. 15:1591–1599. 2019.PubMed/NCBI View Article : Google Scholar | |
Wang X, Song Z, Chen F, Yang X, Wu B, Xie S, Zheng X, Cai Y, Chen W and Zhong Z: AMPK-related kinase 5 (ARK5) enhances gemcitabine resistance in pancreatic carcinoma by inducing epithelial-mesenchymal transition. Am J Transl Res. 10:4095–4106. 2018.PubMed/NCBI | |
Jemal A, Murray T, Samuels A, Ghafoor A, Ward E and Thun MJ: Cancer statistics, 2003. CA Cancer J Clin. 53:5–26. 2003.PubMed/NCBI View Article : Google Scholar | |
Schiller JH, Harrington D, Belani CP, Langer C, Sandler A, Krook J, Zhu J and Johnson DH: Eastern Cooperative Oncology Group. Comparison of four chemotherapy regimens for advanced non-small-cell lung cancer. N Engl J Med. 346:92–98. 2002.PubMed/NCBI View Article : Google Scholar | |
Li Y, Qi K, Zu L, Wang M, Wang Y and Zhou Q: Anti-apoptotic brain and reproductive organ-expressed proteins enhance cisplatin resistance in lung cancer cells via the protein kinase B signaling pathway. Thorac Cancer. 7:190–198. 2016.PubMed/NCBI View Article : Google Scholar | |
Zhang HY, Li JH, Li G and Wang SR: Activation of ARK5/miR-1181/HOXA10 axis promotes epithelial-mesenchymal transition in ovarian cancer. Oncol Rep. 34:1193–1202. 2015.PubMed/NCBI View Article : Google Scholar | |
Yu HG, Wei W, Xia LH, Han WL, Zhao P, Wu SJ, Li WD and Chen W: FBW7 upregulation enhances cisplatin cytotoxicity in non-small cell lung cancer cells. Asian Pac J Cancer Prev. 14:6321–6326. 2013.PubMed/NCBI View Article : Google Scholar | |
Chang XZ, Yu J, Liu HY, Dong RH and Cao XC: ARK5 is associated with the invasive and metastatic potential of human breast cancer cells. J Cancer Res Clin Oncol. 138:247–254. 2012.PubMed/NCBI View Article : Google Scholar | |
Cui J, Yu Y, Lu GF, Liu C, Liu X, Xu YX and Zheng PY: Overexpression of ARK5 is associated with poor prognosis in hepatocellular carcinoma. Tumour Biol. 34:1913–1918. 2013.PubMed/NCBI View Article : Google Scholar | |
Sun X, Gao L, Chien HY, Li WC and Zhao J: The regulation and function of the NUAK family. J Mol Endocrinol. 51:R15–R22. 2013.PubMed/NCBI View Article : Google Scholar | |
Suzuki A, Ogura T and Esumi H: NDR2 acts as the upstream kinase of ARK5 during insulin-like growth factor-1 signaling. J Biol Chem. 281:13915–13921. 2006.PubMed/NCBI View Article : Google Scholar | |
Lizcano JM, Göransson O, Toth R, Deak M, Morrice NA, Boudeau J, Hawley SA, Udd L, Mäkelä TP, Hardie DG and Alessi DR: LKB1 is a master kinase that activates 13 kinases of the AMPK subfamily, including MARK/PAR-1. EMBO J. 23:833–843. 2004.PubMed/NCBI View Article : Google Scholar | |
Davis LE, Jeng S, Svalina MN, Huang E, Pittsenbarger J, Cantor EL, Berlow N, Seguin B, Mansoor A, McWeeney SK and Keller C: Integration of genomic, transcriptomic and functional profiles of aggressive osteosarcomas across multiple species. Oncotarget. 8:76241–76256. 2017.PubMed/NCBI View Article : Google Scholar | |
Ryu S and Tjian R: Purification of transcription cofactor complex CRSP. Proc Natl Acad Sci USA. 96:7137–7142. 1999.PubMed/NCBI View Article : Google Scholar | |
Datta SR, Brunet A and Greenberg ME: Cellular survival: A play in three Akts. Genes Dev. 13:2905–2927. 1999.PubMed/NCBI View Article : Google Scholar | |
Itoh N, Semba S, Ito M, Takeda H, Kawata S and Yamakawa M: Phosphorylation of Akt/PKB is required for suppression of cancer cell apoptosis and tumor progression in human colorectal carcinoma. Cancer. 94:3127–3134. 2002.PubMed/NCBI View Article : Google Scholar | |
Nicholson KM and Anderson NG: The protein kinase B/Akt signalling pathway in human malignancy. Cell Signal. 14:381–395. 2002.PubMed/NCBI View Article : Google Scholar | |
Ruggeri BA, Huang L, Wood M, Cheng JQ and Testa JR: Amplification and overexpression of the AKT2 oncogene in a subset of human pancreatic ductal adenocarcinomas. Mol Carcinog. 21:81–86. 1998.PubMed/NCBI | |
Higuchi M, Masuyama N, Fukui Y, Suzuki A and Gotoh Y: Akt mediates Rac/Cdc42-regulated cell motility in growth factor-stimulated cells and in invasive PTEN knockout cells. Curr Biol. 11:1958–1962. 2001.PubMed/NCBI View Article : Google Scholar | |
Lawlor MA and Alessi DR: PKB/Akt: A key mediator of cell proliferation, survival and insulin responses? J Cell Sci. 114:2903–2910. 2001.PubMed/NCBI | |
Taatjes DJ, Naar AM, Andel F III, Nogales E and Tjian R: Structure, function, and activator-induced conformations of the CRSP coactivator. Science. 295:1058–1062. 2002.PubMed/NCBI View Article : Google Scholar | |
Kusakai G, Suzuki A, Ogura T, Kaminishi M and Esumi H: Strong association of ARK5 with tumor invasion and metastasis. J Exp Clin Cancer Res. 23:263–268. 2004.PubMed/NCBI | |
Cox AD and Der CJ: The dark side of Ras: Regulation of apoptosis. Oncogene. 22:8999–9006. 2003.PubMed/NCBI View Article : Google Scholar | |
Suzuki A, Lu J, Kusakai G, Kishimoto A, Ogura T and Esumi H: ARK5 is a tumor invasion-associated factor downstream of Akt signaling. Mol Cell Biol. 24:3526–3535. 2004.PubMed/NCBI View Article : Google Scholar | |
Xie M, Wu X, Zhang J, Zhang J and Li X: Ski regulates Smads and TAZ signaling to suppress lung cancer progression. Mol Carcinog. 56:2178–2189. 2017.PubMed/NCBI View Article : Google Scholar | |
Sato H, Takino T, Okada Y, Cao J, Shinagawa A, Yamamoto E and Seiki M: A matrix metalloproteinase expressed on the surface of invasive tumour cells. Nature. 370:61–65. 1994.PubMed/NCBI View Article : Google Scholar | |
Kaufhold S and Bonavida B: Central role of Snail1 in the regulation of EMT and resistance in cancer: A target for therapeutic intervention. J Exp Clin Cancer Res. 33(62)2014.PubMed/NCBI View Article : Google Scholar | |
Fischer KR, Durrans A, Lee S, Sheng J, Li F, Wong ST, Choi H, El Rayes T, Ryu S, Troeger J, et al: Epithelial-to-mesenchymal transition is not required for lung metastasis but contributes to chemoresistance. Nature. 527:472–476. 2015.PubMed/NCBI View Article : Google Scholar | |
Thiery JP and Sleeman JP: Complex networks orchestrate epithelial-mesenchymal transitions. Nat Rev Mol Cell Biol. 7:131–142. 2006.PubMed/NCBI View Article : Google Scholar | |
Li M, Zheng C, Xu H, He W, Ruan Y, Ma J, Zheng J, Ye C and Li W: Inhibition of AMPK-related kinase 5 (ARK5) enhances cisplatin cytotoxicity in non-small cell lung cancer cells through regulation of epithelial-mesenchymal transition. Am J Transl Res. 9:1708–1719. 2017.PubMed/NCBI | |
Liu Y, Du F, Zhao Q, Jin J, Ma X and Li H: Acquisition of 5-fluorouracil resistance induces epithelial-mesenchymal transitions through the Hedgehog signaling pathway in HCT-8 colon cancer cells. Oncol Lett. 9:2675–2679. 2015.PubMed/NCBI View Article : Google Scholar | |
Mallini P, Lennard T, Kirby J and Meeson A: Epithelial-to-mesenchymal transition: What is the impact on breast cancer stem cells and drug resistance. Cancer Treat Rev. 40:341–348. 2014.PubMed/NCBI View Article : Google Scholar | |
Xu T, Zhang J, Chen W, Pan S, Zhi X, Wen L, Zhou Y, Chen BW, Qiu J, Zhang Y, et al: ARK5 promotes doxorubicin resistance in hepatocellular carcinoma via epithelial-mesenchymal transition. Cancer Lett. 377:140–148. 2016.PubMed/NCBI View Article : Google Scholar | |
Chen D, Liu G, Xu N, You X, Zhou H, Zhao X and Liu Q: Knockdown of ARK5 expression suppresses invasion and metastasis of gastric cancer. Cell Physiol Biochem. 42:1025–1036. 2017.PubMed/NCBI View Article : Google Scholar | |
Liotta LA: Tumor invasion and metastases-role of the extracellular matrix: Rhoads memorial award lecture. Cancer Res. 46:1–7. 1986.PubMed/NCBI | |
Chen XF, Zhang HJ, Wang HB, Zhu J, Zhou WY, Zhang H, Zhao MC, Su JM, Gao W, Zhang L, et al: Transforming growth factor-β1 induces epithelial-to-mesenchymal transition in human lung cancer cells via PI3K/Akt and MEK/Erk1/2 signaling pathways. Molr Biol Reps. 39:3549–3556. 2012.PubMed/NCBI View Article : Google Scholar | |
Park NR, Cha JH, Jang JW, Bae SH, Jang B, Kim JH, Hur W, Choi JY and Yoon SK: Synergistic effects of CD44 and TGF-β1 through AKT/GSK-3β/β-catenin signaling during epithelial-mesenchymal transition in liver cancer cells. Biochem Biophys Res Commun. 477:568–574. 2016.PubMed/NCBI View Article : Google Scholar | |
Shiraki K, Tsuji N, Shioda T, Isselbacher KJ and Takahashi H: Expression of Fas ligand in liver metastases of human colonic adenocarcinomas. Proc Natl Acad Sci USA. 94:6420–6425. 1997.PubMed/NCBI View Article : Google Scholar | |
Yoong KF, Afford SC, Randhawa S, Hubscher SG and Adams DH: Fas/Fas ligand interaction in human colorectal hepatic metastases: A mechanism of hepatocyte destruction to facilitate local tumor invasion. Am J Pathol. 154:693–703. 1999.PubMed/NCBI View Article : Google Scholar | |
Sánchez-Tilló E, Fanlo L, Siles L, Montes-Moreno S, Moros A, Chiva-Blanch G, Estruch R, Martinez A, Colomer D, Győrffy B, et al: The EMT activator ZEB1 promotes tumor growth and determines differential response to chemotherapy in mantle cell lymphoma. Cell Death Differ. 21:247–257. 2014.PubMed/NCBI View Article : Google Scholar | |
Suzuki A, Kusakai G, Kishimoto A, Shimojo Y, Miyamoto S, Ogura T, Ochiai A and Esumi H: Regulation of caspase-6 and FLIP by the AMPK family member ARK5. Oncogene. 23:7067–7075. 2004.PubMed/NCBI View Article : Google Scholar | |
Restifo NP: Not so Fas: Re-evaluating the mechanisms of immune privilege and tumor escape. Nat Med. 6:493–495. 2000.PubMed/NCBI View Article : Google Scholar | |
Suzuki A, Kusakai G, Kishimoto A, Minegichi Y, Ogura T and Esumi H: Induction of cell-cell detachment during glucose starvation through F-actin conversion by SNARK, the fourth member of the AMP-activated protein kinase catalytic subunit family. Biochem Biophys Res Commun. 311:156–161. 2003.PubMed/NCBI View Article : Google Scholar | |
Conacci-Sorrell M, McFerrin L and Eisenman RN: An overview of MYC and its interactome. Cold Spring Harb Perspect Med. 4(a014357)2014.PubMed/NCBI View Article : Google Scholar | |
Stine ZE, Walton ZE, Altman BJ, Hsieh AL and Dang CV: MYC, metabolism, and cancer. Cancer Discov. 5:1024–1039. 2015.PubMed/NCBI View Article : Google Scholar | |
Evan GI, Christophorou M, Lawlor EA, Ringshausen I, Prescott J, Dansen T, Dansen T, Finch A, Martins C and Murphy D: Oncogene-dependent tumor suppression: Using the dark side of the force for cancer therapy. Cold Spring Harb Symp Quant Biol. 70:263–273. 2005.PubMed/NCBI View Article : Google Scholar | |
Murphy DJ, Junttila MR, Pouyet L, Karnezis A, Shchors K, Bui DA, Brown-Swigart L, Johnson L and Evan GI: Distinct thresholds govern Myc's biological output in vivo. Cancer Cell. 14:447–457. 2008.PubMed/NCBI View Article : Google Scholar | |
Hanahan D and Weinberg RA: Hallmarks of cancer: The next generation. Cell. 144:646–674. 2011.PubMed/NCBI View Article : Google Scholar | |
Ross FA, MacKintosh C and Hardie DG: AMP-activated protein kinase: A cellular energy sensor that comes in 12 flavours. Febs J. 283:2987–3001. 2016.PubMed/NCBI View Article : Google Scholar | |
Shackelford DB and Shaw RJ: The LKB1-AMPK pathway: Metabolism and growth control in tumour suppression. Nat Rev Cancer. 9:563–575. 2009.PubMed/NCBI View Article : Google Scholar | |
Woods A, Dickerson K, Heath R, Hong SP, Momcilovic M, Johnstone SR, Carlson M and Carling D: Ca2+/calmodulin-dependent protein kinase kinase-beta acts upstream of AMP-activated protein kinase in mammalian cells. Cell Metab. 2:21–33. 2005.PubMed/NCBI View Article : Google Scholar | |
Ciccarese F, Zulato E and Indraccolo S: LKB1/AMPK pathway and drug response in cancer: A therapeutic perspective. Oxid Med Cell Longev. 2019(8730816)2019.PubMed/NCBI View Article : Google Scholar | |
Kawakami Y, Nishimoto H, Kitaura J, Maeda-Yamamoto M, Kato RM, Littman DR, Leitges M, Rawlings DJ and Kawakami T: Protein kinase C betaII regulates Akt phosphorylation on Ser-473 in a cell type- and stimulus-specific fashion. J Biol Chem. 279:47720–4725. 2004.PubMed/NCBI View Article : Google Scholar | |
Partovian C and Simons M: Regulation of protein kinase B/Akt activity and Ser473 phosphorylation by protein kinase Calpha in endothelial cells. Cell Signal. 16:951–957. 2004.PubMed/NCBI View Article : Google Scholar | |
Delbridge AR and Strasser A: The BCL-2 protein family, BH3-mimetics and cancer therapy. Cell Death Differ. 22:1071–1080. 2015.PubMed/NCBI View Article : Google Scholar | |
Muthalagu N, Junttila MR, Wiese KE, Wolf E, Morton J, Bauer B, Evan GI, Eilers M and Murphy DJ: BIM is the primary mediator of MYC-induced apoptosis in multiple solid tissues. Cell Rep. 8:1347–1353. 2014.PubMed/NCBI View Article : Google Scholar | |
Zhang X, Tang N, Hadden TJ and Rishi AK: Akt, FoxO and regulation of apoptosis. Biochim Biophys Acta. 1813:1978–1986. 2011.PubMed/NCBI View Article : Google Scholar | |
Cermelli S, Jang IS, Bernard B and Grandori C: Synthetic lethal screens as a means to understand and treat MYC-driven cancers. Cold Spring Harb Perspect Med. 4(a014209)2014.PubMed/NCBI View Article : Google Scholar | |
Carling D: AMPK signalling in health and disease. Curr Opin Cell Biol. 45:31–37. 2017.PubMed/NCBI View Article : Google Scholar | |
Jones RG, Plas DR, Kubek S, Buzzai M, Mu J, Xu Y, Birnbaum MJ and Thompson CB: AMP-activated protein kinase induces a p53-dependent metabolic checkpoint. Mol Cell. 18:283–293. 2005.PubMed/NCBI View Article : Google Scholar | |
Hou X, Liu JE, Liu W, Liu CY, Liu ZY and Sun ZY: A new role of NUAK1: Directly phosphorylating p53 and regulating cell proliferation. Oncogene. 30:2933–2942. 2011.PubMed/NCBI View Article : Google Scholar | |
Baker DJ, Jeganathan KB, Cameron JD, Thompson M, Juneja S, Kopecka A, Kumar R, Jenkins RB, de Groen PC, Roche P and van Deursen JM: BubR1 insufficiency causes early onset of aging-associated phenotypes and infertility in mice. Nat Genet. 36:744–749. 2004.PubMed/NCBI View Article : Google Scholar | |
Chesnokova V, Zonis S, Kovacs K, Ben-Shlomo A, Wawrowsky K, Bannykh S and Melmed S: p21(Cip1) restrains pituitary tumor growth. Proc Natl Acad Sci USA. 105:17498–17503. 2004.PubMed/NCBI View Article : Google Scholar | |
Takahashi A, Ohtani N, Yamakoshi K, Iida S, Tahara H, Nakayama K, Nakayama KI, Ide T, Saya H and Hara E: Mitogenic signalling and the p16INK4a-Rb pathway cooperate to enforce irreversible cellular senescence. Nat Cell Biol. 8:1291–1297. 2006.PubMed/NCBI View Article : Google Scholar | |
Zhang D, Shimizu T, Araki N, Hirota T, Yoshie M, Ogawa K, Nakagata N, Takeya M and Saya H: Aurora A overexpression induces cellular senescence in mammary gland hyperplastic tumors developed in p53-deficient mice. Oncogene. 27:4305–4314. 2008.PubMed/NCBI View Article : Google Scholar | |
Holland B, Wong J, Li M and Rasheed S: Identification of human microRNA-like sequences embedded within the protein-encoding genes of the human immunodeficiency virus. PLoS One. 8(e58586)2013.PubMed/NCBI View Article : Google Scholar | |
Obayashi M, Yoshida M, Tsunematsu T, Ogawa I, Sasahira T, Kuniyasu H, Imoto I, Abiko Y, Xu D, Fukunaga S, et al: microRNA-203 suppresses invasion and epithelial-mesenchymal transition induction via targeting NUAK1 in head and neck cancer. Oncotarget. 7:8223–8239. 2016.PubMed/NCBI View Article : Google Scholar | |
Shenouda SK and Alahari SK: MicroRNA function in cancer: Oncogene or a tumor suppressor? Cancer Metastasis Rev. 28:369–378. 2009.PubMed/NCBI View Article : Google Scholar | |
Yu Y, Wang Y, Xiao X, Chang W, Hu L, Yao W, Qian Z and Wu W: MiR-204 inhibits hepatocellular cancer drug resistance and metastasis through targeting NUAK1. Biochem Cell Biol. 97:563–570. 2019.PubMed/NCBI View Article : Google Scholar | |
Xiong X, Sun D, Chai H, Shan W, Yu Y, Pu L and Cheng F: MiR-145 functions as a tumor suppressor targeting NUAK1 in human intrahepatic cholangiocarcinoma. Biochem Biophys Res Commun. 465:262–269. 2015.PubMed/NCBI View Article : Google Scholar | |
Bell RE, Khaled M, Netanely D, Schubert S, Golan T, Buxbaum A, Janas MM, Postolsky B, Goldberg MS, Shamir R and Levy C: Transcription factor/microRNA axis blocks melanoma invasion program by miR-211 targeting NUAK1. J Invest Dermatol. 134:441–451. 2014.PubMed/NCBI View Article : Google Scholar | |
Huang X, Lv W, Zhang JH and Lu DL: miR96 functions as a tumor suppressor gene by targeting NUAK1 in pancreatic cancer. Int J Mol Med. 34:1599–1605. 2014.PubMed/NCBI View Article : Google Scholar | |
Monteverde T, Tait-Mulder J, Hedley A, Knight JR, Sansom OJ and Murphy DJ: Calcium signalling links MYC to NUAK1. Oncogene. 37:982–992. 2018.PubMed/NCBI View Article : Google Scholar | |
Ojo OO, Bhadauria S and Rath SK: Dose-dependent adverse effects of salinomycin on male reproductive organs and fertility in mice. PLoS One. 8(e69086)2013.PubMed/NCBI View Article : Google Scholar | |
Zhou Y, Liang C, Xue F, Chen W, Zhi X, Feng X, Bai X and Liang T: Salinomycin decreases doxorubicin resistance in hepatocellular carcinoma cells by inhibiting the β-catenin/TCF complex association via FOXO3a activation. Oncotarget. 6:10350–10365. 2015.PubMed/NCBI View Article : Google Scholar | |
Yu Z, Cheng H, Zhu H, Cao M, Lu C, Bao S, Pan Y and Li Y: Salinomycin enhances doxorubicin sensitivity through reversing the epithelial-mesenchymal transition of cholangiocarcinoma cells by regulating ARK5. Braz J Med Biol Res. 50(e6147)2017.PubMed/NCBI View Article : Google Scholar | |
Reddy MV, Akula B, Cosenza SC, Athuluridivakar S, Mallireddigari MR, Pallela VR, Billa VK, Subbaiah DR, Bharathi EV, Vasquez-Del Carpio R, et al: Discovery of 8-cyclopentyl-2-[4-(4-methyl-piperazin-1-yl)-phenylamino]-7-oxo-7,8-dihydro-pyrido[2,3-d]pyrimidine-6-carbonitrile (7x) as a potent inhibitor of cyclin-dependent kinase 4 (CDK4) and AMPK-related kinase 5 (ARK5). J Med Chem. 57:578–599. 2014.PubMed/NCBI View Article : Google Scholar | |
Huang X, Di Liberto M, Jayabalan D, Liang J, Ely S, Bretz J, Shaffer AL III, Louie T, Chen I, Randolph S, et al: Prolonged early G(1) arrest by selective CDK4/CDK6 inhibition sensitizes myeloma cells to cytotoxic killing through cell cycle-coupled loss of IRF4. Blood. 120:1095–1106. 2012.PubMed/NCBI View Article : Google Scholar | |
Niesvizky R, Badros AZ, Costa LJ, Ely SA, Singhal SB, Stadtmauer EA, Haideri NA, Yacoub A, Hess G, Lentzsch S, et al: Phase 1/2 study of cyclin-dependent kinase (CDK)4/6 inhibitor palbociclib (PD-0332991) with bortezomib and dexamethasone in relapsed/refractory multiple myeloma. Leuk Lymphoma. 56:3320–3328. 2015.PubMed/NCBI View Article : Google Scholar | |
Banerjee S, Buhrlage SJ, Huang HT, Deng X, Zhou W, Wang J, Traynor R, Prescott AR, Alessi DR and Gray NS: Characterization of WZ4003 and HTH-01-015 as selective inhibitors of the LKB1-tumour-suppressor-activated NUAK kinases. Biochem J. 457:215–225. 2014.PubMed/NCBI View Article : Google Scholar | |
Banerjee S, Zagorska A, Deak M, Campbell DG, Prescott AR and Alessi DR: Interplay between Polo kinase, LKB1-activated NUAK1 kinase, PP1βMYPT1 phosphatase complex and the SCFβTrCP E3 ubiquitin ligase. Biochem J. 461:233–245. 2014.PubMed/NCBI View Article : Google Scholar | |
Reeves WB and Andreoli TE: Transforming growth factor beta contributes to progressive diabetic nephropathy. Proc Natl Acad Sci USA. 97:7667–7669. 2000.PubMed/NCBI View Article : Google Scholar | |
Zhang X, Lv H, Zhou Q, Elkholi R, Chipuk JE, Reddy MV, Reddy EP and Gallo JM: Preclinical pharmacological evaluation of a novel multiple kinase inhibitor, ON123300, in brain tumor models. Mol Cancer Ther. 13:1105–1116. 2014.PubMed/NCBI View Article : Google Scholar | |
Kalluri R and Weinberg RA: The basics of epithelial-mesenchymal transition. J Clin Invest. 119:1420–1428. 2009.PubMed/NCBI View Article : Google Scholar | |
Brennan EP, Morine MJ, Walsh DW, Roxburgh SA, Lindenmeyer MT, Brazil DP, Gaora PÓ, Roche HM, Sadlier DM, Cohen CD, et al: Next-generation sequencing identifies TGF-β1-associated gene expression profiles in renal epithelial cells reiterated in human diabetic nephropathy. Biochim Biophys Acta. 1822:589–599. 2012.PubMed/NCBI View Article : Google Scholar | |
Russo LM, del Re E, Brown D and Lin HY: Evidence for a role of transforming growth factor (TGF)-beta1 in the induction of postglomerular albuminuria in diabetic nephropathy: Amelioration by soluble TGF-beta type II receptor. Diabetes. 56:380–388. 2007.PubMed/NCBI View Article : Google Scholar | |
Sakamoto K, Goransson O, Hardie DG and Alessi DR: Activity of LKB1 and AMPK-related kinases in skeletal muscle: Effects of contraction, phenformin, and AICAR. Am J Physiol Endocrinol Metab. 287:E310–E317. 2004.PubMed/NCBI View Article : Google Scholar | |
Fisher JS, Ju JS, Oppelt PJ, Smith JL, Suzuki A and Esumi H: Muscle contractions, AICAR, and insulin cause phosphorylation of an AMPK-related kinase. Am J Physiol Endocrinol Metab. 289:E986–E992. 2005.PubMed/NCBI View Article : Google Scholar | |
Hoppe PE, Chau J, Flanagan KA, Reedy AR and Schriefer LA: Caenorhabditis elegans unc-82 encodes a serine/threonine kinase important for myosin filament organization in muscle during growth. Genetics. 184:79–90. 2010.PubMed/NCBI View Article : Google Scholar | |
Zagorska A, Deak M, Campbell DG, Banerjee S, Hirano M, Aizawa S, Prescott AR and Alessi DR: New roles for the LKB1-NUAK pathway in controlling myosin phosphatase complexes and cell adhesion. Sci Signal. 3(ra25)2010.PubMed/NCBI View Article : Google Scholar | |
Inazuka F, Sugiyama N, Tomita M, Abe T, Shioi G and Esumi H: Muscle-specific knock-out of NUAK family SNF1-like kinase 1 (NUAK1) prevents high fat diet-induced glucose intolerance. J Biol Chem. 287:16379–16389. 2012.PubMed/NCBI View Article : Google Scholar | |
Yap JKY, Pickard BS, Chan EWL and Gan SY: The role of neuronal NLRP1 inflammasome in Alzheimer's disease: Bringing neurons into the neuroinflammation game. Mol Neurobiol. 56:7741–7753. 2019.PubMed/NCBI View Article : Google Scholar | |
Courchet V, Roberts AJ, Meyer-Dilhet G, Del Carmine P, Lewis TL Jr, Polleux F and Courchet J: Haploinsufficiency of autism spectrum disorder candidate gene NUAK1 impairs cortical development and behavior in mice. Nat Commun. 9(4289)2018.PubMed/NCBI View Article : Google Scholar | |
Soto C and Pritzkow S: Protein misfolding, aggregation, and conformational strains in neurodegenerative diseases. Nat Neurosci. 21:1332–1340. 2018.PubMed/NCBI View Article : Google Scholar | |
Cao Q, Wang XJ, Liu CW, Liu DF, Li LF, Gao YQ and Su XD: Inhibitory mechanism of caspase-6 phosphorylation revealed by crystal structures, molecular dynamics simulations, and biochemical assays. J Biol Chem. 287:15371–15379. 2012.PubMed/NCBI View Article : Google Scholar | |
MacLachlan TK and El-Deiry WS: Apoptotic threshold is lowered by p53 transactivation of caspase-6. Proc Natl Acad Sci USA. 99:9492–9497. 2002.PubMed/NCBI View Article : Google Scholar | |
Kurokawa M and Kornbluth S: Caspases and kinases in a death grip. Cell. 138:838–854. 2009.PubMed/NCBI View Article : Google Scholar |