1
|
Patterson D: Molecular genetic analysis of
Down syndrome. Hum Genet. 126:195–214. 2009.PubMed/NCBI View Article : Google Scholar
|
2
|
Korenberg JR, Chen XN, Schipper R, Sun Z,
Gonsky R, Gerwehr S, Carpenter N, Daumer C, Dignan P, Disteche C,
et al: Down syndrome phenotypes: The consequences of chromosomal
imbalance. Proc Natl Acad Sci USA. 91:4997–5001. 1994.PubMed/NCBI View Article : Google Scholar
|
3
|
Weijerman ME and de Winter JP: Clinical
practice. The care of children with Down syndrome. Eur J Pediatr.
169:1445–1452. 2010.PubMed/NCBI View Article : Google Scholar
|
4
|
Takahashi K and Yamanaka S: Induction of
pluripotent stem cells from mouse embryonic and adult fibroblast
cultures by defined factors. Cell. 126:663–676. 2006.PubMed/NCBI View Article : Google Scholar
|
5
|
Bilic J and Izpisua Belmonte JC: Concise
review: Induced pluripotent stem cells versus embryonic stem cells:
Close enough or yet too far apart? Stem Cells. 30:33–41.
2012.PubMed/NCBI View
Article : Google Scholar
|
6
|
Hoffmann A, Ziller M and Spengler D:
Progress in iPSC- based modeling of psychiatric disorders. Int J
Mol Sci. 20(4896)2019.PubMed/NCBI View Article : Google Scholar
|
7
|
Bar-Nur O, Russ HA, Efrat S and Benvenisty
N: Epigenetic memory and preferential lineage-specific
differentiation in induced pluripotent stem cells derived from
human pancreatic islet beta cells. Cell Stem Cell. 9:17–23.
2011.PubMed/NCBI View Article : Google Scholar
|
8
|
Kim K, Doi A, Wen B, Ng K, Zhao R, Cahan
P, Kim J, Aryee MJ, Ji H, Ehrlich LI, et al: Epigenetic memory in
induced pluripotent stem cells. Nature. 467:285–290.
2010.PubMed/NCBI View Article : Google Scholar
|
9
|
Harries LW: Long non-coding RNAs and human
disease. Biochem Soc Trans. 40:902–906. 2012.PubMed/NCBI View Article : Google Scholar
|
10
|
Ng SY, Lin L, Soh BS and Stanton LW: Long
noncoding RNAs in development and disease of the central nervous
system. Trends Genet. 29:461–468. 2013.PubMed/NCBI View Article : Google Scholar
|
11
|
Emmrich S, Streltsov A, Schmidt F,
Thangapandi VR, Reinhardt D and Klusmann JH: LincRNAs MONC and
MIR100HG act as oncogenes in acute megakaryoblastic leukemia. Mol
Cancer. 13(171)2014.PubMed/NCBI View Article : Google Scholar
|
12
|
Faghihi MA, Modarresi F, Khalil AM, Wood
DE, Sahagan BG, Morgan TE, Finch CE, St Laurent G III, Kenny PJ,
Wahlestedt C, et al: Expression of a noncoding RNA is elevated in
Alzheimer's disease and drives rapid feed-forward regulation of
beta-secretase. Nat Med. 14:723–730. 2008.PubMed/NCBI View
Article : Google Scholar
|
13
|
Qiu JJ, Liu YN, Ren ZR and Yan JB:
Dysfunctions of mitochondria in close association with strong
perturbation of long noncoding RNAs expression in down syndrome.
Int J Biochem Cell Biol. 92:115–120. 2017.PubMed/NCBI View Article : Google Scholar
|
14
|
Rinn JL and Chang HY: Genome regulation by
long noncoding RNAs. Annu Rev Biochem. 81:145–166. 2012.PubMed/NCBI View Article : Google Scholar
|
15
|
Quinn JJ and Chang HY: Unique features of
long non-coding RNA biogenesis and function. Nat Rev Genet.
17:47–62. 2016.PubMed/NCBI View Article : Google Scholar
|
16
|
Kopp F and Mendell JT: Functional
classification and experimental dissection of long noncoding RNAs.
Cell. 172:393–407. 2018.PubMed/NCBI View Article : Google Scholar
|
17
|
Pei S, Minhajuddin M, Adane B, Khan N,
Stevens BM, Mack SC, Lai S, Rich JN, Inguva A, Shannon KM, et al:
AMPK/FIS1-mediated mitophagy is required for self-renewal of human
AML stem cells. Cell Stem Cell. 23:86–100.e6. 2018.PubMed/NCBI View Article : Google Scholar
|
18
|
Kim D, Langmead B and Salzberg SL: HISAT:
A fast spliced aligner with low memory requirements. Nat Methods.
12:357–360. 2015.PubMed/NCBI View Article : Google Scholar
|
19
|
Pertea M, Pertea GM, Antonescu CM, Chang
TC, Mendell JT and Salzberg SL: StringTie enables improved
reconstruction of a transcriptome from RNA-seq reads. Nat
Biotechnol. 33:290–295. 2015.PubMed/NCBI View
Article : Google Scholar
|
20
|
Trapnell C, Williams BA, Pertea G,
Mortazavi A, Kwan G, van Baren MJ, Salzberg SL, Wold BJ and Pachter
L: Transcript assembly and quantification by RNA-Seq reveals
unannotated transcripts and isoform switching during cell
differentiation. Nat Biotechnol. 28:511–515. 2010.PubMed/NCBI View
Article : Google Scholar
|
21
|
Kong L, Zhang Y, Ye ZQ, Liu XQ, Zhao SQ,
Wei L and Gao G: CPC: Assess the protein-coding potential of
transcripts using sequence features and support vector machine.
Nucleic Acids Res. 35:W345–W349. 2007.PubMed/NCBI View Article : Google Scholar
|
22
|
Trapnell C, Roberts A, Goff L, Pertea G,
Kim D, Kelley DR, Pimentel H, Salzberg SL, Rinn JL and Pachter L:
Differential gene and transcript expression analysis of RNA-seq
experiments with TopHat and cufflinks. Nat Protoc. 7:562–578.
2012.PubMed/NCBI View Article : Google Scholar
|
23
|
Langmead B and Salzberg SL: Fast
gapped-read alignment with Bowtie 2. Nat Methods. 9:357–359.
2012.PubMed/NCBI View Article : Google Scholar
|
24
|
Li B and Dewey CN: RSEM: Accurate
transcript quantification from RNA-Seq data with or without a
reference genome. BMC Bioinformatics. 12(323)2011.PubMed/NCBI View Article : Google Scholar
|
25
|
Wang L, Feng Z, Wang X, Wang X and Zhang
X: DEGseq: An R package for identifying differentially expressed
genes from RNA-seq data. Bioinformatics. 26:136–138.
2010.PubMed/NCBI View Article : Google Scholar
|
26
|
Narzisi G, O'Rawe JA, Iossifov I, Fang H,
Lee YH, Wang Z, Wu Y, Lyon GJ, Wigler M and Schatz MC: Accurate de
novo and transmitted indel detection in exome-capture data using
microassembly. Nat Methods. 11:1033–1036. 2014.PubMed/NCBI View Article : Google Scholar
|
27
|
Tafer H, Amman F, Eggenhofer F, Stadler PF
and Hofacker IL: Fast accessibility-based prediction of RNA-RNA
interactions. Bioinformatics. 27:1934–1940. 2011.PubMed/NCBI View Article : Google Scholar
|
28
|
Knauss JL and Sun T: Regulatory mechanisms
of long noncoding RNAs in vertebrate central nervous system
development and function. Neuroscience. 235:200–214.
2013.PubMed/NCBI View Article : Google Scholar
|
29
|
Kornienko AE, Guenzl PM, Barlow DP and
Pauler FM: Gene regulation by the act of long non-coding RNA
transcription. BMC Biol. 11(59)2013.PubMed/NCBI View Article : Google Scholar
|
30
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408.
2001.PubMed/NCBI View Article : Google Scholar
|
31
|
Brown CJ, Hendrich BD, Rupert JL,
Lafrenière RG, Xing Y, Lawrence J and Willard HF: The human XIST
gene: Analysis of a 17 kb inactive X-specific RNA that contains
conserved repeats and is highly localized within the nucleus. Cell.
71:527–542. 1992.PubMed/NCBI View Article : Google Scholar
|
32
|
Zhou Q, Wan Q, Jiang Y, Liu J, Qiang L and
Sun L: A landscape of murine long non-coding RNAs reveals the
leading transcriptome alterations in adipose tissue during aging.
Cell Rep. 31(107694)2020.PubMed/NCBI View Article : Google Scholar
|
33
|
Gudenas BL and Wang L: Prediction of
LncRNA subcellular localization with deep learning from sequence
features. Sci Rep. 8(16385)2018.PubMed/NCBI View Article : Google Scholar
|
34
|
Letourneau A, Santoni FA, Bonilla X,
Sailani MR, Gonzalez D, Kind J, Chevalier C, Thurman R, Sandstrom
RS, Hibaoui Y, et al: Domains of genome-wide gene expression
dysregulation in Down's syndrome. Nature. 508:345–350.
2014.PubMed/NCBI View Article : Google Scholar
|
35
|
Luo S, Lu JY, Liu L, Yin Y, Chen C, Han X,
Wu B, Xu R, Liu W, Yan P, et al: Divergent lncRNAs regulate gene
expression and lineage differentiation in pluripotent cells. Cell
Stem Cell. 18:637–652. 2016.PubMed/NCBI View Article : Google Scholar
|
36
|
Wang P, Xue Y, Han Y, Lin L, Wu C, Xu S,
Jiang Z, Xu J, Liu Q and Cao X: The STAT3-binding long noncoding
RNA lnc-DC controls human dendritic cell differentiation. Science.
344:310–313. 2014.PubMed/NCBI View Article : Google Scholar
|
37
|
Ørom UA, Derrien T, Beringer M, Gumireddy
K, Gardini A, Bussotti G, Lai F, Zytnicki M, Notredame C, Huang Q,
et al: Long noncoding RNAs with enhancer-like function in human
cells. Cell. 143:46–58. 2010.PubMed/NCBI View Article : Google Scholar
|
38
|
Magistri M, Faghihi MA, St Laurent G III
and Wahlestedt C: Regulation of chromatin structure by long
noncoding RNAs: Focus on natural antisense transcripts. Trends
Genet. 28:389–396. 2012.PubMed/NCBI View Article : Google Scholar
|
39
|
Paralkar VR, Taborda CC, Huang P, Yao Y,
Kossenkov AV, Prasad R, Luan J, Davies JOJ, Hughes JR, Hardison RC,
et al: Unlinking an lncRNA from its associated cis element. Mol
Cell. 62:104–110. 2016.PubMed/NCBI View Article : Google Scholar
|
40
|
Engreitz JM, Haines JE, Perez EM, Munson
G, Chen J, Kane M, McDonel PE, Guttman M and Lander ES: Local
regulation of gene expression by lncRNA promoters, transcription
and splicing. Nature. 539:452–455. 2016.PubMed/NCBI View Article : Google Scholar
|
41
|
Katayama S, Tomaru Y, Kasukawa T, Waki K,
Nakanishi M, Nakamura M, Nishida H, Yap CC, Suzuki M, Kawai J, et
al: Antisense transcription in the mammalian transcriptome.
Science. 309:1564–1566. 2005.PubMed/NCBI View Article : Google Scholar
|
42
|
Yan MD, Hong CC, Lai GM, Cheng AL, Lin YW
and Chuang SE: Identification and characterization of a novel gene
Saf transcribed from the opposite strand of Fas. Hum Mol Genet.
14:1465–1474. 2005.PubMed/NCBI View Article : Google Scholar
|
43
|
Nakaya HI, Amaral PP, Louro R, Lopes A,
Fachel AA, Moreira YB, El-Jundi TA, da Silva AM, Reis EM and
Verjovski-Almeida S: Genome mapping and expression analyses of
human intronic noncoding RNAs reveal tissue-specific patterns and
enrichment in genes related to regulation of transcription. Genome
Biol. 8(R43)2007.PubMed/NCBI View Article : Google Scholar
|
44
|
Fossati M, Pizzarelli R, Schmidt ER,
Kupferman JV, Stroebel D, Polleux F and Charrier C: SRGAP2 and its
human-specific paralog co-regulate the development of excitatory
and inhibitory synapses. Neuron. 91:356–369. 2016.PubMed/NCBI View Article : Google Scholar
|
45
|
Cunha A, Nelson-Filho P, Marañón-Vásquez
GA, Ramos AGC, Dantas B, Sebastiani AM, Silvério F, Omori MA,
Rodrigues AS, Teixeira EC, et al: Genetic variants in ACTN3 and
MYO1H are associated with sagittal and vertical craniofacial
skeletal patterns. Arch Oral Biol. 97:85–90. 2019.PubMed/NCBI View Article : Google Scholar
|
46
|
Clarkson PM, Devaney JM, Dressman HG,
Thompson PD, Hubal MJ, Urso M, Price TB, Angelopoulos TJ, Gordon
PM, Moyna NM, et al: ACTN3 genotype is associated with increases in
muscle strength in response to resistance training in women. J Appl
Physiol (1985). 99:154–163. 2005.PubMed/NCBI View Article : Google Scholar
|
47
|
van Marrewijk DJ, van Stiphout MA,
Reuland-Bosma W, Bronkhorst EM and Ongkosuwito EM: The relationship
between craniofacial development and hypodontia in patients with
Down syndrome. Eur J Orthod. 38:178–183. 2016.PubMed/NCBI View Article : Google Scholar
|