The mitochondrial biogenesis signaling pathway is a potential therapeutic target for myasthenia gravis via energy metabolism (Review)
- Authors:
- Lingling Ke
- Qing Li
- Jingwei Song
- Wei Jiao
- Aidong Ji
- Tongkai Chen
- Huafeng Pan
- Yafang Song
-
Affiliations: Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China, Clinical Medical College of Acupuncture, Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China - Published online on: May 2, 2021 https://doi.org/10.3892/etm.2021.10134
- Article Number: 702
-
Copyright: © Ke et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Cataneo AJM, Felisberto G Jr and Cataneo DC: Thymectomy in nonthymomatous myasthenia gravis-systematic review and meta-analysis. Orphanet J Rare Dis. 13(99)2018.PubMed/NCBI View Article : Google Scholar | |
Barnett C, Bril V, Kapral M, Kulkarni A and Davis AM: Development and validation of the myasthenia gravis impairment index. Neurology. 87:879–886. 2016.PubMed/NCBI View Article : Google Scholar | |
Gwathmey KG and Burns TM: Myasthenia gravis. Semin Neurol. 35:327–339. 2015.PubMed/NCBI View Article : Google Scholar | |
Wang Z and Yan YP: Immunopathogenesis in myasthenia gravis and neuromyelitis optica. Front Immunol. 8(1785)2017.PubMed/NCBI View Article : Google Scholar | |
Gilhus NE, Skeie GO, Romi F, Lazaridis K, Zisimopoulou P and Tzartos S: Myasthenia gravis-autoantibody characteristics and their implications for therapy. Nat Rev Neurol. 12:259–268. 2016.PubMed/NCBI View Article : Google Scholar | |
Juel VC: Myasthenia gravis: Management of myasthenic crisis and perioperative care. Semin Neurol. 24:75–81. 2004.PubMed/NCBI View Article : Google Scholar | |
Thomas CE, Mayer SA, Gungor Y, Swarup R, Webster EA, Chang I, Brannagan TH, Fink ME and Rowland LP: Myasthenic crisis: Clinical features, mortality, complications, and risk factors for prolonged intubation. Neurology. 48:1253–1260. 1997.PubMed/NCBI View Article : Google Scholar | |
Mantegazza R and Antozzi C: When myasthenia gravis is deemed refractory: Clinical signposts and treatment strategies. Ther Adv Neurol Disord. 11(1756285617749134)2018.PubMed/NCBI View Article : Google Scholar | |
Mehndiratta MM, Pandey S and Kuntzer T: Acetylcholinesterase inhibitor treatment for myasthenia gravis. Cochrane Database Syst Rev. 16(CD006986)2011.PubMed/NCBI View Article : Google Scholar | |
Watanabe G, Yuki T, Sugaya R, et al: Effectiveness of treatment based on the simultaneous administration of pyridostigmine, prednisolone, calcineurin inhibitor, and intravenous immunoglobulin (PPCI therapy) in patients with myasthenia gravis. Eur J Neurol. 25:143. 2018. | |
Luo J and Lindstrom J: AChR-specific immunosuppressive therapy of myasthenia gravis. Biochem Pharmacol. 97:609–619. 2015.PubMed/NCBI View Article : Google Scholar | |
Binks S, Vincent A and Palace J: Myasthenia gravis: A clinical-immunological update. J Neurol. 263:826–834. 2016.PubMed/NCBI View Article : Google Scholar | |
Wang L, Xi J, Zhang S, Wu H, Zhou L, Lu J, Zhang T and Zhao C: Effectiveness and safety of tacrolimus therapy for myasthenia gravis: A single arm meta-analysis. J Clin Neurosci. 63:160–167. 2019.PubMed/NCBI View Article : Google Scholar | |
Gilhus NE and Verschuuren JJ: Myasthenia gravis: Subgroup classification and therapeutic strategies. Lancet Neurol. 14:1023–1036. 2015.PubMed/NCBI View Article : Google Scholar | |
Song JW, Lei XW, Jiao W, Song Y, Chen W, Li J and Chen Z: Effect of Qiangji Jianli decoction on mitochondrial respiratory chain activity and expression of mitochondrial fusion and fission proteins in myasthenia gravis rats. Sci Rep. 8(8623)2018.PubMed/NCBI View Article : Google Scholar | |
Li YL, Li L and Li JM: Proteomic analysis of 11000 bands in thymic hyperplasia tissues of patients with myasthenia gravis. J Zhengzhou Univ. 43:291–295. 2012. | |
Guptill JT, Juel VC, Massey JM, Anderson AC, Chopra M, Yi JS, Esfandiari E, Buchanan T, Smith B, Atherfold P, et al: Effect of therapeutic plasma exchange on immunoglobulins in myasthenia gravis. Autoimmunity. 49:472–479. 2016.PubMed/NCBI View Article : Google Scholar | |
Alipour-Faz A, Shojaei M, Peyvandi H, Ramzi D, Oroei M, Ghadiri F and Peyvandi M: A comparison between IVIG and plasma exchange as preparations before thymectomy in myasthenia gravis patients. Acta Neurol Belg. 117:245–249. 2017.PubMed/NCBI View Article : Google Scholar | |
Newsom-Davis J, Wilson SG, Vincent A and Ward CD: Long-term effects of repeated plasma exchange in myasthenia gravis. Lancet. 1:464–468. 1979.PubMed/NCBI View Article : Google Scholar | |
Guptill JT, Oakley D, Kuchibhatla M, Guidon AC, Hobson-Webb LD, Massey JM, Sanders DB and Juel VC: A retrospective study of complications of therapeutic plasma exchange in myasthenia. Muscle Nerve. 47:170–176. 2013.PubMed/NCBI View Article : Google Scholar | |
Furlan JC, Barth D, Barnett C and Bril V: Cost-minimization analysis comparing intravenous immunoglobulin with plasma exchange in the management of patients with myasthenia gravis. Muscle Nerve. 53:872–876. 2016.PubMed/NCBI View Article : Google Scholar | |
Mantegazza R, Bernasconi P and Cavalcante P: Myasthenia gravis: From autoantibodies to therapy. Curr Opin Neurol. 31:517–525. 2018.PubMed/NCBI View Article : Google Scholar | |
Breiner A, Widdifield J, Katzberg HD, Barnett C, Bril V and Tu K: Epidemiology of myasthenia gravis in Ontario, Canada. Neuromuscul Disord. 26:41–46. 2016.PubMed/NCBI View Article : Google Scholar | |
Kordas G, Lagoumintzis G, Sideris S, Poulas K and Tzartos SJ: Direct proof of the in vivo pathogenic role of the AChR autoantibodies from myasthenia gravis patients. PLoS One. 9(e108327)2014.PubMed/NCBI View Article : Google Scholar | |
Sala TP, Crave JC, Duracinsky M, Lepira Bompeka F, Tadmouri A, Chassany O and Cherin P: Efficacy and patient satisfaction in the use of subcutaneous immunoglobulin immunotherapy for the treatment of auto-immune neuromuscular diseases. Autoimmun Rev. 17:873–881. 2018.PubMed/NCBI View Article : Google Scholar | |
Khedraki A, Reed EJ, Romer SH, Wang Q, Romine W, Rich MM, Talmadge RJ and Voss AA: Depressed synaptic transmission and reduced vesicle release sites in Huntington's disease neuromuscular junctions. J Neurosci. 37:8077–8091. 2017.PubMed/NCBI View Article : Google Scholar | |
Verschuuren J, Strijbos E and Vincent A: Neuromuscular junction disorders. Handb Clin Neurol. 133:447–466. 2016.PubMed/NCBI View Article : Google Scholar | |
Gonzalez-Freire M, de Cabo R, Studenski SA and Ferrucci L: The neuromuscular junction: Aging at the crossroad between nerves and muscle. Front Aging Neurosci. 6(208)2014.PubMed/NCBI View Article : Google Scholar | |
Zhang SJ, Li XX, Yu Y, Chiu AP, Lo LH, To JC, Rowlands DK and Keng VW: Schwann cell-specific PTEN and EGFR dysfunctions affect neuromuscular junction development by impairing agrin signaling and autophagy. Biochem Biophys Res Commun. 515:50–56. 2019.PubMed/NCBI View Article : Google Scholar | |
Liu W, Klose A, Forman S, Paris ND, Wei-LaPierre L, Cortés-Lopéz M, Tan A, Flaherty M, Miura P, Dirksen RT and Chakkalakal JV: Loss of adult skeletal muscle stem cells drives age-related neuromuscular junction degeneration. Elife. 6(e26464)2017.PubMed/NCBI View Article : Google Scholar | |
Pasnoor M, Dimachkie MM, Farmakidis C and Barohn RJ: Diagnosis of myasthenia gravis. Neurol Clin. 36:261–274. 2018.PubMed/NCBI View Article : Google Scholar | |
Özkök E, Durmuş H, Yetimler B, Taşlı H, Trakas N, Ulusoy C, Lagoumintzis G, Tzartos S and Tüzün E: Reduced muscle mitochondrial enzyme activity in MuSK-immunized mice. Clin Neuropathol. 34:359–363. 2015.PubMed/NCBI View Article : Google Scholar | |
Chang DT and Reynolds IJ: Mitochondrial trafficking and morphology in healthy and injured neurons. Prog Neurobiol. 80:241–268. 2006.PubMed/NCBI View Article : Google Scholar | |
Sorrentino V, Menzies KJ and Auwerx J: Repairing mitochondrial dysfunction in disease. Annu Rev Pharmacol. 58:353–389. 2018.PubMed/NCBI View Article : Google Scholar | |
Chaturvedi RK, Calingasan NY, Yang L, Hennessey T, Johri A and Beal MF: Impairment of PGC-1alpha expression, neuropathology and hepatic steatosis in a transgenic mouse model of Huntington's disease following chronic energy deprivation. Hum Mol Genet. 19:3190–3205. 2010.PubMed/NCBI View Article : Google Scholar | |
Theilen NT, Kunkel GH and Tyagi SC: The role of exercise and TFAM in preventing skeletal muscle atrophy. J Cell Physiol. 232:2348–2358. 2017.PubMed/NCBI View Article : Google Scholar | |
Gorgey AS, Witt O, O'Brien L, Cardozo C, Chen Q, Lesnefsky EJ and Graham ZA: Mitochondrial health and muscle plasticity after spinal cord injury. Eur J Appl Physiol. 119:315–331. 2019.PubMed/NCBI View Article : Google Scholar | |
Klinge CM: Estrogenic control of mitochondrial function and biogenesis. J Cell Biochem. 105:1342–1351. 2008.PubMed/NCBI View Article : Google Scholar | |
Fukunaga K, Shinoda Y and Tagashira H: The role of SIGMAR1 gene mutation and mitochondrial dysfunction in amyotrophic lateral sclerosis. J Pharmacol Sci. 127:36–41. 2015.PubMed/NCBI View Article : Google Scholar | |
Walczak J, Dębska-Vielhaber G, Vielhaber S, Szymański J, Charzyńska A, Duszyński J and Szczepanowska J: Distinction of sporadic and familial forms of ALS based on mitochondrial characteristics. FASEB J. 33:4388–4403. 2019.PubMed/NCBI View Article : Google Scholar | |
Jésus P, Fayemendy P, Nicol M, Lautrette G, Sourisseau H, Preux PM, Desport JC, Marin B and Couratier P: Hypermetabolism is a deleterious prognostic factor in patients with amyotrophic lateral sclerosis. Eur J Neurol. 25:97–104. 2018.PubMed/NCBI View Article : Google Scholar | |
Europa TA, Nel M and Heckmann JM: A review of the histopathological findings in myasthenia gravis: Clues to the pathogenesis of treatment-resistance in extraocular muscles. Neuromuscul Disord. 29:381–387. 2019.PubMed/NCBI View Article : Google Scholar | |
Wu H, She S, Liu Y, Xiong W, Guo Y, Fang H, Chen H and Li J: Protective effect of Sijunzi decoction on neuromuscular junction ultrastructure in autoimmune myasthenia gravis rats. J Tradit Chin Med. 33:669–673. 2013.PubMed/NCBI View Article : Google Scholar | |
Vercauteren K, Gleyzer N and Scarpulla RC: PGC-1-related coactivator complexes with HCF-1 and NRF-2beta in mediating NRF-2(GABP)-dependent respiratory gene expression. J Biol Chem. 283:12102–12111. 2008.PubMed/NCBI View Article : Google Scholar | |
Taherzadeh-Fard E, Saft C, Akkad DA, Wieczorek S, Haghikia A, Chan A, Epplen JT and Arning L: PGC-1alpha downstream transcription factors NRF-1 and TFAM are genetic modifiers of Huntington disease. Mol Neurodegener. 6(32)2011.PubMed/NCBI View Article : Google Scholar | |
Finsterer J, Oberman I and Reitner A: Respiratory chain complex-I defect mimicking myasthenia. Metab Brain Dis. 17:41–46. 2002.PubMed/NCBI View Article : Google Scholar | |
Shichijo K, Mitsui T, Kunishige M, Kuroda Y, Masuda K and Matsumoto T: Involvement of mitochondria in myasthenia gravis complicated with dermatomyositis and rheumatoid arthritis: A case report. Acta Neuropathol. 109:539–542. 2005.PubMed/NCBI View Article : Google Scholar | |
Kjøbsted R, Hingst JR, Fentz J, Foretz M, Sanz MN, Pehmøller C, Shum M, Marette A, Mounier R, Treebak JT, et al: AMPK in skeletal muscle function and metabolism. FASEB J. 32:1741–1777. 2018.PubMed/NCBI View Article : Google Scholar | |
Zhang MH, Fang XS, Guo JY and Jin Z: Effects of AMPK on apoptosis and energy metabolism of gastric smooth muscle cells in rats with diabetic gastroparesis. Cell Biochem Biophys. 77:165–177. 2019.PubMed/NCBI View Article : Google Scholar | |
Garcia-Carrizo F, Nozhenko Y, Palou A and Rodriguez AM: Leptin effect on acetylation and phosphorylation of Pgc1α in muscle cells associated with Ampk and Akt activation in high-glucose medium. J Cell Physiol. 231:641–649. 2016.PubMed/NCBI View Article : Google Scholar | |
Tamás P, Hawley SA, Clarke RG, Mustard KJ, Green K, Hardie DG and Cantrell DA: Regulation of the energy sensor AMP-activated protein kinase by antigen receptor and Ca2+ in T lymphocytes. J Exp Med. 203:1665–1670. 2006.PubMed/NCBI View Article : Google Scholar | |
Martignago S, Fanin M, Albertini E, Pegoraro E and Angelini C: Muscle histopathology in myasthenia gravis with antibodies against MuSK and AChR. Neuropathol Appl Neurobiol. 35:103–110. 2009.PubMed/NCBI View Article : Google Scholar | |
Willows R, Sanders MJ, Xiao B, Patel BR, Martin SR, Read J, Wilson JR, Hubbard J, Gamblin SJ and Carling D: Phosphorylation of AMPK by upstream kinases is required for activity in mammalian cells. Biochem J. 474:3059–3073. 2017.PubMed/NCBI View Article : Google Scholar | |
Ke R, Xu Q, Li C, Luo L and Huang D: Mechanisms of AMPK in the maintenance of ATP balance during energy metabolism. Cell Biol Int. 42:384–392. 2018.PubMed/NCBI View Article : Google Scholar | |
Inata Y, Kikuchi S, Samraj RS, Hake PW, O'Connor M, Ledford JR, O'Connor J, Lahni P, Wolfe V, Piraino G and Zingarelli B: Autophagy and mitochondrial biogenesis impairment contribute to age-dependent liver injury in experimental sepsis: dysregulation of AMP-activated protein kinase pathway. FASEB J. 32:728–741. 2018.PubMed/NCBI View Article : Google Scholar | |
Melser S, Lavie J and Benard G: Mitochondrial degradation and energy metabolism. Biochim Biophys Acta. 1853:2812–2821. 2015.PubMed/NCBI View Article : Google Scholar | |
Cui Y, Chang L, Wang C, Han X, Mu L, Hao Y, Liu C, Zhao J, Zhang T, Zhang H, et al: Metformin attenuates autoimmune disease of the neuromotor system in animal models of myasthenia gravis. Int Immunopharmacol. 75(105822)2019.PubMed/NCBI View Article : Google Scholar | |
Nillni EA: The metabolic sensor Sirt1 and the hypothalamus: Interplay between peptide hormones and pro-hormone convertases. Mol Cell Endocrinol. 438:77–88. 2016.PubMed/NCBI View Article : Google Scholar | |
Xu YH, Song QQ, Li C, Hu YT, Song BB, Ye JM, Rao Y and Huang ZS: Bouchardatine suppresses rectal cancer in mice by disrupting its metabolic pathways via activating the SIRT1-PGC-1α-UCP2 axis. Eur J Pharmacol. 854:328–337. 2019.PubMed/NCBI View Article : Google Scholar | |
Jang SY, Kang HT and Hwang ES: Nicotinamide-induced mitophagy: Event mediated by high NAD+/NADH ratio and SIRT1 protein activation. J Biol Chem. 287:19304–19314. 2012.PubMed/NCBI View Article : Google Scholar | |
Snyder-Warwick AK, Satoh A, Santosa KB, Imai S and Jablonka-Shariff A: Hypothalamic Sirt1 protects terminal Schwann cells and neuromuscular junctions from age-related morphological changes. Aging Cell. 17(e12776)2018.PubMed/NCBI View Article : Google Scholar | |
Wu B, Feng JY, Yu LM, Wang YC, Chen YQ, Wei Y, Han JS, Feng X, Zhang Y, Di SY, et al: Icariin protects cardiomyocytes against ischaemia/reperfusion injury by attenuating sirtuin 1-dependent mitochondrial oxidative damage. Br J Pharmacol. 175:4137–4153. 2018.PubMed/NCBI View Article : Google Scholar | |
Li Y, Xu S, Li J, Zheng L, Feng M, Wang X, Han K, Pi H, Li M, Huang X, et al: SIRT1 facilitates hepatocellular carcinoma metastasis by promoting PGC-1α-mediated mitochondrial biogenesis. Oncotarget. 7:29255–29274. 2016.PubMed/NCBI View Article : Google Scholar | |
Johnson ML, Robinson MM and Nair KS: Skeletal muscle aging and the mitochondrion. Trends Endocrinol Metab. 24:247–256. 2013.PubMed/NCBI View Article : Google Scholar | |
Salt IP and Hardie DG: AMP-activated protein kinase an ubiquitous signaling pathway with key roles in the cardiovascular system. Circ Res. 120:1825–1841. 2017.PubMed/NCBI View Article : Google Scholar | |
Akimoto T, Pohnert SC, Li P, Zhang M, Gumbs C, Rosenberg PB, Williams RS and Yan Z: Exercise stimulates Pgc-1alpha transcription in skeletal muscle through activation of the p38 MAPK pathway. J Biol Chem. 280:19587–19593. 2005.PubMed/NCBI View Article : Google Scholar | |
Ljubicic V, Burt M and Jasmin BJ: The therapeutic potential of skeletal muscle plasticity in Duchenne muscular dystrophy: Phenotypic modifiers as pharmacologic targets. FASEB J. 28:548–568. 2014.PubMed/NCBI View Article : Google Scholar | |
Abrahan C and Ash JD: The potential use of PGC-1α and PGC-1β to protect the retina by stimulating mitochondrial repair. Adv Exp Med Biol. 854:403–409. 2016.PubMed/NCBI View Article : Google Scholar | |
Shu JT, Xu WJ, Zhang M, Song WT, Shan YJ, Song C, Zhu WQ, Zhang XY and Li HF: Transcriptional co-activator PGC-1α gene is associated with chicken skeletal muscle fiber types. Genet Mol Res. 13:895–905. 2014.PubMed/NCBI View Article : Google Scholar | |
Jiang SN, Teague AM, Tryggestad JB and Chernausek SD: Role of microRNA-130b in placental PGC-1α/TFAM mitochondrial biogenesis pathway. Biochem Biophys Res Commun. 487:607–612. 2017.PubMed/NCBI View Article : Google Scholar | |
Felszeghy S, Viiri J, Paterno JJ, Hyttinen JMT, Koskela A, Chen M, Leinonen H, Tanila H, Kivinen N, Koistinen A, et al: Loss of NRF-2 and PGC-1α genes leads to retinal pigment epithelium damage resembling dry age-related macular degeneration. Redox Biol. 20:1–12. 2019.PubMed/NCBI View Article : Google Scholar | |
Du H, Zhou C, Wu H, Shan T, Wu Z, Xu B and Zhang Y: Effects of electroacupuncture on PGC-1 α expression in brown adipose tissue. Evid Based Complement Alternat Med. 2013(625104)2013.PubMed/NCBI View Article : Google Scholar | |
Cooper MP, Uldry M, Kajimura S, Arany Z and Spiegelman BM: Modulation of PGC-1 coactivator pathways in brown fat differentiation through LRP130. J Biol Chem. 283:31960–31967. 2008.PubMed/NCBI View Article : Google Scholar | |
Lehman JJ, Barger PM, Kovacs A, Saffitz JE, Medeiros DM and Kelly DP: Peroxisome proliferator-activated receptor gamma coactivator-1 promotes cardiac mitochondrial. biogenesis. 106:847–856. 2000.PubMed/NCBI View Article : Google Scholar | |
Zhang Q and Liang XC: Effects of mitochondrial dysfunction via AMPK/PGC-1 α signal pathway on pathogenic mechanism of diabetic peripheral neuropathy and the protective effects of Chinese medicine. Chin J Integr Med. 25:386–394. 2019.PubMed/NCBI View Article : Google Scholar | |
Jones AW, Yao Z, Vicencio JM, Karkucinska-Wieckowska A and Szabadkai G: PGC-1 family coactivators and cell fate: Roles in cancer, neurodegeneration, cardiovascular disease and retrograde mitochondria-nucleus signalling. Mitochondrion. 12:86–99. 2012.PubMed/NCBI View Article : Google Scholar | |
Xiang Z, Valenza M, Cui L, Leoni V, Jeong HK, Brilli E, Zhang J, Peng Q, Duan W, Reeves SA, et al: Peroxisome-proliferator-activated receptor gamma coactivator 1 α contributes to dysmyelination in experimental models of Huntington's disease. J Neurosci. 31:9544–9553. 2011.PubMed/NCBI View Article : Google Scholar | |
Wang Y, Zhao X, Lotz M, Terkeltaub R and Liu-Bryan R: Mitochondrial biogenesis is impaired in osteoarthritis chondrocytes but reversible via peroxisome proliferator-activated receptor γ coactivator 1α. Arthritis Rheumatol. 67:2141–2153. 2015.PubMed/NCBI View Article : Google Scholar | |
Koh JH, Hancock CR, Terada S, Higashida K, Holloszy JO and Han DH: PPARβ is essential for maintaining normal levels of PGC-1α and mitochondria and for the increase in muscle mitochondria induced by exercise. Cell Metab. 25:1176–1185 e5. 2017.PubMed/NCBI View Article : Google Scholar | |
Hsieh PF, Liu SF, Hung TJ, Hung CY, Liu GZ, Chuang LY, Chen MF, Wang JL, Shi MD, Hsu CH, et al: Elucidation of the therapeutic role of mitochondrial biogenesis transducers NRF-1 in the regulation of renal fibrosis. Exp Cell Res. 349:23–31. 2016.PubMed/NCBI View Article : Google Scholar | |
Lanza IR and Nair KS: Regulation of skeletal muscle mitochondrial function: Genes to proteins. Acta Physiol (Oxf). 199:529–547. 2010.PubMed/NCBI View Article : Google Scholar | |
Ramachandran B, Yu GS and Gulick T: Nuclear respiratory factor 1 controls myocyte enhancer factor 2A transcription to provide a mechanism for coordinate expression of respiratory chain subunits. J Biol Chem. 283:11935–11946. 2008.PubMed/NCBI View Article : Google Scholar | |
Matsuda T, Kanki T, Tanimura T, Kang D and Matsuura ET: Effects of overexpression of mitochondrial transcription factor A on lifespan and oxidative stress response in Drosophila melanogaster. Biochem Biophys Res Commun. 430:717–721. 2013.PubMed/NCBI View Article : Google Scholar | |
Thirupathi A and Pinho RA: Effects of reactive oxygen species and interplay of antioxidants during physical exercise in skeletal muscles. J Physiol Biochem. 74:359–367. 2018.PubMed/NCBI View Article : Google Scholar | |
Brandt N, Dethlefsen MM, Bangsbo J and Pilegaard H: PGC-1α and exercise intensity dependent adaptations in mouse skeletal muscle. PLoS One. 12(e0185993)2017.PubMed/NCBI View Article : Google Scholar | |
Wu KLH, Wu CW, Chao YM, Hung CY and Chan JYH: Impaired Nrf2 regulation of mitochondrial biogenesis in rostral ventrolateral medulla on hypertension induced by systemic inflammation. Free Radic Biol Med. 97:58–74. 2016.PubMed/NCBI View Article : Google Scholar | |
Hu Q, Ren J, Li G, Wu J, Wu X, Wang G, Gu G, Ren H, Hong Z and Li J: The mitochondrially targeted antioxidant MitoQ protects the intestinal barrier by ameliorating mitochondrial DNA damage via the Nrf2/ARE signaling pathway. Cell Death Dis. 9(403)2018.PubMed/NCBI View Article : Google Scholar | |
Bernard K, Logsdon NJ, Miguel V, Benavides GA, Zhang J, Carter AB, Darley-Usmar VM and Thannickal VJ: NADPH oxidase 4 (Nox4) suppresses mitochondrial biogenesis and bioenergetics in lung fibroblasts via a nuclear factor erythroid-derived 2-like 2 (Nrf2)-dependent pathway. J Biol Chem. 292:3029–3038. 2017.PubMed/NCBI View Article : Google Scholar | |
Kang I, Chu CT and Kaufman BA: The mitochondrial transcription factor TFAM in neurodegeneration: Emerging evidence and mechanisms. FEBS Lett. 592:793–811. 2018.PubMed/NCBI View Article : Google Scholar | |
Piao Y, Kim HG, Oh MS and Pak YK: Overexpression of TFAM, NRF-1 and myr-AKT protects the MPP(+)-induced mitochondrial dysfunctions in neuronal cells. Biochim Biophys Acta. 1820:577–585. 2012.PubMed/NCBI View Article : Google Scholar | |
Rostedt Punga A, Ahlqvist K, Bartoccioni E, Scuderi F, Marino M, Suomalainen A, Kalimo H and Stålberg EV: Neurophysiological and mitochondrial abnormalities in MuSK antibody seropositive myasthenia gravis compared to other immunological subtypes. Clin Neurophysiol. 117:1434–1443. 2006.PubMed/NCBI View Article : Google Scholar | |
Kunkel GH, Chaturvedi P and Tyagi SC: Mitochondrial pathways to cardiac recovery: TFAM. Heart Fail Rev. 21:499–517. 2016.PubMed/NCBI View Article : Google Scholar | |
Ruzzenente B, Rötig A and Metodiev MD: Mouse models for mitochondrial diseases. Hum Mol Genet. 25:R115–R122. 2016.PubMed/NCBI View Article : Google Scholar | |
Li H, Slone J, Fei L and Huang T: Mitochondrial DNA variants and common diseases: A mathematical model for the diversity of age-related mtDNA mutations. Cells. 8(608)2019.PubMed/NCBI View Article : Google Scholar | |
Lezza AMS: Mitochondrial transcription factor A (TFAM): One actor for different roles. Front Biol. 7:30–39. 2012. | |
Xu S, Zhong M, Zhang L, Wang Y, Zhou Z, Hao Y, Zhang W, Yang X, Wei A, Pei L and Yu Z: Overexpression of Tfam protects mitochondria against beta-amyloid-induced oxidative damage in SH-SY5Y cells. FEBS J. 276:3800–3809. 2009.PubMed/NCBI View Article : Google Scholar | |
Kang D, Kim SH and Hamasaki N: Mitochondrial transcription factor A (TFAM): Roles in maintenance of mtDNA and cellular functions. Mitochondrion. 7:39–44. 2007.PubMed/NCBI View Article : Google Scholar | |
Dong J, Zhao J, Zhang M, Liu G, Wang X, Liu Y, Yang N, Liu Y, Zhao G, Sun J, et al: β3-Adrenoceptor impairs mitochondrial biogenesis and energy metabolism during rapid atrial pacing-induced atrial fibrillation. J Cardiovasc Pharmacol Ther. 21:114–126. 2016.PubMed/NCBI View Article : Google Scholar | |
Tao L, Wang L, Yang X, Jiang X and Hua F: Recombinant human glucagon-like peptide-1 protects against chronic intermittent hypoxia by improving myocardial energy metabolism and mitochondrial biogenesis. Mol Cell Endocrinol. 481:95–103. 2019.PubMed/NCBI View Article : Google Scholar | |
Jeon SM: Regulation and function of AMPK in physiology and diseases. Exp Mol Med. 48(e245)2016.PubMed/NCBI View Article : Google Scholar | |
Aguirre-Rueda D, Guerra-Ojeda S, Aldasoro M, Iradi A, Obrador E, Ortega A, Mauricio MD, Vila JM and Valles SL: Astrocytes protect neurons from Aβ1-42 peptide-induced neurotoxicity increasing TFAM and PGC-1 and decreasing PPAR-γ and SIRT-1. Int J Med Sci. 12:48–56. 2015.PubMed/NCBI View Article : Google Scholar | |
Hood DA, Tryon LD, Carter HN, Kim Y and Chen CCW: Unravelling the mechanisms regulating muscle mitochondrial biogenesis. Biochem J. 473:2295–2314. 2016.PubMed/NCBI View Article : Google Scholar | |
Nie Y, Sato Y, Wang C, Yue F, Kuang S and Gavin TP: Impaired exercise tolerance, mitochondrial biogenesis, and muscle fiber maintenance in miR-133a-deficient mice. FASEB J. 30:3745–3758. 2016.PubMed/NCBI View Article : Google Scholar | |
Nirwane A and Majumdar A: Understanding mitochondrial biogenesis through energy sensing pathways and its translation in cardio-metabolic health. Arch Physiol Biochem. 124:194–206. 2018.PubMed/NCBI View Article : Google Scholar | |
Dhar SS and Wong-Riley MTT: Coupling of energy metabolism and synaptic transmission at the transcriptional level: Role of nuclear respiratory factor 1 in regulating both Cytochrome c oxidase and NMDA glutamate receptor subunit genes. J Neurosci. 29:483–492. 2009.PubMed/NCBI View Article : Google Scholar | |
Huang DD, Fan SD, Chen XY, Yan XL, Zhang XZ, Ma BW, Yu DY, Xiao WY, Zhuang CL and Yu Z: Nrf2 deficiency exacerbates frailty and sarcopenia by impairing skeletal muscle mitochondrial biogenesis and dynamics in an age-dependent manner. Exp Gerontol. 119:61–73. 2019.PubMed/NCBI View Article : Google Scholar | |
Chuang YC, Chen SD, Jou SB, Lin TK, Chen SF, Chen NC and Hsu CY: Sirtuin 1 regulates mitochondrial biogenesis and provides an endogenous neuroprotective mechanism against seizure-induced neuronal cell death in the hippocampus following status epilepticus. Int J Mol Sci. 20(3588)2019.PubMed/NCBI View Article : Google Scholar | |
Van Laar VS, Arnold B, Howlett EH, Calderon MJ, St Croix CM, Greenamyre JT, Sanders LH and Berman SB: Evidence for compartmentalized axonal mitochondrial biogenesis: Mitochondrial DNA replication increases in distal axons as an early response to Parkinson's disease-relevant stress. J Neurosci. 38:7505–7515. 2018.PubMed/NCBI View Article : Google Scholar | |
Osborne B, Cooney GJ and Turner N: Are sirtuin deacylase enzymes important modulators of mitochondrial energy metabolism? Biochim Biophys Acta. 1840:1295–1302. 2014.PubMed/NCBI View Article : Google Scholar | |
Jarmuszkiewicz W and Szewczyk A: Energy-dissipating hub in muscle mitochondria: Potassium channels and uncoupling proteins. Arch Biochem Biophys. 664:102–109. 2019.PubMed/NCBI View Article : Google Scholar | |
Dan Dunn J, Alvarez LA, Zhang X and Soldati T: Reactive oxygen species and mitochondria: A nexus of cellular homeostasis. Redox Biol. 6:472–485. 2015.PubMed/NCBI View Article : Google Scholar | |
Rahman S and Hanna MG: Diagnosis and therapy in neuromuscular disorders: Diagnosis and new treatments in mitochondrial diseases. J Neurol Neurosurg Psychiatry. 80:943–953. 2009.PubMed/NCBI View Article : Google Scholar | |
Cabezas R, Baez-Jurado E, Hidalgo-Lanussa O, Echeverria V, Ashrad GM, Sahebkar A and Barreto GE: Growth factors and neuroglobin in astrocyte protection against neurodegeneration and oxidative stress. Mol Neurobiol. 56:2339–2351. 2019.PubMed/NCBI View Article : Google Scholar | |
Niemann A, Huber N, Wagner KM, Somandin C, Horn M, Lebrun-Julien F, Angst B, Pereira JA, Halfter H, Welzl H, et al: The Gdap1 knockout mouse mechanistically links redox control to charcot-marie-tooth disease. Brain. 137:668–682. 2014.PubMed/NCBI View Article : Google Scholar | |
Li Y, Zhao X, Hu Y, Sun H, He Z, Yuan J, Cai H, Sun Y, Huang X and Kong W and Kong W: Age-associated decline in Nrf2 signaling and associated mtDNA damage may be involved in the degeneration of the auditory cortex: Implications for central presbycusis. Int J Mol Med. 42:3371–3385. 2018.PubMed/NCBI View Article : Google Scholar | |
Li X, Fang P, Yang WY, Chan K, Lavallee M, Xu K, Gao T, Wang H and Yang X: Mitochondrial ROS, uncoupled from ATP synthesis, determine endothelial activation for both physiological recruitment of patrolling cells and pathological recruitment of inflammatory cells. Can J Physiol Pharmacol. 95:247–252. 2017.PubMed/NCBI View Article : Google Scholar | |
Danikowski KM, Jayaraman S and Prabhakar BS: Regulatory T cells in multiple sclerosis and myasthenia gravis. J Neuroinflammation. 14(117)2017.PubMed/NCBI View Article : Google Scholar | |
Tarnopolsky M, Brady L and MacNeil L: Myasthenia graves-like symptoms associated with rare mitochondrial mutation (m.5728T>C). Mitochondrion. 47:139–140. 2019.PubMed/NCBI View Article : Google Scholar | |
Wang X and Rich MM: Homeostatic synaptic plasticity at the neuromuscular junction in myasthenia gravis. Ann NY Acad Sci. 1412:170–177. 2018.PubMed/NCBI View Article : Google Scholar | |
Lanser AJ, Rezende RM, Rubino S, Lorello PJ, Donnelly DJ, Xu H, Lau LA, Dulla CG, Caldarone BJ, Robson SC and Weiner HL: Disruption of the ATP/adenosine balance in CD39-/- mice is associated with handling-induced seizures. Immunology. 152:589–601. 2017.PubMed/NCBI View Article : Google Scholar | |
Zhang Y and Xu H: Translational regulation of mitochondrial biogenesis. Biochem Soc Trans. 44:1717–1724. 2016.PubMed/NCBI View Article : Google Scholar | |
Doan KN, Ellenrieder L and Becker T: Mitochondrial porin links protein biogenesis to metabolism. Curr Genet. 65:899–903. 2019.PubMed/NCBI View Article : Google Scholar | |
Jeffery CJ: Enzymes, pseudoenzymes, and moonlighting proteins: Diversity of function in protein superfamilies. FEBS J, Jun 13, 2020 (Online ahead of print). | |
Askanas V, Engel WK and Nogalska A: Pathogenic considerations in sporadic inclusion-body myositis, a degenerative muscle disease associated with aging and abnormalities of myoproteostasis. J Neuropathol Exp Neurol. 71:680–693. 2012.PubMed/NCBI View Article : Google Scholar | |
Arnold W, McGovern VL, Sanchez B, Li J, Corlett KM, Kolb SJ, Rutkove SB and Burghes AH: The neuromuscular impact of symptomatic SMN restoration in a mouse model of spinal muscular atrophy. Neurobiol Dis. 87:116–123. 2016.PubMed/NCBI View Article : Google Scholar | |
Saifetiarova J, Liu X, Taylor AM, Li J and Bhat MA: Axonal domain disorganization in Caspr1 and Caspr2 mutant myelinated axons affects neuromuscular junction integrity, leading to muscle atrophy. J Neurosci Res. 95:1373–1390. 2017.PubMed/NCBI View Article : Google Scholar | |
Wu H, She S, Liu Y, Xiong W, Guo Y, Fang H, Chen H and Li J: Protective effect of Sijunzi decoction on neuromuscular junction ultrastructure in autoimmune myasthenia gravis rats. J Tradit Chin Med. 33:669–673. 2013.PubMed/NCBI View Article : Google Scholar | |
Attia M, Maurer M, Robinet M, Le Grand F, Fadel E, Le Panse R, Butler-Browne G and Berrih-Aknin S: Muscle satellite cells are functionally impaired in myasthenia gravis: Consequences on muscle regeneration. Acta Neuropathol. 134:869–888. 2017.PubMed/NCBI View Article : Google Scholar | |
Iwasa K, Furukawa Y, Yoshikawa H and Yamada M: Caveolin-3 is aberrantly expressed in skeletal muscle cells in myasthenia gravis. J Neuroimmunol. 301:30–34. 2016.PubMed/NCBI View Article : Google Scholar | |
Rivner MH, Pasnoor M, Dimachkie MM, Barohn RJ and Mei L: Muscle-specific tyrosine kinase and myasthenia gravis owing to other antibodies. Neurol Clin. 36:293–310. 2018.PubMed/NCBI View Article : Google Scholar | |
Beecher G, Putko BN, Wagner AN and Siddiqi ZA: Therapies directed against b-cells and downstream effectors in generalized autoimmune myasthenia gravis: Current status. Drugs. 79:353–364. 2019.PubMed/NCBI View Article : Google Scholar | |
Valbuena GN, Rizzardini M, Cimini S, Siskos AP, Bendotti C, Cantoni L and Keun HC: Metabolomic analysis reveals increased aerobic glycolysis and amino acid deficit in a cellular model of amyotrophic lateral sclerosis. Mol Neurobiol. 53:2222–2240. 2016.PubMed/NCBI View Article : Google Scholar | |
Lysenko EA, Popov DV, Vepkhvadze TF, Lednev EM and Vinogradova OL: Effect of combined aerobic and strength exercise on regulation of mitochondrial biogenesis, protein synthesis and degradation in human skeletal muscle. Fiziol Cheloveka. 42:58–69. 2016.PubMed/NCBI(In Russian). |