1
|
Sparano F, Cavo M, Niscola P, Caravita T
and Efficace F: Patient-reported outcomes in relapsed/refractory
multiple myeloma: A systematic review. Support Care Cancer.
26:2075–2090. 2018.PubMed/NCBI View Article : Google Scholar
|
2
|
McCullough KB, Hobbs MA, Abeykoon JP and
Kapoor P: Common adverse effects of novel therapies for multiple
myeloma (MM) and Their management strategies. Curr Hematol Malig
Rep. 13:114–124. 2018.PubMed/NCBI View Article : Google Scholar
|
3
|
Abdi J, Chen G and Chang H: Drug
resistance in multiple myeloma: Latest findings and new concepts on
molecular mechanisms. Oncotarget. 4:2186–2207. 2013.PubMed/NCBI View Article : Google Scholar
|
4
|
Raucci A, Di Maggio S, Scavello F,
D'Ambrosio A, Bianchi ME and Capogrossi MC: The Janus face of HMGB1
in heart disease: A necessary update. Cell Mol Life Sci.
76:211–229. 2019.PubMed/NCBI View Article : Google Scholar
|
5
|
Venereau E, De Leo F, Mezzapelle R,
Careccia G, Musco G and Bianchi ME: HMGB1 as biomarker and drug
target. Pharmacol Res. 111:534–544. 2016.PubMed/NCBI View Article : Google Scholar
|
6
|
Yang H, Antoine DJ, Andersson U and Tracey
KJ: The many faces of HMGB1: Molecular structure-functional
activity in inflammation, apoptosis, and chemotaxis. J Leukoc Biol.
93:865–873. 2013.PubMed/NCBI View Article : Google Scholar
|
7
|
Zheng H, Chen JN, Yu X, Jiang P, Yuan L,
Shen HS, Zhao LH, Chen PF and Yang M: HMGB1 enhances drug
resistance and promotes in vivo tumor growth of lung cancer cells.
DNA Cell Biol. 35:622–627. 2016.PubMed/NCBI View Article : Google Scholar
|
8
|
Zhang YX, Yuan YQ, Zhang XQ, Huang DL, Wei
YY and Yang JG: HMGB1-mediated autophagy confers resistance to
gemcitabine in hormone-independent prostate cancer cells. Oncol
Lett. 14:6285–6290. 2017.PubMed/NCBI View Article : Google Scholar
|
9
|
Liu L, Yang M, Kang R, Wang Z, Zhao Y, Yu
Y, Xie M, Yin X, Livesey KM, Lotze MT, et al: HMGB1-induced
autophagy promotes chemotherapy resistance in leukemia cells.
Leukemia. 25:23–31. 2011.PubMed/NCBI View Article : Google Scholar
|
10
|
Pan B, Chen D, Huang J, Wang R, Feng B,
Song H and Chen L: HMGB1-mediated autophagy promotes docetaxel
resistance in human lung adenocarcinoma. Mol Cancer.
13(165)2014.PubMed/NCBI View Article : Google Scholar
|
11
|
Guo X, He D, Zhang E, Chen J, Chen Q, Li
Y, Yang L, Yang Y, Zhao Y, Wang G, et al: HMGB1 knockdown increases
MM cell vulnerability by regulating autophagy and DNA damage
repair. J Exp Clin Cancer Res. 37(205)2018.PubMed/NCBI View Article : Google Scholar
|
12
|
Roy M, Liang L, Xiao X, Peng Y, Luo Y,
Zhou W, Zhang J, Qiu L, Zhang S, Liu F, et al: Lycorine
downregulates HMGB1 to inhibit autophagy and enhances bortezomib
activity in multiple myeloma. Theranostics. 6:2209–2224.
2016.PubMed/NCBI View Article : Google Scholar
|
13
|
Hanahan D and Weinberg RA: Hallmarks of
cancer: The next generation. Cell. 144:646–674. 2011.PubMed/NCBI View Article : Google Scholar
|
14
|
Mansouri L, Papakonstantinou N, Ntoufa S,
Stamatopoulos K and Rosenquist R: NF-κB activation in chronic
lymphocytic leukemia: A point of convergence of external triggers
and intrinsic lesions. Semin Cancer Biol. 39:40–48. 2016.PubMed/NCBI View Article : Google Scholar
|
15
|
Tew GW, Lorimer EL, Berg TJ, Zhi H, Li R
and Williams CL: SmgGDS regulates cell proliferation, migration,
and NF-kappaB transcriptional activity in non-small cell lung
carcinoma. J Biol Chem. 283:963–976. 2008.PubMed/NCBI View Article : Google Scholar
|
16
|
Boudesco C, Verhoeyen E, Martin L,
Chassagne-Clement C, Salmi L, Mhaidly R, Pangault C, Fest T, Ramla
S, Jardin F, et al: HSP110 sustains chronic NF-κB signaling in
activated B-cell diffuse large B-cell lymphoma through MyD88
stabilization. Blood. 132:510–520. 2018.PubMed/NCBI View Article : Google Scholar
|
17
|
Chua HL, Bhat-Nakshatri P, Clare SE,
Morimiya A, Badve S and Nakshatri H: NF-kappaB represses E-cadherin
expression and enhances epithelial to mesenchymal transition of
mammary epithelial cells: Potential involvement of ZEB-1 and ZEB-2.
Oncogene. 26:711–724. 2007.PubMed/NCBI View Article : Google Scholar
|
18
|
Kına I, Sultuybek GK, Soydas T, Yenmis G,
Biceroglu H, Dirican A, Uzan M and Ulutin T: Variations in
Toll-like receptor and nuclear factor-kappa B genes and the risk of
glioma. Br J Neurosurg. 33:165–170. 2019.PubMed/NCBI View Article : Google Scholar
|
19
|
Rada M, Nallanthighal S, Cha J, Ryan K,
Sage J, Eldred C, Ullo M, Orsulic S and Cheon DJ: Inhibitor of
apoptosis proteins (IAPs) mediate collagen type XI alpha 1-driven
cisplatin resistance in ovarian cancer. Oncogene. 37:4809–4820.
2018.PubMed/NCBI View Article : Google Scholar
|
20
|
Seubwai W, Vaeteewoottacharn K, Kraiklang
R, Umezawa K, Okada S and Wongkham S: Inhibition of NF-κB activity
enhances sensitivity to anticancer drugs in cholangiocarcinoma
cells. Oncol Res. 23:21–28. 2016.PubMed/NCBI View Article : Google Scholar
|
21
|
Barr MP, Gray SG, Hoffmann AC, Hilger RA,
Thomale J, O'Flaherty JD, Fennell DA, Richard D, O'Leary JJ and
O'Byrne KJ: Generation and characterisation of cisplatin-resistant
non-small cell lung cancer cell lines displaying a stem-like
signature. PLoS One. 8(e54193)2013.PubMed/NCBI View Article : Google Scholar
|
22
|
Broyl A, Hose D, Lokhorst H, de Knegt Y,
Peeters J, Jauch A, Bertsch U, Buijs A, Stevens-Kroef M, Beverloo
HB, et al: Gene expression profiling for molecular classification
of multiple myeloma in newly diagnosed patients. Blood.
116:2543–2553. 2010.PubMed/NCBI View Article : Google Scholar
|
23
|
Peng H, Peng T, Wen J, Engler DA,
Matsunami RK, Su J, Zhang L, Chang CC and Zhou X: Characterization
of p38 MAPK isoforms for drug resistance study using systems
biology approach. Bioinformatics. 30:1899–1907. 2014.PubMed/NCBI View Article : Google Scholar
|
24
|
Demchenko YN, Glebov OK, Zingone A, Keats
JJ, Bergsagel PL and Kuehl WM: Classical and/or alternative
NF-kappaB pathway activation in multiple myeloma. Blood.
115:3541–3552. 2010.PubMed/NCBI View Article : Google Scholar
|
25
|
Keats JJ, Fonseca R, Chesi M, Schop R,
Baker A, Chng WJ, Van Wier S, Tiedemann R, Shi CX, Sebag M, et al:
Promiscuous mutations activate the noncanonical NF-kappaB pathway
in multiple myeloma. Cancer Cell. 12:131–144. 2007.PubMed/NCBI View Article : Google Scholar
|
26
|
Zhang J, Shao S, Han D, Xu Y, Jiao D, Wu
J, Yang F, Ge Y, Shi S, Li Y, et al: High mobility group box 1
promotes the epithelial-to-mesenchymal transition in prostate
cancer PC3 cells via the RAGE/NF-κB signaling pathway. Int J Oncol.
53:659–671. 2018.PubMed/NCBI View Article : Google Scholar
|
27
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) Method. Methods. 25:402–408.
2001.PubMed/NCBI View Article : Google Scholar
|
28
|
Choi YW, Park JS, Han JH, Kim JH, Ahn MS,
Lee HW, Kang SY, Choi JH and Jeong SH: Strong immunoexpression of
dickkopf-1 is associated with response to bortezomib in multiple
myeloma. Leuk Lymphoma. 59:2670–2678. 2018.PubMed/NCBI View Article : Google Scholar
|
29
|
Zhang Y, Liu H, Chen X, Bai Q, Liang R,
Shi B, Liu L, Tian D and Liu M: Modified bortezomib, adriamycin and
dexamethasone (PAD) regimen in advanced multiple myeloma. Pathol
Oncol Res. 20:987–995. 2014.PubMed/NCBI View Article : Google Scholar
|
30
|
Sohun M and Shen H: The implication and
potential applications of high-mobility group box 1 protein in
breast cancer. Ann Transl Med. 4(217)2016.PubMed/NCBI View Article : Google Scholar
|
31
|
Murakami T, Matsuyama R, Ueda M, Mochizuki
Y, Homma Y, Kameda K, Yazawa K, Izumisawa Y, Fukushima T, Kamimukai
N, et al: High-Mobility Group Box 1 expression predicts survival of
patients after resection of adenocarcinoma of the ampulla of Vater.
World J Surg Oncol. 17(140)2019.PubMed/NCBI View Article : Google Scholar
|
32
|
Huang J, Ni J, Liu K, Yu Y, Xie M, Kang R,
Vernon P, Cao L and Tang D: HMGB1 promotes drug resistance in
osteosarcoma. Cancer Res. 72:230–238. 2012.PubMed/NCBI View Article : Google Scholar
|
33
|
Aldonza MB, Hong JY and Lee SK:
Paclitaxel-resistant cancer cell-derived secretomes elicit
ABCB1-associated docetaxel cross-resistance and escape from
apoptosis through FOXO3a-driven glycolytic regulation. Exp Mol Med.
49(e286)2017.PubMed/NCBI View Article : Google Scholar
|
34
|
Li Y, Xie J, Li X and Fang J: Poly
(ADP-ribosylation) of HMGB1 facilitates its acetylation and
promotes HMGB1 translocation-associated chemotherapy-induced
autophagy in leukaemia cells. Oncol Lett. 19:368–378.
2020.PubMed/NCBI View Article : Google Scholar
|
35
|
Zhou J, Chen X, Gilvary DL, Tejera MM,
Eksioglu EA, Wei S and Djeu JY: HMGB1 induction of clusterin
creates a chemoresistant niche in human prostate tumor cells. Sci
Rep. 5(15085)2015.PubMed/NCBI View Article : Google Scholar
|
36
|
Yang L, Yu Y, Kang R, Yang M, Xie M, Wang
Z, Tang D, Zhao M, Liu L, Zhang H, et al: Up-regulated autophagy by
endogenous high mobility group box-1 promotes chemoresistance in
leukemia cells. Leuk Lymphoma. 53:315–322. 2012.PubMed/NCBI View Article : Google Scholar
|
37
|
Shi Y, Zhang L, Teng J and Miao W: HMGB1
mediates microglia activation via the TLR4/NF-κB pathway in
coriaria lactone induced epilepsy. Mol Med Rep. 17:5125–5131.
2018.PubMed/NCBI View Article : Google Scholar
|
38
|
Almeida LO, Abrahao AC, Rosselli-Murai LK,
Giudice FS, Zagni C, Leopoldino AM, Squarize CH and Castilho RM:
NFκB mediates cisplatin resistance through histone modifications in
head and neck squamous cell carcinoma (HNSCC). FEBS Open Bio.
4:96–104. 2013.PubMed/NCBI View Article : Google Scholar
|
39
|
van Beijnum JR, Buurman WA and Griffioen
AW: Convergence and amplification of toll-like receptor (TLR) and
receptor for advanced glycation end products (RAGE) signaling
pathways via high mobility group B1 (HMGB1). Angiogenesis.
11:91–99. 2008.PubMed/NCBI View Article : Google Scholar
|
40
|
Huang Z, Zhong Z, Zhang L, Wang X, Xu R,
Zhu L, Wang Z, Hu S and Zhao X: Down-regulation of HMGB1 expression
by shRNA constructs inhibits the bioactivity of urothelial
carcinoma cell lines via the NF-κB pathway. Sci Rep.
5(12807)2015.PubMed/NCBI View Article : Google Scholar
|
41
|
Li Y, Ahmed F, Ali S, Philip PA, Kucuk O
and Sarkar FH: Inactivation of nuclear factor kappaB by soy
isoflavone genistein contributes to increased apoptosis induced by
chemotherapeutic agents in human cancer cells. Cancer Res.
65:6934–6942. 2005.PubMed/NCBI View Article : Google Scholar
|