1
|
King TE Jr, Pardo A and Selman M:
Idiopathic pulmonary fibrosis. Lancet. 378:1949–1961.
2011.PubMed/NCBI View Article : Google Scholar
|
2
|
Tsubouchi K, Araya J, Minagawa S, Hara H,
Ichikawa A, Saito N, Kadota T, Sato N, Yoshida M, Kurita Y, et al:
Azithromycin attenuates myofibroblast differentiation and lung
fibrosis development through proteasomal degradation of NOX4.
Autophagy. 13:1420–1434. 2017.PubMed/NCBI View Article : Google Scholar
|
3
|
Shu DY and Lovicu FJ: Myofibroblast
transdifferentiation: The dark force in ocular wound healing and
fibrosis. Prog Retin Eye Res. 60:44–65. 2017.PubMed/NCBI View Article : Google Scholar
|
4
|
Meng XM, Nikolic-Paterson DJ and Lan HY:
TGF-β: The master regulator of fibrosis. Nat Rev Nephrol.
12:325–338. 2016.PubMed/NCBI View Article : Google Scholar
|
5
|
Mody AA, Wordinger RJ and Clark AF: Role
of ID proteins in BMP4 inhibition of profibrotic effects of TGF-β2
in human TM cells. Invest Ophthalmol Vis Sci. 58:849–859.
2017.PubMed/NCBI View Article : Google Scholar
|
6
|
Liu L, Wang Y, Yan R, Liang L, Zhou X, Liu
H, Zhang X, Mao Y, Peng W, Xiao Y, et al: BMP-7 inhibits renal
fibrosis in diabetic nephropathy via miR-21 downregulation. Life
Sci. 238:116957–116967. 2019.PubMed/NCBI View Article : Google Scholar
|
7
|
Xiao L, Du Y, Shen Y, He Y, Zhao H and Li
Z: TGF-beta 1 induced fibroblast proliferation is mediated by the
FGF-2/ERK pathway. Front Biosci. 17:2667–2674. 2012.PubMed/NCBI View
Article : Google Scholar
|
8
|
Miller AF, Harvey SA, Thies RS and Olson
MS: Bone morphogenetic protein-9. An autocrine/paracrine cytokine
in the liver. J Biol Chem. 275:17937–17945. 2000.PubMed/NCBI View Article : Google Scholar
|
9
|
Breitkopf-Heinlein K, Meyer C, König C,
Gaitantzi H, Addante A, Thomas M, Wiercinska E, Cai C, Li Q, Wan F,
et al: BMP-9 interferes with liver regeneration and promotes liver
fibrosis. Gut. 66:939–954. 2017.PubMed/NCBI View Article : Google Scholar
|
10
|
Chen C, Grzegorzewski KJ, Barash S, Zhao
Q, Schneider H, Wang Q, Singh M, Pukac L, Bell AC, Duan R, et al:
An integrated functional genomics screening program reveals a role
for BMP-9 in glucose homeostasis. Nat Biotechnol. 21:294–301.
2003.PubMed/NCBI View
Article : Google Scholar
|
11
|
Scharpfenecker M, van Dinther M, Liu Z,
van Bezooijen RL, Zhao Q, Pukac L, Löwik CWGM and ten Dijke P:
BMP-9 signals via ALK1 and inhibits bFGF-induced endothelial cell
proliferation and VEGF-stimulated angiogenesis. J Cell Sci.
120:964–972. 2007.PubMed/NCBI View Article : Google Scholar
|
12
|
Schnitzler AC, Mellott TJ, Lopez-Coviella
I, Tallini YN, Kotlikoff MI, Follettie MT and Blusztajn JK: BMP9
(bone morphogenetic protein 9) induces NGF as an
autocrine/paracrine cholinergic trophic factor in developing basal
forebrain neurons. J Neurosci. 30:8221–8228. 2010.PubMed/NCBI View Article : Google Scholar
|
13
|
David L, Mallet C, Keramidas M, Lamandé N,
Gasc JM, Dupuis-Girod S, Plauchu H, Feige JJ and Bailly S: Bone
morphogenetic protein-9 is a circulating vascular quiescence
factor. Circ Res. 102:914–922. 2008.PubMed/NCBI View Article : Google Scholar
|
14
|
Fong D, Bisson M, Laberge G, McManus S,
Grenier G, Faucheux N and Roux S: Bone morphogenetic protein-9
activates Smad and ERK pathways and supports human osteoclast
function and survival in vitro. Cell Signal. 25:717–728.
2013.PubMed/NCBI View Article : Google Scholar
|
15
|
Wang J, Weng Y, Zhang M, Li Y, Fan M, Guo
Y, Sun Y, Li W and Shi Q: BMP9 inhibits the growth and migration of
lung adenocarcinoma A549 cells in a bone marrow stromal
cell-derived microenvironment through the MAPK/ERK and NF-κB
pathways. Oncol Rep. 36:410–418. 2016.PubMed/NCBI View Article : Google Scholar
|
16
|
Addante A, Roncero C, Almalé L,
Lazcanoiturburu N, García-Álvaro M, Fernández M, Sanz J, Hammad S,
Nwosu ZC, Lee SJ, et al: Bone morphogenetic protein 9 as a key
regulator of liver progenitor cells in DDC-induced cholestatic
liver injury. Liver Int. 38:1664–1675. 2018.PubMed/NCBI View Article : Google Scholar
|
17
|
Mostafa S, Pakvasa M, Coalson E, Zhu A,
Alverdy A, Castillo H, Fan J, Li A, Feng Y, Wu D, et al: The
wonders of BMP9: From mesenchymal stem cell differentiation,
angiogenesis, neurogenesis, tumorigenesis, and metabolism to
regenerative medicine. Genes Dis. 6:201–223. 2019.PubMed/NCBI View Article : Google Scholar
|
18
|
Cunha SI and Pietras K: ALK1 as an
emerging target for antiangiogenic therapy of cancer. Blood.
117:6999–7006. 2011.PubMed/NCBI View Article : Google Scholar
|
19
|
Wang T, Zhang Z, Wang K, Wang J, Jiang Y,
Xia J, Gou L, Liu M, Zhou L, He T, et al: Inhibitory effects of
BMP9 on breast cancer cells by regulating their interaction with
pre-adipocytes/adipocytes. Oncotarget. 8:35890–35901.
2017.PubMed/NCBI View Article : Google Scholar
|
20
|
Li Q, Gu X, Weng H, Ghafoory S, Liu Y,
Feng T, Dzieran J, Li L, Ilkavets I, Kruithof-de Julio M, et al:
Bone morphogenetic protein-9 induces epithelial to mesenchymal
transition in hepatocellular carcinoma cells. Cancer Sci.
104:398–408. 2013.PubMed/NCBI View Article : Google Scholar
|
21
|
Suzuki Y, Ohga N, Morishita Y, Hida K,
Miyazono K and Watabe T: BMP-9 induces proliferation of multiple
types of endothelial cells in vitro and in vivo. J Cell Sci.
123:1684–1692. 2010.PubMed/NCBI View Article : Google Scholar
|
22
|
Li P, Li Y, Zhu L, Yang Z, He J, Wang L,
Shang Q, Pan H, Wang H, Ma X, et al: Targeting secreted cytokine
BMP9 gates the attenuation of hepatic fibrosis. Biochim Biophys
Acta Mol Basis Dis. 1864:709–720. 2018.PubMed/NCBI View Article : Google Scholar
|
23
|
Muñoz-Félix JM, Cuesta C, Perretta-Tejedor
N, Subileau M, López-Hernández FJ, López-Novoa JM and
Martínez-Salgado C: Identification of bone morphogenetic protein 9
(BMP9) as a novel profibrotic factor in vitro. Cell Signal.
28:1252–1261. 2016.PubMed/NCBI View Article : Google Scholar
|
24
|
Morine KJ, Qiao X, York S, Natov PS,
Paruchuri V, Zhang Y, Aronovitz MJ, Karas RH and Kapur NK: Bone
morphogenetic protein 9 reduces cardiac fibrosis and improves
cardiac function in heart failure. Circulation. 138:513–526.
2018.PubMed/NCBI View Article : Google Scholar
|
25
|
Morine KJ, Qiao X, Paruchuri V, Aronovitz
MJ, Mackey EE, Buiten L, Levine J, Ughreja K, Nepali P, Blanton RM,
et al: Reduced activin receptor-like kinase 1 activity promotes
cardiac fibrosis in heart failure. Cardiovasc Pathol. 31:26–33.
2017.PubMed/NCBI View Article : Google Scholar
|
26
|
Morine KJ, Qiao X, Paruchuri V, Aronovitz
MJ, Mackey EE, Buiten L, Levine J, Ughreja K, Nepali P, Blanton RM,
et al: Conditional knockout of activin like kinase-1 (ALK-1) leads
to heart failure without maladaptive remodeling. Heart Vessels.
32:628–636. 2017.PubMed/NCBI View Article : Google Scholar
|
27
|
Bi J and Ge S: Potential roles of BMP9 in
liver fibrosis. Int J Mol Sci. 15:20656–20667. 2014.PubMed/NCBI View Article : Google Scholar
|
28
|
Chen X, Orriols M, Walther FJ, Laghmani
EH, Hoogeboom AM, Hogen-Esch ACB, Hiemstra PS, Folkerts G, Goumans
MTH, Ten Dijke P, et al: Bone morphogenetic protein 9 protects
against neonatal hyperoxia-induced impairment of alveolarization
and pulmonary inflammation. Front Physiol. 8:486–502.
2017.PubMed/NCBI View Article : Google Scholar
|
29
|
Wang XJ, Lian TY, Jiang X, Liu SF, Li SQ,
Jiang R, Wu WH, Ye J, Cheng CY, Du Y, et al: Germline BMP9 mutation
causes idiopathic pulmonary arterial hypertension. Eur Respir J.
53:1801609–1801618. 2019.PubMed/NCBI View Article : Google Scholar
|
30
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) Method. Methods. 25:402–408.
2001.PubMed/NCBI View Article : Google Scholar
|
31
|
Huang YH, Zhou XY, Wang HM, Xu H, Chen J
and Lv NH: Aquaporin 5 promotes the proliferation and migration of
human gastric carcinoma cells. Tumour Biol. 34:1743–1751.
2013.PubMed/NCBI View Article : Google Scholar
|
32
|
.
|
33
|
Lo RS and Massagué J: Ubiquitin-dependent
degradation of TGF-β-activated smad2. Nat Cell Biol. 1:472–478.
1999.PubMed/NCBI View
Article : Google Scholar
|
34
|
Huang LS, Jiang P, Feghali-Bostwick C,
Reddy SP, Garcia JGN and Natarajan V: Lysocardiolipin
acyltransferase regulates TGF-β mediated lung fibroblast
differentiation. Free Radic Biol Med. 112:162–173. 2017.PubMed/NCBI View Article : Google Scholar
|
35
|
Pegorier S, Campbell GA, Kay AB and Lloyd
CM: Bone morphogenetic protein (BMP)-4 and BMP-7 regulate
differentially transforming growth factor (TGF)-beta1 in normal
human lung fibroblasts (NHLF). Respir Res. 11:85–94.
2010.PubMed/NCBI View Article : Google Scholar
|
36
|
Tillet E, Ouarné M, Desroches-Castan A,
Mallet C, Subileau M, Didier R, Lioutsko A, Belthier G, Feige JJ
and Bailly S: A heterodimer formed by bone morphogenetic protein 9
(BMP9) and BMP10 provides most BMP biological activity in plasma. J
Biol Chem. 293:10963–10974. 2018.PubMed/NCBI View Article : Google Scholar
|
37
|
Liao J, Yu X, Hu X, Fan J, Wang J, Zhang
Z, Zhao C, Zeng Z, Shu Y, Zhang R, et al: lncRNA H19 mediates
BMP9-induced osteogenic differentiation of mesenchymal stem cells
(MSCs) through Notch signaling. Oncotarget. 8:53581–53601.
2017.PubMed/NCBI View Article : Google Scholar
|
38
|
Ouarné M, Bouvard C, Boneva G, Mallet C,
Ribeiro J, Desroches-Castan A, Soleilhac E, Tillet E, Peyruchaud O
and Bailly S: BMP9, but not BMP10, acts as a quiescence factor on
tumor growth, vessel normalization and metastasis in a mouse model
of breast cancer. J Exp Clin Cancer Res. 37:209–218.
2018.PubMed/NCBI View Article : Google Scholar
|
39
|
Strell C, Rundqvist H and Ostman A:
Fibroblasts - a key host cell type in tumor initiation,
progression, and metastasis. Ups J Med Sci. 117:187–195.
2012.PubMed/NCBI View Article : Google Scholar
|
40
|
Chen X and Song E: Turning foes to
friends: Targeting cancer-associated fibroblasts. Nat Rev Drug
Discov. 18:99–115. 2019.PubMed/NCBI View Article : Google Scholar
|
41
|
Affo S, Yu LX and Schwabe RF: The role of
cancer-associated fibroblasts and fibrosis in liver cancer. Annu
Rev Pathol. 12:153–186. 2017.PubMed/NCBI View Article : Google Scholar
|
42
|
Richards KE, Zeleniak AE, Fishel ML, Wu J,
Littlepage LE and Hill R: Cancer-associated fibroblast exosomes
regulate survival and proliferation of pancreatic cancer cells.
Oncogene. 36:1770–1778. 2017.PubMed/NCBI View Article : Google Scholar
|
43
|
Najafi M, Farhood B and Mortezaee K:
Extracellular matrix (ECM) stiffness and degradation as cancer
drivers. J Cell Biochem. 120:2782–2790. 2019.PubMed/NCBI View Article : Google Scholar
|
44
|
Paolillo M and Schinelli S: Extracellular
matrix alterations in metastatic processes. Int J Mol Sci.
20:4947–4956. 2019.PubMed/NCBI View Article : Google Scholar
|
45
|
Erdogan B, Ao M, White LM, Means AL,
Brewer BM, Yang L, Washington MK, Shi C, Franco OE, Weaver AM, et
al: Cancer-associated fibroblasts promote directional cancer cell
migration by aligning fibronectin. J Cell Biol. 216:3799–3816.
2017.PubMed/NCBI View Article : Google Scholar
|
46
|
Li F, Zhao S, Cui Y, Guo T, Qiang J, Xie
Q, Yu W, Guo W, Deng W, Gu C, et al: α1,6-Fucosyltransferase (FUT8)
regulates the cancer-promoting capacity of cancer-associated
fibroblasts (CAFs) by modifying EGFR core fucosylation (CF) in
non-small cell lung cancer (NSCLC). Am J Cancer Res. 10:816–837.
2020.PubMed/NCBI
|
47
|
Luo M, Luo Y, Mao N, Huang G, Teng C, Wang
H, Wu J, Liao X and Yang J: Cancer-associated fibroblasts
accelerate malignant progression of non-small cell lung cancer via
connexin 43-formed unidirectional gap junctional intercellular
communication. Cell Physiol Biochem. 51:315–336. 2018.PubMed/NCBI View Article : Google Scholar
|
48
|
Li H, Zhang Q, Wu Q, Cui Y, Zhu H, Fang M,
Zhou X, Sun Z and Yu J: Interleukin-22 secreted by
cancer-associated fibroblasts regulates the proliferation and
metastasis of lung cancer cells via the PI3K-Akt-mTOR signaling
pathway. Am J Transl Res. 11:4077–4088. 2019.PubMed/NCBI
|
49
|
Paauwe M, Schoonderwoerd MJA, Helderman
RFCP, Harryvan TJ, Groenewoud A, van Pelt GW, Bor R, Hemmer DM,
Versteeg HH, Snaar-Jagalska BE, et al: Endoglin expression on
cancer-associated fibroblasts regulates invasion and stimulates
colorectal cancer metastasis. Clin Cancer Res. 24:6331–6344.
2018.PubMed/NCBI View Article : Google Scholar
|
50
|
Pickup MW, Hover LD, Polikowsky ER, Chytil
A, Gorska AE, Novitskiy SV, Moses HL and Owens P: BMPR2 loss in
fibroblasts promotes mammary carcinoma metastasis via increased
inflammation. Mol Oncol. 9:179–191. 2015.PubMed/NCBI View Article : Google Scholar
|
51
|
Bruzzese F, Hägglöf C, Leone A, Sjöberg E,
Roca MS, Kiflemariam S, Sjöblom T, Hammarsten P, Egevad L, Bergh A,
et al: Local and systemic protumorigenic effects of
cancer-associated fibroblast-derived GDF15. Cancer Res.
74:3408–3417. 2014.PubMed/NCBI View Article : Google Scholar
|
52
|
David L, Mallet C, Mazerbourg S, Feige JJ
and Bailly S: Identification of BMP9 and BMP10 as functional
activators of the orphan activin receptor-like kinase 1 (ALK1) in
endothelial cells. Blood. 109:1953–1961. 2007.PubMed/NCBI View Article : Google Scholar
|
53
|
Shen H, Fan J, Burczynski F, Minuk GY,
Cattini P and Gong Y: Increased Smad1 expression and
transcriptional activity enhances trans-differentiation of hepatic
stellate cells. J Cell Physiol. 212:764–770. 2007.PubMed/NCBI View Article : Google Scholar
|
54
|
Wang CY, Xiao X, Bayer A, Xu Y, Dev S,
Canali S, Nair AV, Masia R and Babitt JL: Ablation of hepatocyte
Smad1, Smad5, and Smad8 causes severe tissue iron loading and liver
fibrosis in mice. Hepatology. 70:1986–2002. 2019.PubMed/NCBI View Article : Google Scholar
|
55
|
Pannu J, Asano Y, Nakerakanti S, Smith E,
Jablonska S, Blaszczyk M, ten Dijke P and Trojanowska M: Smad1
pathway is activated in systemic sclerosis fibroblasts and is
targeted by imatinib mesylate. Arthritis Rheum. 58:2528–2537.
2008.PubMed/NCBI View Article : Google Scholar
|