1
|
Ramos-Remus C, Russell AS, Gomez-Vargas A,
Hernandez-Chavez A, Maksymowych WP, Gamez-Nava JI, Gonzalez-Lopez
L, Garcia-Hernandez A, Meono-Morales E, Burgos-Vargas R and
Suarez-Almazor ME: Ossification of the posterior longitudinal
ligament in three geographically and genetically different
populations of ankylosing spondylitis and other
spondyloarthropathies. Ann Rheum Dis. 57:429–433. 1998.PubMed/NCBI View Article : Google Scholar
|
2
|
Xu N, Yu M, Liu X, Sun C, Chen Z and Liu
Z: A systematic review of complications in thoracic spine surgery
for ossification of the posterior longitudinal ligament. Eur Spine
J. 26:1803–1809. 2017.PubMed/NCBI View Article : Google Scholar
|
3
|
Guo Q, Ni B and Yang J, Zhu Z and Yang J:
Simultaneous ossification of the posterior longitudinal ligament
and ossification of the ligamentum flavum causing upper thoracic
myelopathy in DISH: Case report and literature review. Eur Spine J.
20 (Suppl 2):S195–S201. 2011.PubMed/NCBI View Article : Google Scholar
|
4
|
Nam DC, Lee HJ, Lee CJ and Hwang SC:
Molecular pathophysiology of ossification of the posterior
longitudinal ligament (OPLL). Biomol Ther (Seoul). 27:342–348.
2019.PubMed/NCBI View Article : Google Scholar
|
5
|
Yu F, Cui Y, Zhou X, Zhang X and Han J:
Osteogenic differentiation of human ligament fibroblasts induced by
conditioned medium of osteoclast-like cells. Biosci Trends.
5:46–51. 2011.PubMed/NCBI View Article : Google Scholar
|
6
|
Wang Y, Niu H, Liu Y, Yang H, Zhang M and
Wang L: Promoting effect of long non-coding RNA SNHG1 on osteogenic
differentiation of fibroblastic cells from the posterior
longitudinal ligament by the microRNA-320b/IFNGR1 network. Cell
Cycle. 19:2836–2850. 2020.PubMed/NCBI View Article : Google Scholar
|
7
|
Dong J, Xu X, Zhang Q, Yuan Z and Tan B:
Dkk1 acts as a negative regulator in the osteogenic differentiation
of the posterior longitudinal ligament cells. Cell Biol Int.
44:2450–2458. 2020.PubMed/NCBI View Article : Google Scholar
|
8
|
Zhang H, Xu C, Liu Y and Yuan W:
MicroRNA-563 promotes the osteogenic differentiation of posterior
longitudinal ligament cells by inhibiting SMURF1. Zhonghua Wai Ke
Za Zhi. 55:203–207. 2017.PubMed/NCBI View Article : Google Scholar : (In Chinese).
|
9
|
Santosh B, Varshney A and Yadava PK:
Non-coding RNAs: Biological functions and applications. Cell
Biochem Funct. 33:14–22. 2015.PubMed/NCBI View
Article : Google Scholar
|
10
|
Xie L, Huang W, Fang Z, Ding F, Zou F, Ma
X, Tao J, Guo J, Xia X, Wang H, et al: CircERCC2 ameliorated
intervertebral disc degeneration by regulating mitophagy and
apoptosis through miR-182-5p/SIRT1 axis. Cell Death Dis.
10(751)2019.PubMed/NCBI View Article : Google Scholar
|
11
|
Patil S, Dang K, Zhao X, Gao Y and Qian A:
Role of LncRNAs and CircRNAs in bone metabolism and osteoporosis.
Front Genet. 11(584118)2020.PubMed/NCBI View Article : Google Scholar
|
12
|
Qian DY, Yan GB, Bai B, Chen Y, Zhang SJ,
Yao YC and Xia H: Differential circRNA expression profiles during
the BMP2-induced osteogenic differentiation of MC3T3-E1 cells.
Biomed Pharmacother. 90:492–499. 2017.PubMed/NCBI View Article : Google Scholar
|
13
|
Chen G, Wang Q, Yang Q, Li Z, Du Z, Ren M,
Zhao H, Song Y and Zhang G: Circular RNAs hsa_circ_0032462,
hsa_circ_0028173, hsa_circ_0005909 are predicted to promote CADM1
expression by functioning as miRNAs sponge in human osteosarcoma.
PLoS One. 13(e0202896)2018.PubMed/NCBI View Article : Google Scholar
|
14
|
Zhang M, Jia L and Zheng Y: circRNA
expression profiles in human bone marrow stem cells undergoing
osteoblast differentiation. Stem Cell Rev Rep. 15:126–138.
2019.PubMed/NCBI View Article : Google Scholar
|
15
|
Gu X, Li M, Jin Y, Liu D and Wei F:
Identification and integrated analysis of differentially expressed
lncRNAs and circRNAs reveal the potential ceRNA networks during
PDLSC osteogenic differentiation. BMC Genet. 18(100)2017.PubMed/NCBI View Article : Google Scholar
|
16
|
Fehlings MG, Tetreault LA, Riew KD,
Middleton JW, Aarabi B, Arnold PM, Brodke DS, Burns AS, Carette S,
Chen R, et al: A clinical practice guideline for the management of
patients with degenerative cervical myelopathy: Recommendations for
patients with mild, moderate, and severe disease and nonmyelopathic
patients with evidence of cord compression. Global Spine J. 7
(Suppl 3):70S–83S. 2017.PubMed/NCBI View Article : Google Scholar
|
17
|
Tetreault L, Nakashima H, Kato S,
Kryshtalskyj M, Nagoshi N, Nouri A, Singh A and Fehlings MG: A
systematic review of classification systems for cervical
ossification of the posterior longitudinal ligament. Global Spine
J. 9:85–103. 2019.PubMed/NCBI View Article : Google Scholar
|
18
|
Li Y, Wang Y, Li Y, Luo W, Jiang J, Zhao J
and Liu C: Controllable synthesis of biomimetic hydroxyapatite
nanorods with high osteogenic bioactivity. ACS Biomater Sci Eng.
6:320–328. 2020.PubMed/NCBI View Article : Google Scholar
|
19
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408.
2001.PubMed/NCBI View Article : Google Scholar
|
20
|
Miao J, Sun J, Shi J, Chen Y and Chen D: A
novel anterior revision surgery for the treatment of cervical
ossification of posterior longitudinal ligament: Case report and
review of the literature. World Neurosurg. 113:212–216.
2018.PubMed/NCBI View Article : Google Scholar
|
21
|
Franceschi RT, Ge C, Xiao G, Roca H and
Jiang D: Transcriptional regulation of osteoblasts. Ann N Y Acad
Sci. 1116:196–207. 2007.PubMed/NCBI View Article : Google Scholar
|
22
|
Liu Y, Zhao Y, Chen Y, Shi G and Yuan W:
RUNX2 polymorphisms associated with OPLL and OLF in the Han
population. Clin Orthop Relat Res. 468:3333–3341. 2010.PubMed/NCBI View Article : Google Scholar
|
23
|
Jafary F, Hanachi P and Gorjipour K:
Osteoblast differentiation on collagen scaffold with immobilized
alkaline phosphatase. Int J Organ Transplant Med. 8:195–202.
2017.PubMed/NCBI
|
24
|
Wei QS, Huang L, Tan X, Chen ZQ, Chen SM
and Deng WM: Serum osteopontin levels in relation to bone mineral
density and bone turnover markers in postmenopausal women. Scand J
Clin Lab Invest. 76:33–39. 2016.PubMed/NCBI View Article : Google Scholar
|
25
|
Tsao YT, Huang YJ, Wu HH, Liu YA, Liu YS
and Lee OK: Osteocalcin mediates biomineralization during
osteogenic maturation in human mesenchymal stromal cells. Int J Mol
Sci. 18(159)2017.PubMed/NCBI View Article : Google Scholar
|
26
|
Asari T, Furukawa K, Tanaka S, Kudo H,
Mizukami H, Ono A, Numasawa T, Kumagai G, Motomura S, Yagihashi S
and Toh S: Mesenchymal stem cell isolation and characterization
from human spinal ligaments. Biochem Biophys Res Commun.
417:1193–1199. 2012.PubMed/NCBI View Article : Google Scholar
|
27
|
Ishihara K and Hirano T: Molecular basis
of the cell specificity of cytokine action. Biochim Biophys Acta.
1592:281–296. 2002.PubMed/NCBI View Article : Google Scholar
|
28
|
Lin J, Cai R, Sun B, Dong J, Zhao Y, Miao
Q and Chen C: Gd@C82(OH)22 harnesses inflammatory regeneration for
osteogenesis of mesenchymal stem cells through JNK/STAT3 signaling
pathway. J Mater Chem B. 6:5802–5811. 2018.PubMed/NCBI View Article : Google Scholar
|
29
|
Yu X, Wan Q, Cheng G, Cheng X, Zhang J,
Pathak JL and Li Z: CoCl2, a mimic of hypoxia, enhances bone marrow
mesenchymal stem cells migration and osteogenic differentiation via
STAT3 signaling pathway. Cell Biol Int. 42:1321–1329.
2018.PubMed/NCBI View Article : Google Scholar
|
30
|
Matsuguchi T, Chiba N, Bandow K, Kakimoto
K, Masuda A and Ohnishi T: JNK activity is essential for Atf4
expression and late-stage osteoblast differentiation. J Bone Miner
Res. 24:398–410. 2009.PubMed/NCBI View Article : Google Scholar
|
31
|
Yang Q, Han Y, Liu P, Huang Y, Li X, Jia
L, Zheng Y and Li W: Long noncoding RNA GAS5 promotes osteogenic
differentiation of human periodontal ligament stem cells by
regulating GDF5 and p38/JNK signaling pathway. Front Pharmacol.
11(701)2020.PubMed/NCBI View Article : Google Scholar
|
32
|
Li X, Zheng Y, Zheng Y, Huang Y, Zhang Y,
Jia L and Li W: Circular RNA CDR1as regulates osteoblastic
differentiation of periodontal ligament stem cells via the
miR-7/GDF5/SMAD and p38 MAPK signaling pathway. Stem Cell Res Ther.
9(232)2018.PubMed/NCBI View Article : Google Scholar
|
33
|
Huang XQ, Cen X, Sun WT, Xia K, Yu LY, Liu
J and Zhao ZH: CircPOMT1 and circMCM3AP inhibit osteogenic
differentiation of human adipose-derived stem cells by targeting
miR-6881-3p. Am J Transl Res. 11:4776–4788. 2019.PubMed/NCBI
|
34
|
Huang J, Zhao L, Xing L and Chen D:
MicroRNA-204 regulates Runx2 protein expression and mesenchymal
progenitor cell differentiation. Stem Cells. 28:357–364.
2010.PubMed/NCBI View
Article : Google Scholar
|
35
|
Xu C, Zhang H, Gu W, Wu H, Chen Y, Zhou W,
Sun B, Shen X, Zhang Z, Wang Y, et al: The microRNA-10a/ID3/RUNX2
axis modulates the development of ossification of posterior
longitudinal ligament. Sci Rep. 8(9225)2018.PubMed/NCBI View Article : Google Scholar
|
36
|
Yuan X, Guo Y, Chen D, Luo Y, Chen D, Miao
J and Chen Y: Long non-coding RNA MALAT1 functions as miR-1 sponge
to regulate Connexin 43-mediated ossification of the posterior
longitudinal ligament. Bone. 127:305–314. 2019.PubMed/NCBI View Article : Google Scholar
|
37
|
Liao X, Tang D, Yang H, Chen Y, Chen D,
Jia L, Yang L and Chen X: Long non-coding RNA XIST may influence
cervical ossification of the posterior longitudinal ligament
through regulation of miR-17-5P/AHNAK/BMP2 signaling pathway.
Calcif Tissue Int. 105:670–680. 2019.PubMed/NCBI View Article : Google Scholar
|