1
|
Siegel RL, Miller KD and Jemal A: Cancer
statistics, 2018. CA Cancer J Clin. 68:7–30. 2018.PubMed/NCBI View Article : Google Scholar
|
2
|
Rani A, Dasgupta P and Murphy JJ: Prostate
cancer: The role of inflammation and chemokines. Am J Pathol.
189:2119–2137. 2019.PubMed/NCBI View Article : Google Scholar
|
3
|
Mulholland EJ, Green WP, Buckley NE and
McCarthy HO: Exploring the potential of microRNA Let-7c as a
therapeutic for prostate cancer. Mol Ther Nucleic Acids.
18:927–937. 2019.PubMed/NCBI View Article : Google Scholar
|
4
|
Rawla P: Epidemiology of prostate cancer.
World J Oncol. 10:63–89. 2019.PubMed/NCBI View Article : Google Scholar
|
5
|
Bray F, Ferlay J, Soerjomataram I, Siegel
RL, Torre LA and Jemal A: Global cancer statistics 2018: GLOBOCAN
estimates of incidence and mortality worldwide for 36 cancers in
185 countries. CA Cancer J Clin. 68:394–424. 2018.PubMed/NCBI View Article : Google Scholar
|
6
|
Cuzick J, Thorat MA, Andriole G, Brawley
OW, Brown PH, Culig Z, Eeles RA, Ford LG, Hamdy FC, Holmberg L, et
al: Prevention and early detection of prostate cancer. Lancet
Oncol. 15:e484–e492. 2014.PubMed/NCBI View Article : Google Scholar
|
7
|
Pernar CH, Ebot EM, Wilson KM and Mucci
LA: The epidemiology of prostate cancer. Cold Spring Harb Perspect
Med. 8(a030361)2018.PubMed/NCBI View Article : Google Scholar
|
8
|
Grozescu T and Popa F: Prostate cancer
between prognosis and adequate/proper therapy. J Med Life. 10:5–12.
2017.PubMed/NCBI
|
9
|
Bertoli G, Cava C and Castiglioni I:
MicroRNAs: New biomarkers for diagnosis, prognosis, therapy
prediction and therapeutic tools for breast cancer. Theranostics.
5:1122–1143. 2015.PubMed/NCBI View Article : Google Scholar
|
10
|
Qadir MI and Faheem A: miRNA: A diagnostic
and therapeutic tool for pancreatic cancer. Crit Rev Eukaryot Gene
Expr. 27:197–204. 2017.PubMed/NCBI View Article : Google Scholar
|
11
|
Tutar L, Özgür A and Tutar Y: Involvement
of miRNAs and pseudogenes in cancer. Methods Mol Biol. 1699:45–66.
2018.PubMed/NCBI View Article : Google Scholar
|
12
|
Tutar Y: miRNA and cancer; computational
and experimental approaches. Curr Pharm Biotechnol.
15(429)2014.PubMed/NCBI View Article : Google Scholar
|
13
|
Van Roosbroeck K and Calin GA: Cancer
hallmarks and MicroRNAs: The therapeutic connection. Adv Cancer
Res. 135:119–149. 2017.PubMed/NCBI View Article : Google Scholar
|
14
|
Acunzo M and Croce CM: MicroRNA in cancer
and cachexia-a mini-review. The J Infect Dis. 212 (Suppl
1):S74–S77. 2015.PubMed/NCBI View Article : Google Scholar
|
15
|
Fazio S, Berti G, Russo F, Evangelista M,
D'Aurizio R, Mercatanti A, Pellegrini M and Rizzo M: The miR-28-5p
targetome discovery identified SREBF2 as one of the mediators of
the miR-28-5p tumor suppressor activity in prostate cancer cells.
Cells. 9(354)2020.PubMed/NCBI View Article : Google Scholar
|
16
|
Zhu Z, Wen Y, Xuan C, Chen Q, Xiang Q,
Wang J, Liu Y, Luo L, Zhao S, Deng Y and Zhao Z: Identifying the
key genes and microRNAs in prostate cancer bone metastasis by
bioinformatics analysis. FEBS Open Bio. 10:674–688. 2020.PubMed/NCBI View Article : Google Scholar
|
17
|
Tsai YS, Jou YC, Tsai HT, Shiau AL, Wu CL
and Tzai TS: Prothymosin-α enhances phosphatase and tensin homolog
expression and binds with tripartite motif-containing protein 21 to
regulate Kelch-like ECH-associated protein 1/nuclear factor
erythroid 2-related factor 2 signaling in human bladder cancer.
Cancer Sci. 110:1208–1219. 2019.PubMed/NCBI View Article : Google Scholar
|
18
|
Ullman D, Dorn D, Rais-Bahrami S and
Gordetsky J: Clinical utility and biologic implications of
phosphatase and tensin homolog (PTEN) and ETS-related gene (ERG) in
prostate cancer. Urology. 113:59–70. 2018.PubMed/NCBI View Article : Google Scholar
|
19
|
Morais CE, Gurgel DC, Teixeira AC, Mattos
TVA, Silva AVAd and Tavora F: Prevalence of ERG expression and PTEN
loss in a Brazilian prostate cancer cohort. Braz J Med Biol Res.
52:e8483. 2019.PubMed/NCBI View Article : Google Scholar
|
20
|
Chaux A, Peskoe SB, Gonzalez-Roibon N,
Schultz L, Albadine R, Hicks J, De Marzo AM, Platz EA and Netto GJ:
Loss of PTEN expression is associated with increased risk of
recurrence after prostatectomy for clinically localized prostate
cancer. Mod Pathol. 25:1543–1549. 2012.PubMed/NCBI View Article : Google Scholar
|
21
|
Lotan TL, Gurel B, Sutcliffe S, Esopi D,
Liu W, Xu J, Hicks JL, Park BH, Humphreys E, Partin AW, et al: PTEN
protein loss by immunostaining: Analytic validation and prognostic
indicator for a high risk surgical cohort of prostate cancer
patients. Clin Cancer Res. 17:6563–6573. 2011.PubMed/NCBI View Article : Google Scholar
|
22
|
Wang C, Feng Y, Zhang C, Cheng D, Wu R,
Yang Y, Sargsyan D, Kumar D and Kong AN: PTEN deletion drives
aberrations of DNA methylome and transcriptome in different stages
of prostate cancer. FASEB J. 34:1304–1318. 2020.PubMed/NCBI View Article : Google Scholar
|
23
|
Yang NQ, Zhang J, Tang QY, Guo JM and Wang
GM: miRNA-1297 induces cell proliferation by targeting phosphatase
and tensin homolog in testicular germ cell tumor cells. Asian Pac J
Cancer Prev. 15:6243–6246. 2014.PubMed/NCBI View Article : Google Scholar
|
24
|
Patel R, Gao M, Ahmad I, Fleming J, Singh
LB, Rai TS, McKie AB, Seywright M, Barnetson RJ, Edwards J, et al:
Sprouty2, PTEN, and PP2A interact to regulate prostate cancer
progression. J Clin Invest. 123:1157–1175. 2013.PubMed/NCBI View
Article : Google Scholar
|
25
|
Liauw SL, Kropp LM, Dess RT and Oto A:
Endorectal MRI for risk classification of localized prostate
cancer: Radiographic findings and influence on treatment decisions.
Urol Oncol. 34:416. e415–421. 2016.PubMed/NCBI View Article : Google Scholar
|
26
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408.
2001.PubMed/NCBI View Article : Google Scholar
|
27
|
Siegel RL, Miller KD and Jemal A: Cancer
statistics, 2019. CA Cancer J Clin. 69:7–34. 2019.PubMed/NCBI View Article : Google Scholar
|
28
|
Sun J, Li S, Wang F, Fan C and Wang J:
Identification of key pathways and genes in PTEN mutation prostate
cancer by bioinformatics analysis. BMC Med Genet.
20(191)2019.PubMed/NCBI View Article : Google Scholar
|
29
|
de Bono JS, De Giorgi U, Rodrigues DN,
Massard C, Bracarda S, Font A, Arranz Arija JA, Shih KC, Radavoi
GD, Xu N, et al: Randomized phase II study evaluating Akt blockade
with ipatasertib, in combination with abiraterone, in patients with
metastatic prostate cancer with and without PTEN loss. Clin Cancer
Res. 25:928–936. 2019.PubMed/NCBI View Article : Google Scholar
|
30
|
Wise HM, Hermida MA and Leslie NR:
Prostate cancer, PI3K, PTEN and prognosis. Clin Sci (Lond).
131:197–210. 2017.PubMed/NCBI View Article : Google Scholar
|
31
|
Wang ZA, Toivanen R, Bergren SK, Chambon P
and Shen MM: Luminal cells are favored as the cell of origin for
prostate cancer. Cell Rep. 8:1339–1346. 2014.PubMed/NCBI View Article : Google Scholar
|
32
|
Pietrzak K, Kuzyakiv R, Simon R, Bolis M,
Bär D, Aprigliano R, Theurillat JP, Sauter G and Santoro R: TIP5
primes prostate luminal cells for the oncogenic transformation
mediated by PTEN-loss. Proc Natl Acad Sci USA. 117:3637–3647.
2020.PubMed/NCBI View Article : Google Scholar
|
33
|
Chen Z, Zhang M, Qiao Y, Yang J and Yin Q:
MicroRNA-1297 contributes to the progression of human cervical
carcinoma through PTEN. Artif Cells Nanomed Biotechnol. 46 (Supp
2):S1120–S1126. 2018.PubMed/NCBI View Article : Google Scholar
|
34
|
Liang L, Feng L and Wei B: microRNA-1297
involves in the progression of oral squamous cell carcinoma through
PTEN. Saudi J Biol Sci. 25:923–927. 2018.PubMed/NCBI View Article : Google Scholar
|
35
|
Chen X, Zhang L, Song Q and Chen Z:
MicroRNA-216b regulates cell proliferation, invasion and cycle
progression via interaction with cyclin T2 in gastric cancer.
Anticancer Drugs. 31:623–631. 2020.PubMed/NCBI View Article : Google Scholar
|
36
|
Hu X, Tan S, Yin H, Khoso PA, Xu Z and Li
S: Selenium-mediated gga-miR-29a-3p regulates LMH cell
proliferation, invasion, and migration by targeting COL4A2.
Metallomics. 12:449–459. 2020.PubMed/NCBI View Article : Google Scholar
|
37
|
Huang R, Li J, Pan F, Zhang B and Yao Y:
The activation of GPER inhibits cells proliferation, invasion and
EMT of triple-negative breast cancer via CD151/miR-199a-3p
bio-axis. Am J Transl Res. 12:32–44. 2020.PubMed/NCBI
|
38
|
Wan P, Bai X, Yang C, He T, Luo L, Wang Y,
Fan M, Wang Z, Lu L, Yin Y, et al: miR-129-5p inhibits
proliferation, migration, and invasion in rectal adenocarcinoma
cells through targeting E2F7. J Cell Physiol. 235:5689–5701.
2020.PubMed/NCBI View Article : Google Scholar
|
39
|
Jin W, Chen F, Wang K, Song Y, Fei X and
Wu B: miR-15a/miR-16 cluster inhibits invasion of prostate cancer
cells by suppressing TGF-beta signaling pathway. Biomed
Pharmacother. 104:637–644. 2018.PubMed/NCBI View Article : Google Scholar
|
40
|
Yang F, Yu N, Wang H, Zhang C, Zhang Z, Li
Y, Li D, Yan L, Liu H and Xu Z: Downregulated expression of
hepatoma-derived growth factor inhibits migration and invasion of
prostate cancer cells by suppressing epithelial-mesenchymal
transition and MMP2, MMP9. PLoS One. 13(e0190725)2018.PubMed/NCBI View Article : Google Scholar
|
41
|
Mukherjee R, Bartlett JM, Krishna NS,
Underwood MA and Edwards J: Raf-1 expression may influence
progression to androgen insensitive prostate cancer. Prostate.
64:101–107. 2005.PubMed/NCBI View Article : Google Scholar
|
42
|
Steelman LS, Chappell WH, Abrams SL, Kempf
RC, Long J, Laidler P, Mijatovic S, Maksimovic-Ivanic D, Stivala F,
Mazzarino MC, et al: Roles of the Raf/MEK/ERK and
PI3K/PTEN/Akt/mTOR pathways in controlling growth and sensitivity
to therapy-implications for cancer and aging. Aging (Albany NY).
3:192–222. 2011.PubMed/NCBI View Article : Google Scholar
|
43
|
Bao L, Yan Y, Xu C, Ji W, Shen S, Xu G,
Zeng Y, Sun B, Qian H, Chen L, et al: MicroRNA-21 suppresses PTEN
and hSulf-1 expression and promotes hepatocellular carcinoma
progression through AKT/ERK pathways. Cancer Lett. 337:226–236.
2013.PubMed/NCBI View Article : Google Scholar
|
44
|
Zheng S, Wang S, Zhang Q, Zhang Z and Xu
S: Avermectin inhibits neutrophil extracellular traps release by
activating PTEN demethylation to negatively regulate the PI3K-ERK
pathway and reducing respiratory burst in carp. J Hazard Mater.
389(121885)2020.PubMed/NCBI View Article : Google Scholar
|
45
|
Lu X, Xue B, Zhang T, Zhou X and Zhang Y:
Down-regulation of microRNA-10a mediates the anti-tumor effect of
icaritin in A549 cells via the PTEN/AKT and ERK pathway. Gen
Physiol Biophys. 38:525–533. 2019.PubMed/NCBI View Article : Google Scholar
|