1
|
Li Y, Teng D, Shi X, Qin G, Qin Y, Quan H,
Shi B, Sun H, Ba J, Chen B, et al: Prevalence of diabetes recorded
in mainland China using 2018 diagnostic criteria from the American
Diabetes Association: National cross sectional study. BMJ.
369(m997)2020.PubMed/NCBI View
Article : Google Scholar
|
2
|
Saeedi P, Petersohn I, Salpea P, Malanda
B, Karuranga S, Unwin N, Colagiuri S, Guariguata L, Motala AA,
Ogurtsova K, et al: Global and regional diabetes prevalence
estimates for 2019 and projections for 2030 and 2045: Results from
the International Diabetes Federation Diabetes Atlas, 9th edition.
Diabetes Res Clin Pract. 157(107843)2019.PubMed/NCBI View Article : Google Scholar
|
3
|
Yang D, Livingston MJ, Liu Z, Dong G,
Zhang M, Chen JK and Dong Z: Autophagy in diabetic kidney disease:
Regulation, pathological role and therapeutic potential. Cell Mol
Life Sci. 75:669–688. 2018.PubMed/NCBI View Article : Google Scholar
|
4
|
Zhang L, Zhao MH, Zuo L, Wang Y, Yu F,
Zhang H and Wang H: CK-NET Work Group. China kidney disease network
(CK-NET) 2015 annual data report. Kidney Int Suppl (2011).
9:e1–e81. 2019.PubMed/NCBI View Article : Google Scholar
|
5
|
Liu M, Liu SW, Wang LJ, Bai YM, Zeng XY,
Guo HB, Liu YN, Jiang YY, Dong WL, He GX, et al: Burden of
diabetes, hyperglycaemia in China from to 2016: Findings from the
1990 to. 2016, global burden of disease study. Diabetes Metab.
45:286–293. 2019.PubMed/NCBI View Article : Google Scholar
|
6
|
Gilbert RE: Proximal Tubulopathy: Prime
mover and key therapeutic target in diabetic kidney disease.
Diabetes. 66:791–800. 2017.PubMed/NCBI View Article : Google Scholar
|
7
|
Brezniceanu ML, Liu F, Wei CC, Chénier I,
Godin N, Zhang SL, Filep JG, Ingelfinger JR and Chan JS:
Attenuation of interstitial fibrosis and tubular apoptosis in db/db
transgenic mice overexpressing catalase in renal proximal tubular
cells. Diabetes. 57:451–459. 2008.PubMed/NCBI View Article : Google Scholar
|
8
|
Tang SCW and Yiu WH: Innate immunity in
diabetic kidney disease. Nat Rev Nephrol. 16:206–222.
2020.PubMed/NCBI View Article : Google Scholar
|
9
|
Wu M, Han W, Song S, Du Y, Liu C, Chen N,
Wu H, Shi Y and Duan H: NLRP3 deficiency ameliorates renal
inflammation and fibrosis in diabetic mice. Mol Cell Endocrinol.
478:115–125. 2018.PubMed/NCBI View Article : Google Scholar
|
10
|
Shahzad K, Bock F, Al-Dabet MM, Gadi I,
Kohli S, Nazir S, Ghosh S, Ranjan S, Wang H, Madhusudhan T, et al:
Caspase-1, but not caspase-3, promotes diabetic nephropathy. J Am
Soc Nephrol. 27:2270–2275. 2016.PubMed/NCBI View Article : Google Scholar
|
11
|
Song F, Ma Y, Bai XY and Chen X: The
expression changes of inflammasomes in the aging rat kidneys. J
Gerontol A Biol Sci Med Sci. 71:747–756. 2016.PubMed/NCBI View Article : Google Scholar
|
12
|
Duncan JA and Canna SW: The NLRC4
inflammasome. Immunol Rev. 281:115–123. 2018.PubMed/NCBI View Article : Google Scholar
|
13
|
Yuan F, Kolb R, Pandey G, Li W, Sun L, Liu
F, Sutterwala FS, Liu Y and Zhang W: Involvement of the
NLRC4-Inflammasome in diabetic nephropathy. PLoS One.
11(e164135)2016.PubMed/NCBI View Article : Google Scholar
|
14
|
Rauch I, Deets KA, Ji DX, von Moltke J,
Tenthorey JL, Lee AY, Philip NH, Ayres JS, Brodsky IE, Gronert K
and Vance RE: NAIP-NLRC4 inflammasomes coordinate intestinal
epithelial cell expulsion with eicosanoid and IL-18 release via
activation of caspase-1 and -8. Immunity. 46:649–659.
2017.PubMed/NCBI View Article : Google Scholar
|
15
|
Hiruma J, Harada K, Motoyama A, Okubo Y,
Maeda T, Yamamoto M, Miyai M, Hibino T and Tsuboi R: Key component
of inflammasome, NLRC4, was identified in the lesional epidermis of
psoriatic patients. J Dermatol. 45:971–977. 2018.PubMed/NCBI View Article : Google Scholar
|
16
|
Lemasters JJ: Selective mitochondrial
autophagy, or mitophagy, as a targeted defense against oxidative
stress, mitochondrial dysfunction, and aging. Rejuvenation Res.
8:3–5. 2005.PubMed/NCBI View Article : Google Scholar
|
17
|
Xiao L, Xu X, Zhang F, Wang M, Xu Y, Tang
D, Wang J, Qin Y, Liu Y, Tang C, et al: The mitochondria-targeted
antioxidant MitoQ ameliorated tubular injury mediated by mitophagy
in diabetic kidney disease via Nrf2/PINK1. Redox Biol. 11:297–311.
2017.PubMed/NCBI View Article : Google Scholar
|
18
|
Hamacher-Brady A and Brady NR: Mitophagy
programs: Mechanisms and physiological implications of
mitochondrial targeting by autophagy. Cell Mol Life Sci.
73:775–795. 2016.PubMed/NCBI View Article : Google Scholar
|
19
|
Chen K, Dai H, Yuan J, Chen J, Lin L,
Zhang W, Wang L, Zhang J, Li K and He Y: Optineurin-mediated
mitophagy protects renal tubular epithelial cells against
accelerated senescence in diabetic nephropathy. Cell Death Dis.
9(105)2018.PubMed/NCBI View Article : Google Scholar
|
20
|
Jabir MS, Hopkins L, Ritchie ND, Ullah I,
Bayes HK, Li D, Tourlomousis P, Lupton A, Puleston D, Simon AK, et
al: Mitochondrial damage contributes to Pseudomonas
aeruginosa activation of the inflammasome and is downregulated
by autophagy. Autophagy. 11:166–182. 2015.PubMed/NCBI View Article : Google Scholar
|
21
|
Durga Devi T, Babu M, Mäkinen P, Kaikkonen
MU, Heinaniemi M, Laakso H, Ylä-Herttuala E, Rieppo L, Liimatainen
T, Naumenko N, et al: Aggravated postinfarct heart failure in type
2 diabetes is associated with impaired mitophagy and exaggerated
inflammasome activation. Am J Pathol. 187:2659–2673.
2017.PubMed/NCBI View Article : Google Scholar
|
22
|
Tervaert TW, Mooyaart AL, Amann K, Cohen
AH, Cook HT, Drachenberg CB, Ferrario F, Fogo AB, Haas M, de Heer
E, et al: Pathologic classification of diabetic nephropathy. J Am
Soc Nephrol. 21:556–563. 2010.PubMed/NCBI View Article : Google Scholar
|
23
|
Delanaye P and Pottel H: New equation to
estimate glomerular filtration rate in China: A reference issue.
Kidney Int. 96(521)2019.PubMed/NCBI View Article : Google Scholar
|
24
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408.
2001.PubMed/NCBI View Article : Google Scholar
|
25
|
Janowski AM, Colegio OR, Hornick EE,
McNiff JM, Martin MD, Badovinac VP, Norian LA, Zhang W, Cassel SL
and Sutterwala FS: NLRC4 suppresses melanoma tumor progression
independently of inflammasome activation. J Clin Invest.
126:3917–3928. 2016.PubMed/NCBI View
Article : Google Scholar
|
26
|
Zhan M, Usman IM, Sun L and Kanwar YS:
Disruption of renal tubular mitochondrial quality control by
Myo-inositol oxygenase in diabetic kidney disease. J Am Soc
Nephrol. 26:1304–1321. 2015.PubMed/NCBI View Article : Google Scholar
|
27
|
Huang C, Zhang Y, Kelly DJ, Tan CY, Gill
A, Cheng D, Braet F, Park JS, Sue CM, Pollock CA and Chen XM:
Thioredoxin interacting protein (TXNIP) regulates tubular autophagy
and mitophagy in diabetic nephropathy through the mTOR signaling
pathway. Sci Rep. 6(29196)2016.PubMed/NCBI View Article : Google Scholar
|
28
|
Eleftheriadis T, Pissas G, Tsogka K,
Nikolaou E, Liakopoulos V and Stefanidis I: A unifying model of
glucotoxicity in human renal proximal tubular epithelial cells and
the effect of the SGLT2 inhibitor dapagliflozin. Int Urol Nephrol.
52:1179–1189. 2020.PubMed/NCBI View Article : Google Scholar
|
29
|
Gou R, Chen J, Sheng S, Wang R, Fang Y,
Yang Z, Wang L and Tang L: KIM-1 mediates high glucose-induced
autophagy and apoptosis in renal tubular epithelial cells. Cell
Physiol Biochem. 38:2479–2488. 2016.PubMed/NCBI View Article : Google Scholar
|
30
|
Giacco F and Brownlee M: Oxidative stress
and diabetic complications. Circ Res. 107:1058–1070.
2010.PubMed/NCBI View Article : Google Scholar
|
31
|
Chen K, Feng L, Hu W, Chen J, Wang X, Wang
L and He Y: Optineurin inhibits NLRP3 inflammasome activation by
enhancing mitophagy of renal tubular cells in diabetic nephropathy.
FASEB J. 33:4571–4585. 2019.PubMed/NCBI View Article : Google Scholar
|
32
|
Song S, Qiu D, Luo F, Wei J, Wu M, Wu H,
Du C, Du Y, Ren Y, Chen N, et al: Knockdown of NLRP3 alleviates
high glucose or TGFB1-induced EMT in human renal tubular cells. J
Mol Endocrinol. 61:101–113. 2018.PubMed/NCBI View Article : Google Scholar
|