1
|
Libby P, Ridker PM and Hansson GK:
Progress and challenges in translating the biology of
atherosclerosis. Nature. 473:317–325. 2011.PubMed/NCBI View Article : Google Scholar
|
2
|
Libby P: Inflammation in atherosclerosis.
Nature. 420:868–874. 2002.PubMed/NCBI View Article : Google Scholar
|
3
|
Hansson GK and Libby P: The immune
response in atherosclerosis: A double-edged sword. Nat Rev Immunol.
6:508–519. 2006.PubMed/NCBI View
Article : Google Scholar
|
4
|
Hansson GK: Inflammation, atherosclerosis,
and coronary artery disease. N Engl J Med. 352:1685–1695.
2005.PubMed/NCBI View Article : Google Scholar
|
5
|
Jonasson L, Holm J, Skalli O, Bondjers G
and Hansson GK: Regional accumulations of T cells, macrophages, and
smooth muscle cells in the human atherosclerotic plaque.
Arteriosclerosis. 6:131–138. 1986.PubMed/NCBI View Article : Google Scholar
|
6
|
Stary HC, Chandler AB, Dinsmore RE, Fuster
V, Glagov S, Insull W Jr, Rosenfeld ME, Schwartz CJ, Wagner WD and
Wissler RW: A definition of advanced types of atherosclerotic
lesions and a histological classification of atherosclerosis. A
report from the Committee on Vascular Lesions of the Council on
Arteriosclerosis, American Heart Association. Arterioscler Thromb
Vasc Biol. 15:1512–1531. 1995.PubMed/NCBI View Article : Google Scholar
|
7
|
Ross R: Atherosclerosis is an inflammatory
disease. Am Heart J. 138:S419–S420. 1999.PubMed/NCBI View Article : Google Scholar
|
8
|
Kolodgie FD, Gold HK, Burke AP, Fowler DR,
Kruth HS, Weber DK, Farb A, Guerrero LJ, Hayase M, Kutys R, et al:
Intraplaque hemorrhage and progression of coronary atheroma. N Engl
J Med. 349:2316–2325. 2003.PubMed/NCBI View Article : Google Scholar
|
9
|
van der Wal AC, Das PK, Bentz van de Berg
D, van der Loos CM and Becker AE: Atherosclerotic lesions in
humans. In situ immunophenotypic analysis suggesting an immune
mediated response. Lab Invest. 61:166–170. 1989.PubMed/NCBI
|
10
|
Wang XQ, Wan HQ, Wei XJ, Zhang Y and Qu P:
CLI-095 decreases atherosclerosis by modulating foam cell formation
in apolipoprotein E-deficient mice. Mol Med Rep. 14:49–56.
2016.PubMed/NCBI View Article : Google Scholar
|
11
|
Opar A: Where now for new drugs for
atherosclerosis? Nat Rev Drug Discov. 6:334–335. 2007.PubMed/NCBI View
Article : Google Scholar
|
12
|
Wierda RJ, Geutskens SB, Jukema JW, Quax
PHA and van den Elsen PJ: Epigenetics in atherosclerosis and
inflammation. J Cell Mol Med. 14 (6A):1225–1240. 2010.PubMed/NCBI View Article : Google Scholar
|
13
|
Sharma P, Kumar J, Garg G, Kumar A,
Patowary A, Karthikeyan G, Ramakrishnan L, Brahmachari V and
Sengupta S: Detection of altered global DNA methylation in coronary
artery disease patients. DNA Cell Biol. 27:357–365. 2008.PubMed/NCBI View Article : Google Scholar
|
14
|
Yi-Deng J, Tao S, Hui-Ping Z, Jian-Tuan X,
Jun C, Gui-Zhong L and Shu-Ren W: Folate and ApoE DNA methylation
induced by homocysteine in human monocytes. DNA Cell Biol.
26:737–744. 2007.PubMed/NCBI View Article : Google Scholar
|
15
|
Delaney C, Garg SK, Fernandes C, Hoeltzel
M, Allen RH, Stabler S and Yung R: Maternal diet supplemented with
methyl-donors protects against atherosclerosis in F1 ApoE(-/-)
mice. PLoS One. 8(e56253)2013.PubMed/NCBI View Article : Google Scholar
|
16
|
Castro R, Rivera I, Struys EA, Jansen EE,
Ravasco P, Camilo ME, Blom HJ, Jakobs C and Tavares de Almeida I:
Increased homocysteine and S-adenosylhomocysteine concentrations
and DNA hypomethylation in vascular disease. Clin Chem.
49:1292–1296. 2003.PubMed/NCBI View Article : Google Scholar
|
17
|
Kim M, Long TI, Arakawa K, Wang R, Yu MC
and Laird PW: DNA methylation as a biomarker for cardiovascular
disease risk. PLoS One. 5(e9692)2010.PubMed/NCBI View Article : Google Scholar
|
18
|
Kim J, Kim JY, Song KS, Lee YH, Seo JS,
Jelinek J, Goldschmidt-Clermont PJ and Issa JP: Epigenetic changes
in estrogen receptor beta gene in atherosclerotic cardiovascular
tissues and in-vitro vascular senescence. Biochim Biophys Acta.
1772:72–80. 2007.PubMed/NCBI View Article : Google Scholar
|
19
|
Jiang W, Agrawal DK and Boosani CS: Cell
specific histone modifications in atherosclerosis (Review). Mol Med
Rep. 18:1215–1224. 2018.PubMed/NCBI View Article : Google Scholar
|
20
|
Khyzha N, Alizada A, Wilson MD and Fish
JE: Epigenetics of Atherosclerosis: Emerging Mechanisms and
Methods. Trends Mol Med. 23:332–347. 2017.PubMed/NCBI View Article : Google Scholar
|
21
|
Greißel A, Culmes M, Burgkart R,
Zimmermann A, Eckstein HH, Zernecke A and Pelisek J: Histone
acetylation and methylation significantly change with severity of
atherosclerosis in human carotid plaques. Cardiovasc Pathol.
25:79–86. 2016.PubMed/NCBI View Article : Google Scholar
|
22
|
Lv YC, Tang YY, Zhang P, Wan W, Yao F, He
PP, Xie W, Mo ZC, Shi JF, Wu JF, et al: Histone methyltransferase
enhancer of Zeste Homolog 2-mediated ABCA1 promoter DNA methylation
contributes to the progression of atherosclerosis. PLoS One.
11(e0157265)2016.PubMed/NCBI View Article : Google Scholar
|
23
|
Xu S, Xu Y, Yin M, Zhang S, Liu P,
Koroleva M, Si S, Little PJ, Pelisek J and Jin ZG: Flow-dependent
epigenetic regulation of IGFBP5 expression by H3K27me3 contributes
to endothelial anti-inflammatory effects. Theranostics.
8:3007–3021. 2018.PubMed/NCBI View Article : Google Scholar
|
24
|
Yap TA, Winter JN, Giulino-Roth L, Longley
J, Lopez J, Michot JM, Leonard JP, Ribrag V, McCabe MT, Creasy CL,
et al: Phase I study of the novel enhancer of Zeste Homolog 2
(EZH2) inhibitor GSK2816126 in patients with advanced hematologic
and solid tumors. Clin Cancer Res. 25:7331–7339. 2019.PubMed/NCBI View Article : Google Scholar
|
25
|
Shalem O, Sanjana NE, Hartenian E, Shi X,
Scott DA, Mikkelson T, Heckl D, Ebert BL, Root DE, Doench JG, et
al: Genome-scale CRISPR-Cas9 knockout screening in human cells.
Science. 343:84–87. 2014.PubMed/NCBI View Article : Google Scholar
|
26
|
Yamauchi T, Masuda T, Canver MC, Seiler M,
Semba Y, Shboul M, Al-Raqad M, Maeda M, Schoonenberg VAC, Cole MA,
et al: Genome-wide CRISPR-Cas9 Screen Identifies Leukemia-Specific
Dependence on a Pre-mRNA Metabolic Pathway Regulated by DCPS.
Cancer Cell. 33:386–400.e5. 2018.PubMed/NCBI View Article : Google Scholar
|
27
|
Low H, Hoang A and Sviridov D: Cholesterol
efflux assay. J Vis Exp. 61(e3810)2012.PubMed/NCBI View
Article : Google Scholar
|
28
|
Zimetti F, Favari E, Cagliero P, Adorni
MP, Ronda N, Bonardi R, Gomaraschi M, Calabresi L, Bernini F and
Guardamagna O: Cholesterol trafficking-related serum lipoprotein
functions in children with cholesteryl ester storage disease.
Atherosclerosis. 242:443–449. 2015.PubMed/NCBI View Article : Google Scholar
|
29
|
Mestas J and Ley K: Monocyte-endothelial
cell interactions in the development of atherosclerosis. Trends
Cardiovasc Med. 18:228–232. 2008.PubMed/NCBI View Article : Google Scholar
|
30
|
Ley K and Huo Y: VCAM-1 is critical in
atherosclerosis. J Clin Invest. 107:1209–1210. 2001.PubMed/NCBI View
Article : Google Scholar
|
31
|
Iiyama K, Hajra L, Iiyama M, Li H,
DiChiara M, Medoff BD and Cybulsky MI: Patterns of vascular cell
adhesion molecule-1 and intercellular adhesion molecule-1
expression in rabbit and mouse atherosclerotic lesions and at sites
predisposed to lesion formation. Circ Res. 85:199–207.
1999.PubMed/NCBI View Article : Google Scholar
|
32
|
Moriwaki H, Kume N, Sawamura T, Aoyama T,
Hoshikawa H, Ochi H, Nishi E, Masaki T and Kita T: Ligand
specificity of LOX-1, a novel endothelial receptor for oxidized low
density lipoprotein. Arterioscler Thromb Vasc Biol. 18:1541–1547.
1998.PubMed/NCBI View Article : Google Scholar
|
33
|
Sawamura T, Kume N, Aoyama T, Moriwaki H,
Hoshikawa H, Aiba Y, Tanaka T, Miwa S, Katsura Y, Kita T, et al: An
endothelial receptor for oxidized low-density lipoprotein. Nature.
386:73–77. 1997.PubMed/NCBI View
Article : Google Scholar
|
34
|
Akhmedov A, Rozenberg I, Paneni F, Camici
GG, Shi Y, Doerries C, Sledzinska A, Mocharla P, Breitenstein A,
Lohmann C, et al: Endothelial overexpression of LOX-1 increases
plaque formation and promotes atherosclerosis in vivo. Eur Heart J.
35:2839–2848. 2014.PubMed/NCBI View Article : Google Scholar
|
35
|
Frostegård J, Nilsson J, Haegerstrand A,
Hamsten A, Wigzell H and Gidlund M: Oxidized low density
lipoprotein induces differentiation and adhesion of human monocytes
and the monocytic cell line U937. Proc Natl Acad Sci USA.
87:904–908. 1990.PubMed/NCBI View Article : Google Scholar
|
36
|
Greißel A, Culmes M, Napieralski R, Wagner
E, Gebhard H, Schmitt M, Zimmermann A, Eckstein HH, Zernecke A and
Pelisek J: Alternation of histone and DNA methylation in human
atherosclerotic carotid plaques. Thromb Haemost. 114:390–402.
2015.PubMed/NCBI View Article : Google Scholar
|
37
|
Xu K, Wu ZJ, Groner AC, He HH, Cai C, Lis
RT, Wu X, Stack EC, Loda M, Liu T, et al: EZH2 oncogenic activity
in castration-resistant prostate cancer cells is
Polycomb-independent. Science. 338:1465–1469. 2012.PubMed/NCBI View Article : Google Scholar
|
38
|
Liu Y, Peng J, Sun T, Li N, Zhang L, Ren
J, Yuan H, Kan S, Pan Q, Li X, et al: Epithelial EZH2 serves as an
epigenetic determinant in experimental colitis by inhibiting
TNFα-mediated inflammation and apoptosis. Proc Natl Acad Sci USA.
114:E3796–E3805. 2017.PubMed/NCBI View Article : Google Scholar
|
39
|
Wierda RJ, Rietveld IM, van Eggermond
MCJA, Belien JAM, van Zwet EW, Lindeman JHN and van den Elsen PJ:
Global histone H3 lysine 27 triple methylation levels are reduced
in vessels with advanced atherosclerotic plaques. Life Sci.
129:3–9. 2015.PubMed/NCBI View Article : Google Scholar
|
40
|
Zhang X, Wang Y, Yuan J, Li N, Pei S, Xu
J, Luo X, Mao C, Liu J, Yu T, et al: Macrophage/microglial Ezh2
facilitates autoimmune inflammation through inhibition of Socs3. J
Exp Med. 215:1365–1382. 2018.PubMed/NCBI View Article : Google Scholar
|
41
|
Villanueva MT: Anticancer drugs: All roads
lead to EZH2 inhibition. Nat Rev Drug Discov.
16(239)2017.PubMed/NCBI View Article : Google Scholar
|
42
|
Kim KH and Roberts CWM: Targeting EZH2 in
cancer. Nat Med. 22:128–134. 2016.PubMed/NCBI View Article : Google Scholar
|
43
|
McCabe MT, Ott HM, Ganji G, Korenchuk S,
Thompson C, Van Aller GS, Liu Y, Graves AP, Della Pietra A III,
Diaz E, et al: EZH2 inhibition as a therapeutic strategy for
lymphoma with EZH2-activating mutations. Nature. 492:108–112.
2012.PubMed/NCBI View Article : Google Scholar
|
44
|
Kaniskan HÜ and Jin J: Chemical probes of
histone lysine methyltransferases. ACS Chem Biol. 10:40–50.
2015.PubMed/NCBI View Article : Google Scholar
|
45
|
Zhou J, Huang S, Wang Z, Huang J, Xu L,
Tang X, Wan YY, Li QJ, Symonds ALJ, Long H, et al: Targeting EZH2
histone methyltransferase activity alleviates experimental
intestinal inflammation. Nat Commun. 10(2427)2019.PubMed/NCBI View Article : Google Scholar
|