Role of m6A in osteoporosis, arthritis and osteosarcoma (Review)
- Authors:
- Yibo Hu
- Xiaohui Zhao
-
Affiliations: Department of Orthopaedic Trauma, The Affiliated Hospital of Qinghai University, Xining, Qinghai 810000, P.R. China - Published online on: June 30, 2021 https://doi.org/10.3892/etm.2021.10358
- Article Number: 926
-
Copyright: © Hu et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Rits S, Olsen BR and Volloch V: Protein-encoding RNA to RNA information transfer in mammalian cells: RNA-dependent mRNA amplification. Identification of chimeric RNA intermediates and putative RNA end products. Ann Integr Mol Med. 1:23–47. 2019.PubMed/NCBI | |
Howie H, Rijal CM and Ressler KJ: A review of epigenetic contributions to post-traumatic stress disorder. Dialogues Clin Neurosci. 21:417–428. 2019.PubMed/NCBI View Article : Google Scholar | |
Holt CE and Schuman EM: The central dogma decentralized: New perspectives on RNA function and local translation in neurons. Neuron. 80:648–657. 2013.PubMed/NCBI View Article : Google Scholar | |
Maydanovych O and Beal PA: Breaking the central dogma by RNA editing. Chem Rev. 106:3397–3411. 2006.PubMed/NCBI View Article : Google Scholar | |
Thakur P, Estevez M, Lobue PA, Limbach PA and Addepalli B: Improved RNA modification mapping of cellular non-coding RNAs using C- and U-specific RNases. Analyst. 145:816–827. 2020.PubMed/NCBI View Article : Google Scholar | |
Shi H, Wei J and He C: Where, when, and how: Context-dependent functions of RNA methylation writers, readers, and erasers. Mol Cell. 74:640–650. 2019.PubMed/NCBI View Article : Google Scholar | |
Roundtree IA, Evans ME, Pan T and He C: Dynamic RNA modifications in gene expression regulation. Cell. 169:1187–1200. 2017.PubMed/NCBI View Article : Google Scholar | |
Liu J, Dou X, Chen C, Chen C, Liu C, Xu MM, Zhao S, Shen B, Gao Y, Han D and He C: N6-methyladenosine of chromosome-associated regulatory RNA regulates chromatin state and transcription. Science. 367:580–586. 2020.PubMed/NCBI View Article : Google Scholar | |
Zeng C, Huang W, Li Y and Weng H: Roles of METTL3 in cancer: Mechanisms and therapeutic targeting. J Hematol Oncol. 13(117)2020.PubMed/NCBI View Article : Google Scholar | |
Shinoda K, Suda A, Otonari K, Futaki S and Imanishi M: Programmable RNA methylation and demethylation using PUF RNA binding proteins. Chem Commun (Camb). 56:1365–1368. 2020.PubMed/NCBI View Article : Google Scholar | |
Chen X, Chen X, Zhou Z, Mao Y, Wang Y, Ma Z, Xu W, Qin A and Zhang S: Nirogacestat suppresses RANKL-Induced osteoclast formation in vitro and attenuates LPS-Induced bone resorption in vivo. Exp Cell Res. 382(111470)2019.PubMed/NCBI View Article : Google Scholar | |
Dominissini D, Moshitch-Moshkovitz S, Schwartz S, Salmon-Divon M, Ungar L, Osenberg S, Cesarkas K, Jacob-Hirsch J, Amariglio N, Kupiec M, et al: Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature. 485:201–206. 2012.PubMed/NCBI View Article : Google Scholar | |
The RNA methyltransferase METTL3 promotes oncogene translation. Cancer Discov. 6(572)2016.PubMed/NCBI View Article : Google Scholar | |
Liu J, Yue Y, Han D, Wang X, Fu Y, Zhang L, Jia G, Yu M, Lu Z, Deng X, et al: A METTL3-METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation. Nat Chem Biol. 10:93–95. 2014.PubMed/NCBI View Article : Google Scholar | |
Chen Y, Peng C, Chen J, Chen D, Yang B, He B, Hu W, Zhang Y, Liu H, Dai L, et al: WTAP facilitates progression of hepatocellular carcinoma via m6A-HuR-dependent epigenetic silencing of ETS1. Mol Cancer. 18(127)2019.PubMed/NCBI View Article : Google Scholar | |
Li J, Zhu L, Shi Y, Liu J, Lin L and Chen X: m6A demethylase FTO promotes hepatocellular carcinoma tumorigenesis via mediating PKM2 demethylation. Am J Transl Res. 11:6084–6092. 2019.PubMed/NCBI | |
Zheng G, Dahl JA, Niu Y, Fedorcsak P, Huang CM, Li CJ, Vågbø CB, Shi Y, Wang WL, Song SH, et al: ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility. Mol Cell. 49:18–29. 2013.PubMed/NCBI View Article : Google Scholar | |
Parker MT, Knop K, Sherwood AV, Schurch NJ, Mackinnon K, Gould PD, Hall AJ, Barton GJ and Simpson GG: Nanopore direct RNA sequencing maps the complexity of Arabidopsis mRNA processing and m6A modification. eLife. 9(e49658)2020.PubMed/NCBI View Article : Google Scholar | |
Liao S, Sun H and Xu C: YTH Domain: A family of N6-methyladenosine (m6A) readers. Genomics Proteomics Bioinformatics. 16:99–107. 2018.PubMed/NCBI View Article : Google Scholar | |
Zhao YL, Liu YH, Wu RF, Bi Z, Yao YX, Liu Q, Wang YZ and Wang XX: Understanding m6A function through uncovering the diversity roles of YTH domain-containing proteins. Mol Biotechnol. 61:355–364. 2019.PubMed/NCBI View Article : Google Scholar | |
Li F, Kennedy S, Hajian T, Gibson E, Seitova A, Xu C, Arrowsmith CH and Vedadi M: A radioactivity-based assay for screening human m6A-RNA methyltransferase, METTL3-METTL14 complex, and demethylase ALKBH5. J Biomol Screen. 21:290–297. 2016.PubMed/NCBI View Article : Google Scholar | |
Liu Y and Santi DV: m5C RNA and m5C DNA methyl transferases use different cysteine residues as catalysts. Proc Natl Acad Sci USA. 97:8263–8265. 2000.PubMed/NCBI View Article : Google Scholar | |
Roovers M, Wouters J, Bujnicki JM, Tricot C, Stalon V, Grosjean H and Droogmans L: A primordial RNA modification enzyme: The case of tRNA (m1A) methyltransferase. Nucleic Scids Res. 32:465–476. 2004.PubMed/NCBI View Article : Google Scholar | |
Grabowski P: Physiology of bone. Endocr Dev. 16:32–48. 2009.PubMed/NCBI View Article : Google Scholar | |
Scholtysek C, Kronke G and Schett G: Inflammation-associated changes in bone homeostasis. Inflamm Allergy Drug Targets. 11:188–195. 2012.PubMed/NCBI View Article : Google Scholar | |
Suominen H: Muscle training for bone strength. Aging Clin Exp Res. 18:85–93. 2006.PubMed/NCBI View Article : Google Scholar | |
Fu R, Lv WC, Xu Y, Gong MY, Chen XJ, Jiang N, Xu Y, Yao QQ, Di L, Lu T, et al: Endothelial ZEB1 promotes angiogenesis-dependent bone formation and reverses osteoporosis. Nat Commun. 11(460)2020.PubMed/NCBI View Article : Google Scholar | |
Landete-Castillejos T, Kierdorf H, Gomez S, Luna S, García AJ, Cappelli J, Pérez-Serrano M, Pérez-Barbería J, Gallego L and Kierdorf U: Antlers-Evolution, development, structure, composition, and biomechanics of an outstanding type of bone. Bone. 128(115046)2019.PubMed/NCBI View Article : Google Scholar | |
Hassan MQ, Tye CE, Stein GS and Lian JB: Non-coding RNAs: Epigenetic regulators of bone development and homeostasis. Bone. 81:746–756. 2015.PubMed/NCBI View Article : Google Scholar | |
Bocheva G and Boyadjieva N: Epigenetic regulation of fetal bone development and placental transfer of nutrients: Progress for osteoporosis. Interdiscip Toxicol. 4:167–172. 2011.PubMed/NCBI View Article : Google Scholar | |
Adamik J, Roodman GD and Galson DL: Epigenetic-based mechanisms of osteoblast suppression in multiple myeloma bone disease. JBMR Plus. 3(e10183)2019.PubMed/NCBI View Article : Google Scholar | |
Marini F, Cianferotti L and Brandi ML: Epigenetic mechanisms in bone biology and osteoporosis: Can they drive therapeutic choices? Int J Mol Sci. 17(1329)2016.PubMed/NCBI View Article : Google Scholar | |
Ghayor C and Weber FE: Epigenetic regulation of bone remodeling and its impacts in osteoporosis. Int J Mol Sci. 17(1446)2016.PubMed/NCBI View Article : Google Scholar | |
Montecino M, Stein G, Stein J, Zaidi K and Aguilar R: Multiple levels of epigenetic control for bone biology and pathology. Bone. 81:733–738. 2015.PubMed/NCBI View Article : Google Scholar | |
Kobayashi M, Ohsugi M, Sasako T, Awazawa M, Umehara T, Iwane A, Kobayashi N, Okazaki Y, Kubota N, Suzuki R, et al: The RNA methyltransferase complex of WTAP, METTL3, and METTL14 regulates mitotic clonal expansion in adipogenesis. Mol Cell Biol. 38:e00116–18. 2018.PubMed/NCBI View Article : Google Scholar | |
Zhou L, Yang C, Zhang N, Zhang X, Zhao T and Yu J: Silencing METTL3 inhibits the proliferation and invasion of osteosarcoma by regulating ATAD2. Biomed Pharmacother. 125(109964)2020.PubMed/NCBI View Article : Google Scholar | |
Bujnicki JM, Feder M, Radlinska M and Blumenthal RM: Structure prediction and phylogenetic analysis of a functionally diverse family of proteins homologous to the MT-A70 subunit of the human mRNA:m(6)A methyltransferase. J Mol Evol. 55:431–444. 2002.PubMed/NCBI View Article : Google Scholar | |
Scholler E, Weichmann F, Treiber T, Ringle S, Treiber N, Flatley A, Feederle R, Bruckmann A and Meister G: Interactions, localization, and phosphorylation of the m6A generating METTL3-METTL14-WTAP complex. RNA. 24:499–512. 2018.PubMed/NCBI View Article : Google Scholar | |
Wang P, Doxtader KA and Nam Y: Structural basis for cooperative function of Mettl3 and Mettl14 methyltransferases. Mol Cell. 63:306–317. 2016.PubMed/NCBI View Article : Google Scholar | |
Lence T, Paolantoni C, Worpenberg L and Roignant JY: Mechanistic insights into m6A RNA enzymes. Biochim Biophys Acta Gene Regul Mech. 1862:222–229. 2019.PubMed/NCBI View Article : Google Scholar | |
Haussmann IU, Bodi Z, Sanchez-Moran E, Mongan NP, Archer N, Fray RG and Soller M: m6A potentiates Sxl alternative pre-mRNA splicing for robust drosophila sex determination. Nature. 540:301–304. 2016.PubMed/NCBI View Article : Google Scholar | |
Wang X, Zhao BS, Roundtree IA, Lu Z, Han D, Ma H, Weng X, Chen K, Shi H and He C: N(6)-methyladenosine modulates messenger RNA translation efficiency. Cell. 161:1388–1399. 2015.PubMed/NCBI View Article : Google Scholar | |
Wang X, Lu Z, Gomez A, Hon GC, Yue Y, Han D, Fu Y, Parisien M, Dai Q, Jia G, et al: N6-methyladenosine-dependent regulation of messenger RNA stability. Nature. 505:117–120. 2014.PubMed/NCBI View Article : Google Scholar | |
Alarcon CR, Lee H, Goodarzi H, Halberg N and Tavazoie SF: N6-methyladenosine marks primary microRNAs for processing. Nature. 519:482–485. 2015.PubMed/NCBI View Article : Google Scholar | |
Wang X, Feng J, Xue Y, Guan Z, Zhang D, Liu Z, Gong Z, Wang Q, Huang J, Tang C, et al: Structural basis of N(6)-adenosine methylation by the METTL3-METTL14 complex. Nature. 534:575–578. 2016.PubMed/NCBI View Article : Google Scholar | |
Meyer KD and Jaffrey SR: Rethinking m6A readers, writers, and erasers. Annu Rev Cell Dev Biol. 33:319–342. 2017.PubMed/NCBI View Article : Google Scholar | |
Geula S, Moshitch-Moshkovitz S, Dominissini D, Mansour AA, Kol N, Salmon-Divon M, Hershkovitz V, Peer E, Mor N, Manor YS, et al: Stem cells. m6A mRNA methylation facilitates resolution of naive pluripotency toward differentiation. Science. 347:1002–1006. 2015.PubMed/NCBI View Article : Google Scholar | |
Hongay CF and Orr-Weaver TL: Drosophila Inducer of MEiosis 4 (IME4) is required for Notch signaling during oogenesis. Proc Natl Acad Sci USA. 108:14855–14860. 2011.PubMed/NCBI View Article : Google Scholar | |
Zhong S, Li H, Bodi Z, Button J, Vespa L, Herzog M and Fray RG: MTA is an Arabidopsis messenger RNA adenosine methylase and interacts with a homolog of a sex-specific splicing factor. Plant Cell. 20:1278–1288. 2008.PubMed/NCBI View Article : Google Scholar | |
Clancy MJ, Shambaugh ME, Timpte CS and Bokar JA: Induction of sporulation in Saccharomyces cerevisiae leads to the formation of N6-methyladenosine in mRNA: A potential mechanism for the activity of the IME4 gene. Nucleic Acids Res. 30:4509–4518. 2002.PubMed/NCBI View Article : Google Scholar | |
Han J, Wang JZ, Yang X, Yu H, Zhou R, Lu HC, Yuan WB, Lu JC, Zhou ZJ, Lu Q, et al: METTL3 promote tumor proliferation of bladder cancer by accelerating pri-miR221/222 maturation in m6A-dependent manner. Mol Cancer. 18(110)2019.PubMed/NCBI View Article : Google Scholar | |
Choe J, Lin S, Zhang W, Liu Q, Wang L, Ramirez-Moya J, Du P, Kim W, Tang S, Sliz P, et al: mRNA circularization by METTL3-eIF3h enhances translation and promotes oncogenesis. Nature. 561:556–560. 2018.PubMed/NCBI View Article : Google Scholar | |
Liu X, Liu L, Dong Z, Li J, Yu Y, Chen X, Ren F, Cui G and Sun R: Expression patterns and prognostic value of m6A-related genes in colorectal cancer. Am J Transl Res. 11:3972–3991. 2019.PubMed/NCBI | |
Visvanathan A, Patil V, Arora A, Hegde AS, Arivazhagan A, Santosh V and Somasundaram K: Essential role of METTL3-mediated m6A modification in glioma stem-like cells maintenance and radioresistance. Oncogene. 37:522–533. 2018.PubMed/NCBI View Article : Google Scholar | |
Wang H, Xu B and Shi J: N6-methyladenosine METTL3 promotes the breast cancer progression via targeting Bcl-2. Gene. 722(144076)2020.PubMed/NCBI View Article : Google Scholar | |
Vu LP, Pickering BF, Cheng Y, Zaccara S, Nguyen D, Minuesa G, Chou T, Chow A, Saletore Y, MacKay M, et al: The N6-methyladenosine (m6A)-forming enzyme METTL3 controls myeloid differentiation of normal hematopoietic and leukemia cells. Nat Med. 23:1369–1376. 2017.PubMed/NCBI View Article : Google Scholar | |
Lin S, Liu J, Jiang W, Wang P, Sun C, Wang X, Chen Y and Wang H: METTL3 promotes the proliferation and mobility of gastric cancer cells. Open Med (Wars). 14:25–31. 2019.PubMed/NCBI View Article : Google Scholar | |
Dahal U, Le K and Gupta M: RNA m6A methyltransferase METTL3 regulates invasiveness of melanoma cells by matrix metallopeptidase 2. Melanoma Res. 29:382–389. 2019.PubMed/NCBI View Article : Google Scholar | |
Zheng W, Dong X, Zhao Y, Wang S, Jiang H, Zhang M, Zheng X and Gu M: Multiple functions and mechanisms underlying the role of METTL3 in Human Cancers. Front Oncol. 9(1403)2019.PubMed/NCBI View Article : Google Scholar | |
Wu L, Wu D, Ning J, Liu W and Zhang D: Changes of N6-methyladenosine modulators promote breast cancer progression. BMC Cancer. 19(326)2019.PubMed/NCBI View Article : Google Scholar | |
Li X, Tang J, Huang W, Wang F, Li P, Qin C, Qin Z, Zou Q, Wei J, Hua L, et al: The M6A methyltransferase METTL3: Acting as a tumor suppressor in renal cell carcinoma. Oncotarget. 8:96103–96116. 2017.PubMed/NCBI View Article : Google Scholar | |
Wei W, Huo B and Shi X: miR-600 inhibits lung cancer via downregulating the expression of METTL3. Cancer Manag Res. 11:1177–1187. 2019.PubMed/NCBI View Article : Google Scholar | |
Zhang C, Zhang M, Ge S, Huang W, Lin X, Gao J, Gong J and Shen L: Reduced m6A modification predicts malignant phenotypes and augmented Wnt/PI3K-Akt signaling in gastric cancer. Cancer Med. 8:4766–4781. 2019.PubMed/NCBI View Article : Google Scholar | |
Iyer LM, Zhang D and Aravind L: Adenine methylation in eukaryotes: Apprehending the complex evolutionary history and functional potential of an epigenetic modification. Bioessays. 38:27–40. 2016.PubMed/NCBI View Article : Google Scholar | |
Liu X, Qin J, Gao T, Li C, Chen X, Zeng K, Xu M, He B, Pan B, Xu X, et al: Analysis of METTL3 and METTL14 in hepatocellular carcinoma. Aging (Albany NY). 12:21638–21659. 2020.PubMed/NCBI View Article : Google Scholar | |
Buker SM, Gurard-Levin ZA, Wheeler BD, Scholle MD, Case AW, Hirsch JL, Ribich S, Copeland RA and Boriack-Sjodin PA: A mass spectrometric assay of METTL3/METTL14 methyltransferase activity. SLAS Discov. 25:361–371. 2020.PubMed/NCBI View Article : Google Scholar | |
Chen X, Xu M, Xu X, Zeng K, Liu X, Pan B, Li C, Sun L, Qin J, Xu T, et al: METTL14-mediated N6-methyladenosine modification of SOX4 mRNA inhibits tumor metastasis in colorectal cancer. Mol Cancer. 19(106)2020.PubMed/NCBI View Article : Google Scholar | |
Gong PJ, Shao YC, Yang Y, Song WJ, He X, Zeng YF, Huang SR, Wei L and Zhang JW: Analysis of N6-methyladenosine methyltransferase reveals METTL14 and ZC3H13 as tumor suppressor genes in breast cancer. Front Oncol. 10(578963)2020.PubMed/NCBI View Article : Google Scholar | |
Gu C, Wang Z, Zhou N, Li G, Kou Y, Luo Y, Wang Y, Yang J and Tian F: Mettl14 inhibits bladder TIC self-renewal and bladder tumorigenesis through N6-methyladenosine of Notch1. Mol Cancer. 18(168)2019.PubMed/NCBI View Article : Google Scholar | |
Weng H, Huang H, Wu H, Qin X, Zhao BS, Dong L, Shi H, Skibbe J, Shen C, Hu C, et al: METTL14 inhibits hematopoietic stem/progenitor differentiation and promotes leukemogenesis via mRNA m6A modification. Cell Stem Cell. 22:191–205 e9. 2018.PubMed/NCBI View Article : Google Scholar | |
Ping XL, Sun BF, Wang L, Xiao W, Yang X, Wang WJ, Adhikari S, Shi Y, Lv Y, Chen YS, et al: Mammalian WTAP is a regulatory subunit of the RNA N6-methyladenosine methyltransferase. Cell Res. 24:177–189. 2014.PubMed/NCBI View Article : Google Scholar | |
Schwartz S, Mumbach MR, Jovanovic M, Wang T, Maciag K, Bushkin GG, Mertins P, Ter-Ovanesyan D, Habib N, Cacchiarelli D, et al: Perturbation of m6A writers reveals two distinct classes of mRNA methylation at internal and 5' sites. Cell Rep. 8:284–296. 2014.PubMed/NCBI View Article : Google Scholar | |
Sorci M, Ianniello Z, Cruciani S, Larivera S, Ginistrelli LC, Capuano E, Marchioni M, Fazi F and Fatica A: METTL3 regulates WTAP protein homeostasis. Cell Death Dis. 9(796)2018.PubMed/NCBI View Article : Google Scholar | |
Li H, Su Q, Li B, Lan L, Wang C, Li W, Wang G, Chen W, He Y and Zhang C: High expression of WTAP leads to poor prognosis of gastric cancer by influencing tumour-associated T lymphocyte infiltration. J Cell Mol Med. 24:4452–4465. 2020.PubMed/NCBI View Article : Google Scholar | |
Bansal H, Yihua Q, Iyer SP, Ganapathy S, Proia DA, Penalva LO, Uren PJ, Suresh U, Carew JS, Karnad AB, et al: WTAP is a novel oncogenic protein in acute myeloid leukemia. Leukemia. 28:1171–1174. 2014.PubMed/NCBI View Article : Google Scholar | |
Horiuchi K, Umetani M, Minami T, Okayama H, Takada S, Yamamoto M, Aburatani H, Reid PC, Housman DE, Hamakubo T and Kodama T: Wilms' tumor 1-associating protein regulates G2/M transition through stabilization of cyclin A2 mRNA. Proc Natl Acad Sci USA. 103:17278–17283. 2006.PubMed/NCBI View Article : Google Scholar | |
Wen J, Lv R, Ma H, Shen H, He C, Wang J, Jiao F, Liu H, Yang P, Tan L, et al: Zc3h13 regulates nuclear RNA m6A methylation and mouse embryonic stem cell self-renewal. Mol Cell. 69:1028–1038 e6. 2018.PubMed/NCBI View Article : Google Scholar | |
Zhu D, Zhou J, Zhao J, Jiang G, Zhang X, Zhang Y and Dong M: ZC3H13 suppresses colorectal cancer proliferation and invasion via inactivating Ras-ERK signaling. J Cell Physiol. 234:8899–8907. 2019.PubMed/NCBI View Article : Google Scholar | |
Chen J, Yu K, Zhong G and Shen W: Identification of a m6A RNA methylation regulators-based signature for predicting the prognosis of clear cell renal carcinoma. Cancer Cell Int. 20(157)2020.PubMed/NCBI View Article : Google Scholar | |
Liu T, Li C, Jin L, Li C and Wang L: The prognostic value of m6A RNA methylation regulators in colon adenocarcinoma. Med Sci Monit. 25:9435–9445. 2019.PubMed/NCBI View Article : Google Scholar | |
Jia G, Fu Y, Zhao X, Dai Q, Zheng G, Yang Y, Yi C, Lindahl T, Pan T, Yang YG and He C: N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Nat Chem Biol. 7:885–887. 2011.PubMed/NCBI View Article : Google Scholar | |
Zhou J, Wan J, Gao X, Zhang X, Jaffrey SR and Qian SB: Dynamic m(6)A mRNA methylation directs translational control of heat shock response. Nature. 526:591–594. 2015.PubMed/NCBI View Article : Google Scholar | |
Dina C, Meyre D, Gallina S, Durand E, Körner A, Jacobson P, Carlsson LM, Kiess W, Vatin V, Lecoeur C, et al: Variation in FTO contributes to childhood obesity and severe adult obesity. Nat Genet. 39:724–726. 2007.PubMed/NCBI View Article : Google Scholar | |
Frayling TM, Timpson NJ, Weedon MN, Zeggini E, Freathy RM, Lindgren CM, Perry JR, Elliott KS, Lango H, Rayner NW, et al: A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science. 316:889–894. 2007.PubMed/NCBI View Article : Google Scholar | |
Niu Y, Lin Z, Wan A, Chen H, Liang H, Sun L, Wang Y, Li X, Xiong XF, Wei B, et al: RNA N6-methyladenosine demethylase FTO promotes breast tumor progression through inhibiting BNIP3. Mol Cancer. 18(46)2019.PubMed/NCBI View Article : Google Scholar | |
Li Z, Weng H, Su R, Weng X, Zuo Z, Li C, Huang H, Nachtergaele S, Dong L, Hu C, et al: FTO plays an oncogenic role in acute myeloid leukemia as a N6-Methyladenosine RNA demethylase. Cancer Cell. 31:127–141. 2017.PubMed/NCBI View Article : Google Scholar | |
Yang S, Wei J, Cui YH, Park G, Shah P, Deng Y, Aplin AE, Lu Z, Hwang S, He C and He YY: m6A mRNA demethylase FTO regulates melanoma tumorigenicity and response to anti-PD-1 blockade. Nat Commun. 10(2782)2019.PubMed/NCBI View Article : Google Scholar | |
Li J, Han Y, Zhang H, Qian Z, Jia W, Gao Y, Zheng H and Li B: The m6A demethylase FTO promotes the growth of lung cancer cells by regulating the m6A level of USP7 mRNA. Biochem Biophys Res Commun. 512:479–485. 2019.PubMed/NCBI View Article : Google Scholar | |
Baltz AG, Munschauer M, Schwanhausser B, Vasile A, Murakawa Y, Schueler M, Youngs N, Penfold-Brown D, Drew K, Milek M, et al: The mRNA-bound proteome and its global occupancy profile on protein-coding transcripts. Mol Cell. 46:674–690. 2012.PubMed/NCBI View Article : Google Scholar | |
Fedeles BI, Singh V, Delaney JC, Li D and Essigmann JM: The AlkB family of Fe(II)/α-Ketoglutarate-dependent dioxygenases: Repairing nucleic acid alkylation damage and beyond. J Biol Chem. 290:20734–20742. 2015.PubMed/NCBI View Article : Google Scholar | |
Pilzys T, Marcinkowski M, Kukwa W, Garbicz D, Dylewska M, Ferenc K, Mieczkowski A, Kukwa A, Migacz E, Wołosz D, et al: ALKBH overexpression in head and neck cancer: Potential target for novel anticancer therapy. Sci Rep. 9(13249)2019.PubMed/NCBI View Article : Google Scholar | |
Guo X, Li K, Jiang W, Hu Y, Xiao W, Huang Y, Feng Y, Pan Q and Wan R: RNA demethylase ALKBH5 prevents pancreatic cancer progression by posttranscriptional activation of PER1 in an m6A-YTHDF2-dependent manner. Mol Cancer. 19(91)2020.PubMed/NCBI View Article : Google Scholar | |
Shen C, Sheng Y, Zhu AC, Robinson S, Jiang X, Dong L, Chen H, Su R, Yin Z, Li W, et al: RNA demethylase ALKBH5 selectively promotes tumorigenesis and cancer stem cell self-renewal in acute myeloid leukemia. Cell Stem Cell. 27:64–80.e9. 2020.PubMed/NCBI View Article : Google Scholar | |
Zhang S, Zhao BS, Zhou A, Lin K, Zheng S, Lu Z, Chen Y, Sulman EP, Xie K, Bögler O, et al: m6A demethylase ALKBH5 maintains tumorigenicity of glioblastoma Stem-like cells by sustaining FOXM1 expression and cell proliferation program. Cancer Cell. 31:591–606.e6. 2017.PubMed/NCBI View Article : Google Scholar | |
Zhu Z, Qian Q, Zhao X, Ma L and Chen P: N6-methyladenosine ALKBH5 promotes non-small cell lung cancer progress by regulating TIMP3 stability. Gene. 731(144348)2020.PubMed/NCBI View Article : Google Scholar | |
Zhang J, Guo S, Piao HY, Wang Y, Wu Y, Meng XY, Yang D, Zheng ZC and Zhao Y: ALKBH5 promotes invasion and metastasis of gastric cancer by decreasing methylation of the lncRNA NEAT1. J Physiol Biochem. 75:379–389. 2019.PubMed/NCBI View Article : Google Scholar | |
Ueda Y, Ooshio I, Fusamae Y, Kitae K, Kawaguchi M, Jingushi K, Hase H, Harada K, Hirata K and Tsujikawa K: AlkB homolog 3-mediated tRNA demethylation promotes protein synthesis in cancer cells. Sci Rep. 7(42271)2017.PubMed/NCBI View Article : Google Scholar | |
Mohan M, Akula D, Dhillon A, Goyal A and Anindya R: Human RAD51 paralogue RAD51C fosters repair of alkylated DNA by interacting with the ALKBH3 demethylase. Nucleic Acids Res. 47:11729–11745. 2019.PubMed/NCBI View Article : Google Scholar | |
Chen Z, Qi M, Shen B, Luo G, Wu Y, Li J, Lu Z, Zheng Z, Dai Q and Wang H: Transfer RNA demethylase ALKBH3 promotes cancer progression via induction of tRNA-derived small RNAs. Nucleic Acids Res. 47:2533–2545. 2019.PubMed/NCBI View Article : Google Scholar | |
Fu Y, Dominissini D, Rechavi G and He C: Gene expression regulation mediated through reversible m6A RNA methylation. Nat Rev Genet. 15:293–306. 2014.PubMed/NCBI View Article : Google Scholar | |
Yue Y, Liu J and He C: RNA N6-methyladenosine methylation in post-transcriptional gene expression regulation. Genes Dev. 29:1343–1355. 2015.PubMed/NCBI View Article : Google Scholar | |
Zhu T, Roundtree IA, Wang P, Wang X, Wang L, Sun C, Tian Y, Li J, He C and Xu Y: Crystal structure of the YTH domain of YTHDF2 reveals mechanism for recognition of N6-methyladenosine. Cell Res. 24:1493–1496. 2014.PubMed/NCBI View Article : Google Scholar | |
Lee Y, Choe J, Park OH and Kim YK: Molecular mechanisms driving mRNA degradation by m6A modification. Trends Genet. 36:177–188. 2020.PubMed/NCBI View Article : Google Scholar | |
Li M, Zhao X, Wang W, Shi H, Pan Q, Lu Z, Perez SP, Suganthan R, He C, Bjørås M and Klungland A: Ythdf2-mediated m6A mRNA clearance modulates neural development in mice. Genome Biol. 19(69)2018.PubMed/NCBI View Article : Google Scholar | |
Wang H, Zuo H, Liu J, Wen F, Gao Y, Zhu X, Liu B, Xiao F, Wang W, Huang G, et al: Loss of YTHDF2-mediated m6A-dependent mRNA clearance facilitates hematopoietic stem cell regeneration. Cell Res. 28:1035–1038. 2018.PubMed/NCBI View Article : Google Scholar | |
Chen M, Wei L, Law CT, Tsang FH, Shen J, Cheng CL, Tsang LH, Ho DW, Chiu DK, Lee JM, et al: RNA N6-methyladenosine methyltransferase-like 3 promotes liver cancer progression through YTHDF2-dependent posttranscriptional silencing of SOCS2. Hepatology. 67:2254–2270. 2018.PubMed/NCBI View Article : Google Scholar | |
Huang T, Liu Z, Zheng Y, Feng T, Gao Q and Zeng W: YTHDF2 promotes spermagonial adhesion through modulating MMPs decay via m6A/mRNA pathway. Cell Death Dis. 11(37)2020.PubMed/NCBI View Article : Google Scholar | |
Meyer KD, Patil DP, Zhou J, Zinoviev A, Skabkin MA, Elemento O, Pestova TV, Qian SB and Jaffrey SR: 5'UTR m(6)A promotes cap-independent translation. Cell. 163:999–1010. 2015.PubMed/NCBI View Article : Google Scholar | |
Hu L, Wang J, Huang H, Yu Y, Ding J, Yu Y, Li K, Wei D, Ye Q, Wang F, et al: YTHDF1 regulates pulmonary hypertension through translational control of MAGED1. Am J Respir Crit Care Med. 203:1158–1172. 2021.PubMed/NCBI View Article : Google Scholar | |
Shi H, Zhang X, Weng YL, Lu Z, Liu Y, Lu Z, Li J, Hao P, Zhang Y, Zhang F, et al: m6A facilitates hippocampus-dependent learning and memory through YTHDF1. Nature. 563:249–253. 2018.PubMed/NCBI View Article : Google Scholar | |
Nishizawa Y, Konno M, Asai A, Koseki J, Kawamoto K, Miyoshi N, Takahashi H, Nishida N, Haraguchi N, Sakai D, et al: Oncogene c-Myc promotes epitranscriptome m6A reader YTHDF1 expression in colorectal cancer. Oncotarget. 9:7476–7486. 2018.PubMed/NCBI View Article : Google Scholar | |
Zhao X, Chen Y, Mao Q, Jiang X, Jiang W, Chen J, Xu W, Zhong L and Sun X: Overexpression of YTHDF1 is associated with poor prognosis in patients with hepatocellular carcinoma. Cancer Biomark. 21:859–868. 2018.PubMed/NCBI View Article : Google Scholar | |
Zhang Y, Wang X, Zhang X, Wang J, Ma Y, Zhang L and Cao X: RNA-binding protein YTHDF3 suppresses interferon-dependent antiviral responses by promoting FOXO3 translation. Proc Natl Acad Sci USA. 116:976–981. 2019.PubMed/NCBI View Article : Google Scholar | |
Ni W, Yao S, Zhou Y, Liu Y, Huang P, Zhou A, Liu J, Che L and Li J: Long noncoding RNA GAS5 inhibits progression of colorectal cancer by interacting with and triggering YAP phosphorylation and degradation and is negatively regulated by the m6A reader YTHDF3. Mol Cancer. 18(143)2019.PubMed/NCBI View Article : Google Scholar | |
Jurczyszak D, Zhang W, Terry SN, Kehrer T, Bermúdez González MC, McGregor E, Mulder LCF, Eckwahl MJ, Pan T and Simon V: HIV protease cleaves the antiviral m6A reader protein YTHDF3 in the viral particle. PLoS Pathog. 16(e1008305)2020.PubMed/NCBI View Article : Google Scholar | |
Xiao W, Adhikari S, Dahal U, Chen YS, Hao YJ, Sun BF, Sun HY, Li A, Ping XL, Lai WY, et al: Nuclear m(6)A reader YTHDC1 regulates mRNA splicing. Mol Cell. 61:507–519. 2016.PubMed/NCBI View Article : Google Scholar | |
Luxton HJ, Simpson BS, Mills IG, Brindle NR, Ahmed Z, Stavrinides V, Heavey S, Stamm S and Whitaker HC: The oncogene metadherin interacts with the known splicing proteins YTHDC1, Sam68 and T-STAR and plays a novel role in alternative mRNA splicing. Cancers (Basel). 11(1233)2019.PubMed/NCBI View Article : Google Scholar | |
Kasowitz SD, Ma J, Anderson SJ, Leu NA, Xu Y, Gregory BD, Schultz RM and Wang PJ: Nuclear m6A reader YTHDC1 regulates alternative polyadenylation and splicing during mouse oocyte development. PLoS Genet. 14(e1007412)2018.PubMed/NCBI View Article : Google Scholar | |
Mao Y, Dong L, Liu XM, Guo J, Ma H, Shen B and Qian SB: m6A in mRNA coding regions promotes translation via the RNA helicase-containing YTHDC2. Nat Commun. 10(5332)2019.PubMed/NCBI View Article : Google Scholar | |
Tanabe A, Tanikawa K, Tsunetomi M, Takai K, Ikeda H, Konno J, Torigoe T, Maeda H, Kutomi G, Okita K, et al: RNA helicase YTHDC2 promotes cancer metastasis via the enhancement of the efficiency by which HIF-1α mRNA is translated. Cancer Lett. 376:34–42. 2016.PubMed/NCBI View Article : Google Scholar | |
Kretschmer J, Rao H, Hackert P, Sloan KE, Hobartner C and Bohnsack MT: The m6A reader protein YTHDC2 interacts with the small ribosomal subunit and the 5'-3' exoribonuclease XRN1. RNA. 24:1339–1350. 2018.PubMed/NCBI View Article : Google Scholar | |
Nakano M, Ondo K, Takemoto S, Fukami T and Nakajima M: Methylation of adenosine at the N6 position post-transcriptionally regulates hepatic P450s expression. Biochem Pharmacol. 171(113697)2020.PubMed/NCBI View Article : Google Scholar | |
Bailey AS, Batista PJ, Gold RS, Chen YG, de Rooij DG, Chang HY and Fuller MT: The conserved RNA helicase YTHDC2 regulates the transition from proliferation to differentiation in the germline. eLife. 6(e26116)2017.PubMed/NCBI View Article : Google Scholar | |
Tanabe A, Konno J, Tanikawa K and Sahara H: Transcriptional machinery of TNF-α-inducible YTH domain containing 2 (YTHDC2) gene. Gene. 535:24–32. 2014.PubMed/NCBI View Article : Google Scholar | |
Alarcon CR, Goodarzi H, Lee H, Liu X, Tavazoie S and Tavazoie SF: HNRNPA2B1 is a mediator of m(6)A-dependent nuclear RNA processing events. Cell. 162:1299–1308. 2015.PubMed/NCBI View Article : Google Scholar | |
Huang H, Weng H, Sun W, Qin X, Shi H, Wu H, Zhao BS, Mesquita A, Liu C, Yuan CL, et al: Recognition of RNA N6-methyladenosine by IGF2BP proteins enhances mRNA stability and translation. Nat Cell Biol. 20:285–295. 2018.PubMed/NCBI View Article : Google Scholar | |
Srivastava M and Deal C: Osteoporosis in elderly: Prevention and treatment. Clin Geriatr Med. 18:529–555. 2002.PubMed/NCBI View Article : Google Scholar | |
Langdahl BL: Overview of treatment approaches to osteoporosis. Br J Pharmacol. 178:1891–1906. 2021.PubMed/NCBI View Article : Google Scholar | |
Rosen CJ and Bouxsein ML: Mechanisms of disease: Is osteoporosis the obesity of bone? Nat Clin Pract Rheumatol. 2:35–43. 2006.PubMed/NCBI View Article : Google Scholar | |
Raisz LG: Pathogenesis of osteoporosis: Concepts, conflicts, and prospects. J Clin Invest. 115:3318–3325. 2005.PubMed/NCBI View Article : Google Scholar | |
Palmieri D, Valli M, Viglio S, Ferrari N, Ledda B, Volta C and Manduca P: Osteoblasts extracellular matrix induces vessel like structures through glycosylated collagen I. Exp Cell Res. 316:789–799. 2010.PubMed/NCBI View Article : Google Scholar | |
DeNichilo MO, Shoubridge AJ, Panagopoulos V, Liapis V, Zysk A, Zinonos I, Hay S, Atkins GJ, Findlay DM and Evdokiou A: Peroxidase enzymes regulate collagen biosynthesis and matrix mineralization by cultured human osteoblasts. Calcif Tissue Int. 98:294–305. 2016.PubMed/NCBI View Article : Google Scholar | |
Long F: Building strong bones: Molecular regulation of the osteoblast lineage. Nat Rev Mol Cell Biol. 13:27–38. 2011.PubMed/NCBI View Article : Google Scholar | |
Boyle WJ, Simonet WS and Lacey DL: Osteoclast differentiation and activation. Nature. 423:337–342. 2003.PubMed/NCBI View Article : Google Scholar | |
Villaseñor A, Aedo-Martín D, Obeso D, Erjavec I, Rodríguez-Coira J, Buendía I, Ardura JA, Barbas C and Gortazar AR: Metabolomics reveals citric acid secretion in mechanically-stimulated osteocytes is inhibited by high glucose. Sci Rep. 9(2295)2019.PubMed/NCBI View Article : Google Scholar | |
Dallas SL, Prideaux M and Bonewald LF: The osteocyte: An endocrine cell... and more. Endocr Rev. 34:658–690. 2013.PubMed/NCBI View Article : Google Scholar | |
Chen Q, Shou P, Zheng C, Jiang M, Cao G, Yang Q, Cao J, Xie N, Velletri T, Zhang X, et al: Fate decision of mesenchymal stem cells: Adipocytes or osteoblasts? Cell Death Differ. 23:1128–1139. 2016.PubMed/NCBI View Article : Google Scholar | |
Kawai M, Devlin MJ and Rosen CJ: Fat targets for skeletal health. Nat Rev Rheumatol. 5:365–372. 2009.PubMed/NCBI View Article : Google Scholar | |
Rosen CJ, Ackert-Bicknell C, Rodriguez JP and Pino AM: Marrow fat and the bone microenvironment: Developmental, functional, and pathological implications. Crit Rev Eukaryot Gene Expr. 19:109–124. 2009.PubMed/NCBI View Article : Google Scholar | |
Scheller EL and Rosen CJ: What's the matter with MAT? Marrow adipose tissue, metabolism, and skeletal health. Ann N Y Acad Sci. 1311:14–30. 2014.PubMed/NCBI View Article : Google Scholar | |
Garcia-Gomez MC and Vilahur G: Osteoporosis and vascular calcification: A shared scenario. Clin Investig Arterioscler. 32:33–42. 2020.PubMed/NCBI View Article : Google Scholar | |
Chen X, Hua W, Huang X, Chen Y, Zhang J and Li G: Regulatory role of RNA N6-methyladenosine modification in bone biology and osteoporosis. Front Endocrinol (Lausanne). 10(911)2019.PubMed/NCBI View Article : Google Scholar | |
Wu Y, Xie L, Wang M, Xiong Q, Guo Y, Liang Y, Li J, Sheng R, Deng P, Wang Y, et al: Mettl3-mediated m6A RNA methylation regulates the fate of bone marrow mesenchymal stem cells and osteoporosis. Nat Commun. 9(4772)2018.PubMed/NCBI View Article : Google Scholar | |
Yu J, Shen L, Liu Y, Ming H, Zhu X, Chu M and Lin J: The m6A methyltransferase METTL3 cooperates with demethylase ALKBH5 to regulate osteogenic differentiation through NF-κB signaling. Mol Cell Biochem. 463:203–210. 2020.PubMed/NCBI View Article : Google Scholar | |
Tian C, Huang Y, Li Q, Feng Z and Xu Q: Mettl3 regulates osteogenic differentiation and alternative splicing of vegfa in bone marrow mesenchymal stem cells. Int J Mol Sci. 20(551)2019.PubMed/NCBI View Article : Google Scholar | |
Busilacchi A, Gigante A, Mattioli-Belmonte M, Manzotti S and Muzzarelli RA: Chitosan stabilizes platelet growth factors and modulates stem cell differentiation toward tissue regeneration. Carbohydr Polym. 98:665–676. 2013.PubMed/NCBI View Article : Google Scholar | |
Hu K and Olsen BR: Osteoblast-derived VEGF regulates osteoblast differentiation and bone formation during bone repair. J Clin Invest. 126:509–526. 2016.PubMed/NCBI View Article : Google Scholar | |
Yan G, Yuan Y, He M, Gong R, Lei H, Zhou H, Wang W, Du W, Ma T, Liu S, et al: m6A methylation of precursor-miR-320/RUNX2 controls osteogenic potential of bone marrow-derived mesenchymal stem cells. Mol Ther Nucleic Acids. 19:421–436. 2020.PubMed/NCBI View Article : Google Scholar | |
Li D, Cai L, Meng R, Feng Z and Xu Q: METTL3 modulates osteoclast differentiation and function by controlling RNA stability and nuclear export. Int J Mol Sci. 21(1660)2020.PubMed/NCBI View Article : Google Scholar | |
Gerken T, Girard CA, Tung YC, Webby CJ, Saudek V, Hewitson KS, Yeo GS, McDonough MA, Cunliffe S, McNeill LA, et al: The obesity-associated FTO gene encodes a 2-oxoglutarate-dependent nucleic acid demethylase. Science. 318:1469–1472. 2007.PubMed/NCBI View Article : Google Scholar | |
Eyre DR: Bone biomarkers as tools in osteoporosis management. Spine (Phila Pa 1976). 22 (24 Suppl):17S–24S. 1997.PubMed/NCBI View Article : Google Scholar | |
Takada I, Kouzmenko AP and Kato S: Wnt and PPARgamma signaling in osteoblastogenesis and adipogenesis. Nat Rev Rheumatol. 5:442–447. 2009.PubMed/NCBI View Article : Google Scholar | |
Shen GS, Zhou HB, Zhang H, Chen B, Liu ZP, Yuan Y, Zhou XZ and Xu YJ: The GDF11-FTO-PPARγ axis controls the shift of osteoporotic MSC fate to adipocyte and inhibits bone formation during osteoporosis. Biochim Biophys Acta Mol Basis Dis. 1864:3644–3654. 2018.PubMed/NCBI View Article : Google Scholar | |
Zhang Q, Riddle RC, Yang Q, Rosen CR, Guttridge DC, Dirckx N, Faugere MC, Farber CR and Clemens TL: The RNA demethylase FTO is required for maintenance of bone mass and functions to protect osteoblasts from genotoxic damage. Proc Natl Acad Sci USA. 116:17980–17989. 2019.PubMed/NCBI View Article : Google Scholar | |
Guo Y, Liu H, Yang TL, Li SM, Li SK, Tian Q, Liu YJ and Deng HW: The fat mass and obesity associated gene, FTO, is also associated with osteoporosis phenotypes. PLoS One. 6(e27312)2011.PubMed/NCBI View Article : Google Scholar | |
Li Y, Yang F, Gao M, Gong R, Jin M, Liu T, Sun Y, Fu Y, Huang Q, Zhang W, et al: miR-149-3p regulates the switch between adipogenic and osteogenic differentiation of BMSCs by targeting FTO. Mol Ther Nucleic Acids. 17:590–600. 2019.PubMed/NCBI View Article : Google Scholar | |
Mannerstrom B, Kornilov R, Abu-Shahba AG, Chowdhury IM, Sinha S, Seppänen-Kaijansinkko R and Kaur S: Epigenetic alterations in mesenchymal stem cells by osteosarcoma-derived extracellular vesicles. Epigenetics. 14:352–364. 2019.PubMed/NCBI View Article : Google Scholar | |
Lorenzo J: Cytokines and bone: Osteoimmunology. Handb Exp Pharmacol. 262:177–230. 2020.PubMed/NCBI View Article : Google Scholar | |
Zhang Y, Gu X, Li D, Cai L and Xu Q: METTL3 regulates osteoblast differentiation and inflammatory response via Smad signaling and MAPK Signaling. Int J Mol Sci. 21(199)2019.PubMed/NCBI View Article : Google Scholar | |
Yu R, Li Q, Feng Z, Cai L and Xu Q: m6A reader YTHDF2 regulates LPS-induced inflammatory response. Int J Mol Sci. 20(1323)2019.PubMed/NCBI View Article : Google Scholar | |
Wang T and He C: TNF-α and IL-6: The link between immune and bone system. Curr Drug Targets. 20:213–227. 2020.PubMed/NCBI View Article : Google Scholar | |
Mathew AJ and Ravindran V: Infections and arthritis. Best Pract Res Clin Rheumatol. 28:935–959. 2014.PubMed/NCBI View Article : Google Scholar | |
Harth M and Nielson WR: Pain and affective distress in arthritis: Relationship to immunity and inflammation. Expert Rev Clin Immunol. 15:541–552. 2019.PubMed/NCBI View Article : Google Scholar | |
Parkinson L, Waters DL and Franck L: Systematic review of the impact of osteoarthritis on health outcomes for comorbid disease in older people. Osteoarthritis Cartilage. 25:1751–1770. 2017.PubMed/NCBI View Article : Google Scholar | |
Glyn-Jones S, Palmer AJ, Agricola R, Price AJ, Vincent TL, Weinans H and Carr AJ: Osteoarthritis. Lancet. 386:376–387. 2015.PubMed/NCBI View Article : Google Scholar | |
Abramoff B and Caldera FE: Osteoarthritis: Pathology, diagnosis, and treatment options. Med Clin North Am. 104:293–311. 2020.PubMed/NCBI View Article : Google Scholar | |
Liossis SN and Tsokos GC: Cellular immunity in osteoarthritis: Novel concepts for an old disease. Clin Diagn Lab Immunol. 5:427–429. 1998.PubMed/NCBI View Article : Google Scholar | |
Sakata M, Tsuruha JI, Masuko-Hongo K, Nakamura H, Matsui T, Sudo A, Nishioka K and Kato T: Autoantibodies to osteopontin in patients with osteoarthritis and rheumatoid arthritis. J Rheumatol. 28:1492–1495. 2001.PubMed/NCBI | |
Walker J, Gordon T, Lester S, Downie-Doyle S, McEvoy D, Pile K, Waterman S and Rischmueller M: Increased severity of lower urinary tract symptoms and daytime somnolence in primary Sjogren's syndrome. J Rheumatol. 30:2406–2412. 2003.PubMed/NCBI | |
Kato T, Xiang Y, Nakamura H and Nishioka K: Neoantigens in osteoarthritic cartilage. Curr Opin Rheumatol. 16:604–608. 2004.PubMed/NCBI View Article : Google Scholar | |
Zhao W, Wang T, Luo Q, Chen Y, Leung VY, Wen C, Shah MF, Pan H, Chiu K, Cao X and Lu WW: Cartilage degeneration and excessive subchondral bone formation in spontaneous osteoarthritis involves altered TGF-β signaling. J Orthop Res. 34:763–770. 2016.PubMed/NCBI View Article : Google Scholar | |
Liu Q, Li M, Jiang L, Jiang R and Fu B: METTL3 promotes experimental osteoarthritis development by regulating inflammatory response and apoptosis in chondrocyte. Biochem Biophys Res Commun. 516:22–27. 2019.PubMed/NCBI View Article : Google Scholar | |
Goldring SR and Goldring MB: The role of cytokines in cartilage matrix degeneration in osteoarthritis. Clin Orthop Relat Res. (427 Suppl):S27–S36. 2004.PubMed/NCBI View Article : Google Scholar | |
Yang F, Zhou S, Wang C, Huang Y, Li H, Wang Y, Zhu Z, Tang J and Yan M: Epigenetic modifications of interleukin-6 in synovial fibroblasts from osteoarthritis patients. Sci Rep. 7(43592)2017.PubMed/NCBI View Article : Google Scholar | |
Guo Q, Wang Y, Xu D, Nossent J, Pavlos NJ and Xu J: Rheumatoid arthritis: Pathological mechanisms and modern pharmacologic therapies. Bone Res. 6(15)2018.PubMed/NCBI View Article : Google Scholar | |
Li HB, Tong J, Zhu S, Batista PJ, Duffy EE, Zhao J, Bailis W, Cao G, Kroehling L, Chen Y, et al: m6A mRNA methylation controls T cell homeostasis by targeting the IL-7/STAT5/SOCS pathways. Nature. 548:338–342. 2017.PubMed/NCBI View Article : Google Scholar | |
Wang J, Yan S, Lu H, Wang S and Xu D: METTL3 attenuates LPS-induced inflammatory response in macrophages via NF-κB signaling pathway. Mediators Inflamm. 2019(3120391)2019.PubMed/NCBI View Article : Google Scholar | |
Mo XB, Zhang YH and Lei SF: Genome-wide identification of N6-methyladenosine (m6A) SNPs associated with rheumatoid arthritis. Front Genet. 9(299)2018.PubMed/NCBI View Article : Google Scholar | |
Zheng Y, Nie P, Peng D, He Z, Liu M, Xie Y, Miao Y, Zuo Z and Ren J: m6AVar: A database of functional variants involved in m6A modification. Nucleic Acids Res. 46:D139–D145. 2018.PubMed/NCBI View Article : Google Scholar | |
Smolen JS, Aletaha D, Barton A, Burmester GR, Emery P, Firestein GS, Kavanaugh A, McInnes IB, Solomon DH, Strand V and Yamamoto K: Rheumatoid arthritis. Nat Rev Dis Primers. 4(18001)2018.PubMed/NCBI View Article : Google Scholar | |
Kondo Y, Yokosawa M, Kaneko S, Furuyama K, Segawa S, Tsuboi H, Matsumoto I and Sumida T: Review: Transcriptional regulation of CD4+ T cell differentiation in experimentally induced arthritis and rheumatoid arthritis. Arthritis Rheumatol. 70:653–661. 2018.PubMed/NCBI View Article : Google Scholar | |
Noack M and Miossec P: Th17 and regulatory T cell balance in autoimmune and inflammatory diseases. Autoimmun Rev. 13:668–677. 2014.PubMed/NCBI View Article : Google Scholar | |
Hunt L, Hensor EM, Nam J, Burska AN, Parmar R, Emery P and Ponchel F: T cell subsets: An immunological biomarker to predict progression to clinical arthritis in ACPA-positive individuals. Ann Rheum Dis. 75:1884–1889. 2016.PubMed/NCBI View Article : Google Scholar | |
Kumar BV, Connors TJ and Farber DL: Human T cell development, localization, and function throughout life. Immunity. 48:202–213. 2018.PubMed/NCBI View Article : Google Scholar | |
Abada A and Elazar Z: Getting ready for building: Signaling and autophagosome biogenesis. Embo Rep. 15:839–852. 2014.PubMed/NCBI View Article : Google Scholar | |
Wang DW, Wu LW, Cao Y, Yang L, Liu W, E XQ, Ji G and Bi ZG: A novel mechanism of mTORC1-mediated serine/glycine metabolism in osteosarcoma development. Cell Signal. 29:107–114. 2017.PubMed/NCBI View Article : Google Scholar | |
Miao W, Chen J, Jia L, Ma J and Song D: The m6A methyltransferase METTL3 promotes osteosarcoma progression by regulating the m6A level of LEF1. Biochem Biophys Res Commun. 516:719–725. 2019.PubMed/NCBI View Article : Google Scholar | |
Nguyen DX, Chiang AC, Zhang XH, Kim JY, Kris MG, Ladanyi M, Gerald WL and Massagué J: WNT/TCF signaling through LEF1 and HOXB9 mediates lung adenocarcinoma metastasis. Cell. 138:51–62. 2009.PubMed/NCBI View Article : Google Scholar | |
Jia P, Wei G, Zhou C, Gao Q, Wu Y, Sun X and Li X: Upregulation of miR-212 inhibits migration and tumorigenicity and inactivates Wnt/β-catenin signaling in human hepatocellular carcinoma. Technol Cancer Res Treat. 17(1533034618765221)2018.PubMed/NCBI View Article : Google Scholar | |
Wu L, Zhao JC, Kim J, Jin HJ, Wang CY and Yu J: ERG is a critical regulator of Wnt/LEF1 signaling in prostate cancer. Cancer Res. 73:6068–6079. 2013.PubMed/NCBI View Article : Google Scholar | |
Ling Z, Chen L and Zhao J: m6A-dependent up-regulation of DRG1 by METTL3 and ELAVL1 promotes growth, migration, and colony formation in osteosarcoma. Biosci Rep. 40(BSR20200282)2020.PubMed/NCBI View Article : Google Scholar | |
Coker H, Wei G and Brockdorff N: m6A modification of non-coding RNA and the control of mammalian gene expression. Biochim Biophys Acta Gene Regul Mech. 1862:310–318. 2019.PubMed/NCBI View Article : Google Scholar | |
Li J, Rao B, Yang J, Liu L, Huang M, Liu X, Cui G, Li C, Han Q, Yang H, et al: Dysregulated m6A-related regulators are associated with tumor metastasis and poor prognosis in osteosarcoma. Front Oncol. 10(769)2020.PubMed/NCBI View Article : Google Scholar | |
Fan D, Xia Y, Lu C, Ye Q, Xi X, Wang Q, Wang Z, Wang C and Xiao C: Regulatory role of the RNA N6-methyladenosine modification in immunoregulatory cells and immune-related bone homeostasis associated with rheumatoid arthritis. Front Cell Dev Biol. 8(627893)2020.PubMed/NCBI View Article : Google Scholar | |
Liu T, Wei Q, Jin J, Luo Q, Liu Y, Yang Y, Cheng C, Li L, Pi J, Si Y, et al: The m6A reader YTHDF1 promotes ovarian cancer progression via augmenting EIF3C translation. Nucleic Acids Res. 48:3816–3831. 2020.PubMed/NCBI View Article : Google Scholar | |
Ma Z and Ji J: N6-methyladenosine (m6A) RNA modification in cancer stem cells. Stem Cells: Sep 27, 2020 (Epub Ahead of Print). | |
Patil DP, Pickering BF and Jaffrey SR: Reading m6A in the transcriptome: m6A-binding proteins. Trends Cell Biol. 28:113–127. 2018.PubMed/NCBI View Article : Google Scholar | |
Dai DJ, Wang HY, Zhu LY, Jin HC and Wang X: N6-methyladenosine links RNA metabolism to cancer progression. Cell Death Dis. 9(124)2018.PubMed/NCBI View Article : Google Scholar | |
Wang HF, Kuang MJ, Han SJ, Wang AB, Qiu J, Wang F, Tan BY and Wang DC: BMP2 modified by the m6A demethylation enzyme ALKBH5 in the ossification of the ligamentum flavum through the AKT signaling pathway. Calcified Tissue Int. 106:486–493. 2020.PubMed/NCBI View Article : Google Scholar | |
Zhang W, He L, Liu Z, Ren X, Qi L, Wan L, Wang W, Tu C and Li Z: Multifaceted functions and novel insight into the regulatory role of RNA N6-methyladenosine modification in musculoskeletal disorders. Front Cell Dev Biol. 8(870)2020.PubMed/NCBI View Article : Google Scholar |