1
|
Chou CT, Yang JS and Lee MR: Apoptosis in
rheumatoid arthritis-expression of Fas, Fas-L, p53, and Bcl-2 in
rheumatoid synovial tissues. J Pathol. 193:110–116. 2001.PubMed/NCBI View Article : Google Scholar
|
2
|
Tak PP, Zvaifler NJ, Green DR and
Firestein GS: Rheumatoid arthritis and p53: How oxidative stress
might alter the course of inflammatory diseases. Immunol Today.
21:78–82. 2000.PubMed/NCBI View Article : Google Scholar
|
3
|
Yamanishi Y, Boyle DL, Rosengren S, Green
DR, Zvaifler NJ and Firestein GS: Regional analysis of p53
mutations in rheumatoid arthritis synovium. Proc Natl Acad Sci USA.
99:10025–10030. 2002.PubMed/NCBI View Article : Google Scholar
|
4
|
Bustamante MF, Garcia-Carbonell R,
Whisenant KD and Guma M: Fibroblast-like synoviocyte metabolism in
the pathogenesis of rheumatoid arthritis. Arthritis Res Ther.
19(110)2017.PubMed/NCBI View Article : Google Scholar
|
5
|
Baier A, Meineckel I, Gay S and Pap T:
Apoptosis in rheumatoid arthritis. Curr Opin Rheumatol. 15:274–279.
2003.PubMed/NCBI View Article : Google Scholar
|
6
|
Takami N, Osawa K, Miura Y, Komai K,
Taniguchi M, Shiraishi M, Sato K, Iguchi T, Shiozawa K, Hashiramoto
A and Shiozawa S: Hypermethylated promoter region of DR3, the death
receptor 3 gene, in rheumatoid arthritis synovial cells. Arthritis
Rheum. 54:779–787. 2006.PubMed/NCBI View Article : Google Scholar
|
7
|
Peng SL: Fas (CD95)-related apoptosis and
rheumatoid arthritis. Rheumatology (Oxford). 45:26–30.
2006.PubMed/NCBI View Article : Google Scholar
|
8
|
Wakisaka S, Suzuki N, Takeba Y, Shimoyama
Y, Nagafuchi H, Takeno M, Saito N, Yokoe T, Kaneko A, Asai T and
Sakane T: Modulation by proinflammatory cytokines of Fas/Fas
ligand-mediated apoptotic cell death of synovial cells in patients
with rheumatoid arthritis (RA). Clin Exp Immunol. 114:119–128.
1998.PubMed/NCBI View Article : Google Scholar
|
9
|
Croft M and Siegel RM: Beyond TNF: TNF
superfamily cytokines as targets for the treatment of rheumatic
diseases. Nat Rev Rheumatol. 13:217–233. 2017.PubMed/NCBI View Article : Google Scholar
|
10
|
Schedel J, Gay RE, Kuenzler P, Seemayer C,
Simmen B, Michel BA and Gay S: FLICE-inhibitory protein expression
in synovial fibroblasts and at sites of cartilage and bone erosion
in rheumatoid arthritis. Arthritis Rheum. 46:1512–1518.
2002.PubMed/NCBI View Article : Google Scholar
|
11
|
Kobayashi T, Okamoto K, Kobata T, Hasunuma
T, Kato T, Hamada H and Nishioka K: Differential regulation of
Fas-mediated apoptosis of rheumatoid synoviocytes by tumor necrosis
factor alpha and basic fibroblast growth factor is associated with
the expression of apoptosis-related molecules. Arthritis Rheum.
43:1106–1114. 2000.PubMed/NCBI View Article : Google Scholar
|
12
|
Scaffidi C, Fulda S, Srinivasan A, Friesen
C, Li F, Tomaselli KJ, Debatin KM, Krammer PH and Peter ME: Two
CD95 (APO-1/Fas) signaling pathways. EMBO J. 17:1675–1687.
1998.PubMed/NCBI View Article : Google Scholar
|
13
|
Audo R, Calmon-Hamaty F, Papon L, Combe B,
Morel J and Hahne M: Distinct effects of soluble and membrane-bound
fas ligand on fibroblast-like synoviocytes from rheumatoid
arthritis patients. Arthritis Rheumatol. 66:3289–3299.
2014.PubMed/NCBI View Article : Google Scholar
|
14
|
Guegan JP and Legembre P: Nonapoptotic
functions of Fas/CD95 in the immune response. FEBS J. 285:809–827.
2018.PubMed/NCBI View Article : Google Scholar
|
15
|
Shi G, Wu Y, Zhang J and Wu J: Death decoy
receptor TR6/DcR3 inhibits T cell chemotaxis in vitro and in vivo.
J Immunol. 171:3407–3414. 2003.PubMed/NCBI View Article : Google Scholar
|
16
|
Pitti RM, Marsters SA, Lawrence DA, Roy M,
Kischkel FC, Dowd P, Huang A, Donahue CJ, Sherwood SW, Baldwin DT,
et al: Genomic amplification of a decoy receptor for Fas ligand in
lung and colon cancer. Nature. 396:699–703. 1998.PubMed/NCBI View
Article : Google Scholar
|
17
|
Tsuji S, Hosotani R, Yonehara S, Masui T,
Tulachan SS, Nakajima S, Kobayashi H, Koizumi M, Toyoda E, Ito D,
et al: Endogenous decoy receptor 3 blocks the growth inhibition
signals mediated by Fas ligand in human pancreatic adenocarcinoma.
Int J Cancer. 106:17–25. 2003.PubMed/NCBI View Article : Google Scholar
|
18
|
Yu KY, Kwon B, Ni J, Zhai Y, Ebner R and
Kwon BS: A newly identified member of tumor necrosis factor
receptor superfamily (TR6) suppresses LIGHT-mediated apoptosis. J
Biol Chem. 274:13733–13736. 1999.PubMed/NCBI View Article : Google Scholar
|
19
|
Migone TS, Zhang J, Luo X, Zhuang L, Chen
C, Hu B, Hong JS, Perry JW, Chen SF, Zhou JX, et al: TL1A is a
TNF-like ligand for DR3 and TR6/DcR3 and functions as a T cell
costimulator. Immunity. 16:479–492. 2002.PubMed/NCBI View Article : Google Scholar
|
20
|
Hayashi S, Miura Y, Nishiyama T, Mitani M,
Tateishi K, Sakai Y, Hashiramoto A, Kurosaka M, Shiozawa S and
Doita M: Decoy receptor 3 expressed in rheumatoid synovial
fibroblasts protects the cells against Fas-induced apoptosis.
Arthritis Rheum. 56:1067–1075. 2007.PubMed/NCBI View Article : Google Scholar
|
21
|
Takahashi M, Miura Y, Hayashi S, Tateishi
K, Fukuda K and Kurosaka M: DcR3-TL1A signalling inhibits
cytokine-induced proliferation of rheumatoid synovial fibroblasts.
Int J Mol Med. 28:423–427. 2011.PubMed/NCBI View Article : Google Scholar
|
22
|
Fukuda K, Miura Y, Maeda T, Hayashi S and
Kurosaka M: Interleukin12B is upregulated by decoy receptor 3 in
rheumatoid synovial fibroblasts. Mol Med Rep. 13:3647–3652.
2016.PubMed/NCBI View Article : Google Scholar
|
23
|
Fukuda K, Miura Y, Maeda T, Hayashi S and
Kuroda R: Decoy receptor 3 down-regulates centrosomal protein 70
kDa specifically in rheumatoid synovial fibroblasts. Mod Rheumatol.
28:287–292. 2018.PubMed/NCBI View Article : Google Scholar
|
24
|
Maeda T, Miura Y, Fukuda K, Hayashi S and
Kurosaka M: Decoy receptor 3 regulates the expression of tryptophan
hydroxylase 1 in rheumatoid synovial fibroblasts. Mol Med Rep.
12:5191–5196. 2015.PubMed/NCBI View Article : Google Scholar
|
25
|
Fukuda K, Miura Y, Maeda T, Takahashi M,
Hayashi S and Kurosaka M: Decoy receptor 3 regulates the expression
of various genes in rheumatoid arthritis synovial fibroblasts. Int
J Mol Med. 32:910–916. 2013.PubMed/NCBI View Article : Google Scholar
|
26
|
Fukuda K, Miura Y, Maeda T, Hayashi S and
Kuroda R: Expression profiling of genes in rheumatoid
fibroblast-like synoviocytes regulated by tumor necrosis
factor-like ligand 1A using cDNA microarray analysis. Biomed Rep.
1:1–5. 2019.PubMed/NCBI View Article : Google Scholar
|
27
|
Arnett FC, Edworthy SM, Bloch DA, McShane
DJ, Fries JF, Cooper NS, Healey LA, Kaplan SR, Liang MH, Luthra HS,
et al: The American Rheumatism Association 1987 revised criteria
for the classification of rheumatoid arthritis. Arthritis Rheum.
31:315–324. 1988.PubMed/NCBI View Article : Google Scholar
|
28
|
Chang Q, Peter ME and Grassi MA: Fas
ligand-Fas signaling participates in light-induced apoptotic death
in photoreceptor cells. Invest Ophthalmol Vis Sci. 53:3703–3716.
2012.PubMed/NCBI View Article : Google Scholar
|
29
|
Nitobe J, Yamaguchi S, Okuyama M, Nozaki
N, Sata M, Miyamoto T, Takeishi Y, Kubota I and Tomoike H: Reactive
oxygen species regulate FLICE inhibitory protein (FLIP) and
susceptibility to Fas-mediated apoptosis in cardiac myocytes.
Cardiovasc Res. 57:119–128. 2003.PubMed/NCBI View Article : Google Scholar
|
30
|
Thiel CT, Kraus C, Rauch A, Ekici AB,
Rautenstrauss B and Reis A: A new quantitative PCR multiplex assay
for rapid analysis of chromosome 17p11.2-12 duplications and
deletions leading to HMSN/HNPP. Eur J Hum Genet. 11:170–178.
2003.PubMed/NCBI View Article : Google Scholar
|
31
|
Choi YJ and Yun HK: Transcriptional
profiles of Rhizobium vitis-inoculated and salicylic acid-treated
‘Tamnara’ grapevines based on microarray analysis. J Plant
Biotechnol. 43:37–48. 2016.
|
32
|
Chang YC, Chen TC, Lee CT, Yang CY, Wang
HW, Wang CC and Hsieh SL: Epigenetic control of MHC class II
expression in tumor-associated macrophages by decoy receptor 3.
Blood. 111:5054–5063. 2008.PubMed/NCBI View Article : Google Scholar
|
33
|
Espinosa I, Catasus L, Canet B, D'Angelo
E, Munoz J and Prat J: Gene expression analysis identifies two
groups of ovarian high-grade serous carcinomas with different
prognosis. Mod Pathol. 24:846–854. 2011.PubMed/NCBI View Article : Google Scholar
|
34
|
Khan J, Simon R, Bittner M, Chen Y,
Leighton SB, Pohida T, Smith PD, Jiang Y, Gooden GC, Trent JM, et
al: Gene expression profiling of alveolar rhabdomyosarcoma with
cDNA microarrays. Cancer Res. 58:5009–5013. 1998.PubMed/NCBI
|
35
|
Whitney LW, Becker KG, Tresser NJ,
Caballero-Ramos CI, Munson PJ, Prabhu VV, Trent JM, McFarland HF
and Biddison WE: Analysis of gene expression in mutiple sclerosis
lesions using cDNA microarrays. Ann Neurol. 46:425–428.
1999.PubMed/NCBI View Article : Google Scholar
|
36
|
Li J, Yang S, Lu S, Zhao H, Feng J, Li W,
Ma F, Ren Q, Liu B, Zhang L, et al: Differential gene expression
profile associated with the abnormality of bone marrow mesenchymal
stem cells in aplastic anemia. PLoS One. 7(e47764)2012.PubMed/NCBI View Article : Google Scholar
|
37
|
van der Pouw Kraan TC, van Gaalen FA,
Kasperkovitz PV, Verbeet NL, Smeets TJ, Kraan MC, Fero M, Tak PP,
Huizinga TW, Pieterman E, et al: Rheumatoid arthritis is a
heterogeneous disease: Evidence for differences in the activation
of the STAT-1 pathway between rheumatoid tissues. Arthritis Rheum.
48:2132–2145. 2003.PubMed/NCBI View Article : Google Scholar
|
38
|
Lee SK, Jeon EK, Kim YJ, Seo SH, Kim CD,
Lim JS and Lee JH: A global gene expression analysis of the
peripheral blood mononuclear cells reveals the gene expression
signature in psoriasis. Ann Dermatol. 21:237–242. 2009.PubMed/NCBI View Article : Google Scholar
|
39
|
Heller RA, Schena M, Chai A, Shalon D,
Bedilion T, Gilmore J, Woolley DE and Davis RW: Discovery and
analysis of inflammatory disease-related genes using cDNA
microarrays. Proc Natl Acad Sci USA. 94:2150–2155. 1997.PubMed/NCBI View Article : Google Scholar
|
40
|
Bertin S, Lozano-Ruiz B, Bachiller V,
Garcia-Martinez I, Herdman S, Zapater P, Frances R, Such J, Lee J,
Raz E and González-Navajas JM: Dual-specificity phosphatase 6
regulates CD4+ T-cell functions and restrains spontaneous colitis
in IL-10-deficient mice. Mucosal Immunol. 8:505–515.
2015.PubMed/NCBI View Article : Google Scholar
|
41
|
Hsu SF, Lee YB, Lee YC, Chung AL, Apaya
MK, Shyur LF, Cheng CF, Ho FM and Meng TC: Dual specificity
phosphatase DUSP6 promotes endothelial inflammation through
inducible expression of ICAM-1. FEBS J. 285:1593–1610.
2018.PubMed/NCBI View Article : Google Scholar
|
42
|
Patel RD, Kim DJ, Peters JM and Perdew GH:
The aryl hydrocarbon receptor directly regulates expression of the
potent mitogen epiregulin. Toxicol Sci. 89:75–82. 2006.PubMed/NCBI View Article : Google Scholar
|
43
|
Murakami M, Harada M, Kamimura D, Ogura H,
Okuyama Y, Kumai N, Okuyama A, Singh R, Jiang JJ, Atsumi T, et al:
Disease-association analysis of an inflammation-related feedback
loop. Cell Rep. 3:946–959. 2013.PubMed/NCBI View Article : Google Scholar
|
44
|
Harada M, Kamimura D, Arima Y, Kohsaka H,
Nakatsuji Y, Nishida M, Atsumi T, Meng J, Bando H, Singh R, et al:
Temporal expression of growth factors triggered by epiregulin
regulates inflammation development. J Immunol. 194:1039–1046.
2015.PubMed/NCBI View Article : Google Scholar
|
45
|
Lahoti TS, Hughes JM, Kusnadi A, John K,
Zhu B, Murray IA, Gowda K, Peters JM, Amin SG and Perdew GH: Aryl
hydrocarbon receptor antagonism attenuates growth factor
expression, proliferation, and migration in fibroblast-like
synoviocytes from patients with rheumatoid arthritis. J Pharmacol
Exp Ther. 348:236–245. 2014.PubMed/NCBI View Article : Google Scholar
|
46
|
Yin T, Taga T, Tsang ML, Yasukawa K,
Kishimoto T and Yang YC: Involvement of IL-6 signal transducer
gp130 in IL-11-mediated signal transduction. J Immunol.
151:2555–2561. 1993.PubMed/NCBI
|
47
|
Trepicchio WL, Bozza M, Pedneault G and
Dorner AJ: Recombinant human IL-11 attenuates the inflammatory
response through down-regulation of proinflammatory cytokine
release and nitric oxide production. J Immunol. 157:3627–3634.
1996.PubMed/NCBI
|
48
|
Hermann JA, Hall MA, Maini RN, Feldmann M
and Brennan FM: Important immunoregulatory role of interleukin-11
in the inflammatory process in rheumatoid arthritis. Arthritis
Rheum. 41:1388–1397. 1998.PubMed/NCBI View Article : Google Scholar
|
49
|
Elshabrawy HA, Volin MV, Essani AB, Chen
Z, McInnes IB, Van Raemdonck K, Palasiewicz K, Arami S, Gonzalez M,
Ashour HM, et al: IL-11 facilitates a novel connection between RA
joint fibroblasts and endothelial cells. Angiogenesis. 21:215–228.
2018.PubMed/NCBI View Article : Google Scholar
|
50
|
Murakami K, Kobayashi Y, Uehara S, Suzuki
T, Koide M, Yamashita T, Nakamura M, Takahashi N, Kato H, Udagawa N
and Nakamura Y: A Jak1/2 inhibitor, baricitinib, inhibits
osteoclastogenesis by suppressing RANKL expression in osteoblasts
in vitro. PLoS One. 12(e0181126)2017.PubMed/NCBI View Article : Google Scholar
|
51
|
Parri M, Pietrovito L, Grandi A,
Campagnoli S, De Camilli E, Bianchini F, Marchio S, Bussolino F,
Jin B, Sarmientos P, et al: Angiopoietin-like 7, a novel
pro-angiogenetic factor over-expressed in cancer. Angiogenesis.
17:881–896. 2014.PubMed/NCBI View Article : Google Scholar
|
52
|
Qian T, Wang K, Cui J, He Y and Yang Z:
Angiopoietin-Like Protein 7 promotes an inflammatory phenotype in
RAW264.7 macrophages through the P38 MAPK signaling pathway.
Inflammation. 39:974–985. 2016.PubMed/NCBI View Article : Google Scholar
|
53
|
Lao M, Shi M, Zou Y, Huang M, Ye Y, Qiu Q,
Xiao Y, Zeng S, Liang L, Yang X and Xu H: Protein inhibitor of
activated STAT3 regulates migration, invasion, and activation of
Fibroblast-like synoviocytes in rheumatoid arthritis. J Immunol.
196:596–606. 2016.PubMed/NCBI View Article : Google Scholar
|
54
|
Muller S, Ledl A and Schmidt D: SUMO: A
regulator of gene expression and genome integrity. Oncogene.
23:1998–2008. 2004.PubMed/NCBI View Article : Google Scholar
|
55
|
Schmidt D and Muller S: PIAS/SUMO: New
partners in transcriptional regulation. Cell Mol Life Sci.
60:2561–2574. 2003.PubMed/NCBI View Article : Google Scholar
|
56
|
Wu Y, Guo Z, Wu H, Wang X, Yang L, Shi X,
Du J, Tang B, Li W, Yang L and Zhang Y: SUMOylation represses Nanog
expression via modulating transcription factors Oct4 and Sox2. PLoS
One. 7(e39606)2012.PubMed/NCBI View Article : Google Scholar
|
57
|
Chowdhury D, Singh A, Gupta A, Tulsawani
R, Meena RC and Chakrabarti A: p38 MAPK pathway-dependent
SUMOylation of Elk-1 and phosphorylation of PIAS2 correlate with
the downregulation of Elk-1 activity in heat-stressed HeLa cells.
Cell Stress Chaperones. 24:393–407. 2019.PubMed/NCBI View Article : Google Scholar
|
58
|
Bobacz K, Gruber R, Soleiman A, Graninger
WB, Luyten FP and Erlacher L: Cartilage-derived morphogenetic
protein-1 and -2 are endogenously expressed in healthy and
osteoarthritic human articular chondrocytes and stimulate matrix
synthesis. Osteoarthritis Cartilage. 10:394–401. 2002.PubMed/NCBI View Article : Google Scholar
|
59
|
Hotten GC, Matsumoto T, Kimura M, Bechtold
RF, Kron R, Ohara T, Tanaka H, Satoh Y, Okazaki M, Shirai T, et al:
Recombinant human growth/differentiation factor 5 stimulates
mesenchyme aggregation and chondrogenesis responsible for the
skeletal development of limbs. Growth Factors. 13:65–74.
1996.PubMed/NCBI View Article : Google Scholar
|
60
|
Liu FL, Lin LH, Sytwu HK and Chang DM:
GDF-5 is suppressed by IL-1beta and enhances TGF-beta3-mediated
chondrogenic differentiation in human rheumatoid fibroblast-like
synoviocytes. Exp Mol Pathol. 88:163–170. 2010.PubMed/NCBI View Article : Google Scholar
|
61
|
Miyamoto Y, Mabuchi A, Shi D, Kubo T,
Takatori Y, Saito S, Fujioka M, Sudo A, Uchida A, Yamamoto S, et
al: A functional polymorphism in the 5' UTR of GDF5 is associated
with susceptibility to osteoarthritis. Nat Genet. 39:529–533.
2007.PubMed/NCBI View
Article : Google Scholar
|
62
|
Martinez A, Varade J, Lamas JR,
Fernandez-Arquero M, Jover JA, de la Concha EG, Fernandez-Gutierrez
B and Urcelay E: GDF5 Polymorphism associated with osteoarthritis:
Risk for rheumatoid arthritis. Ann Rheum Dis. 67:1352–1353.
2008.PubMed/NCBI View Article : Google Scholar
|