Emerging deep learning techniques using magnetic resonance imaging data applied in multiple sclerosis and clinical isolated syndrome patients (Review)
- Authors:
- Eleftherios E. Kontopodis
- Efrosini Papadaki
- Eleftherios Trivizakis
- Thomas G. Maris
- Panagiotis Simos
- Georgios Z. Papadakis
- Aristidis Tsatsakis
- Demetrios A. Spandidos
- Apostolos Karantanas
- Kostas Marias
-
Affiliations: Computational BioMedicine Laboratory, Institute of Computer Science, Foundation for Research and Technology‑Hellas, 70013 Heraklion, Greece, Centre of Toxicology Science and Research, Faculty of Medicine, University of Crete, 71003 Heraklion, Greece, Laboratory of Clinical Virology, Medical School, University of Crete, 71003 Heraklion, Greece - Published online on: August 9, 2021 https://doi.org/10.3892/etm.2021.10583
- Article Number: 1149
-
Copyright: © Kontopodis et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Ortiz GG, Pacheco-Moisés FP, Macías-Islas MÁ, Flores-Alvarado LJ, Mireles-Ramírez MA, González-Renovato ED, Hernández-Navarro VE, Sánchez-López AL and Alatorre-Jiménez MA: Role of the blood-brain barrier in multiple sclerosis. Arch Med Res. 45:687–697. 2014.PubMed/NCBI View Article : Google Scholar | |
Lopes Pinheiro MA, Kooij G, Mizee MR, Kamermans A, Enzmann G, Lyck R, Schwaninger M, Engelhardt B and de Vries HE: Immune cell trafficking across the barriers of the central nervous system in multiple sclerosis and stroke. Biochim Biophys Acta. 1862:461–471. 2016.PubMed/NCBI View Article : Google Scholar | |
Miller DH, Chard DT and Ciccarelli O: Clinically isolated syndromes. Lancet Neurol. 11:157–169. 2012.PubMed/NCBI View Article : Google Scholar | |
Kappos L, Polman CH, Freedman MS, Edan G, Hartung HP, Miller DH, Montalban X, Barkhof F, Bauer L, Jakobs P, et al: Treatment with interferon beta-1b delays conversion to clinically definite and McDonald MS in patients with clinically isolated syndromes. Neurology. 67:1242–1249. 2006.PubMed/NCBI View Article : Google Scholar | |
Fu Y, Talavage TM and Cheng JX: New imaging techniques in the diagnosis of multiple sclerosis. Expert Opin Med Diagn. 2:1055–1065. 2008.PubMed/NCBI View Article : Google Scholar | |
Horsfield MA, Rovaris M, Rocca MA, Rossi P, Benedict RH, Filippi M and Bakshi R: Whole-brain atrophy in multiple sclerosis measured by two segmentation processes from various MRI sequences. J Neurol Sci. 216:169–177. 2003.PubMed/NCBI View Article : Google Scholar | |
van Walderveen MA, Kamphorst W, Scheltens P, van Waesberghe JH, Ravid R, Valk J, Polman CH and Barkhof F: Histopathologic correlate of hypointense lesions on T1-weighted spin-echo MRI in multiple sclerosis. Neurology. 50:1282–1288. 1998.PubMed/NCBI View Article : Google Scholar | |
Bakshi R, Ariyaratana S, Benedict RH and Jacobs L: Fluid-attenuated inversion recovery magnetic resonance imaging detects cortical and juxtacortical multiple sclerosis lesions. Arch Neurol. 58:742–748. 2001.PubMed/NCBI View Article : Google Scholar | |
Polman CH, Reingold SC, Edan G, Filippi M, Hartung HP, Kappos L, Lublin FD, Metz LM, McFarland HF, O'Connor PW, et al: Diagnostic criteria for multiple sclerosis: 2005 revisions to the ‘McDonald Criteria’. Ann Neurol. 58:840–846. 2005.PubMed/NCBI View Article : Google Scholar | |
Richards TL: Proton MR spectroscopy in multiple sclerosis: Value in establishing diagnosis, monitoring progression, and evaluating therapy. AJR Am J Roentgenol. 157:1073–1078. 1991.PubMed/NCBI View Article : Google Scholar | |
Pike GB, De Stefano N, Narayanan S, Worsley KJ, Pelletier D, Francis GS, Antel JP and Arnold DL: Multiple sclerosis: Magnetization transfer MR imaging of white matter before lesion appearance on T2-weighted images. Radiology. 215:824–830. 2000.PubMed/NCBI View Article : Google Scholar | |
Filippi M and Rocca MA: Magnetization transfer magnetic resonance imaging in the assessment of neurological diseases. J Neuroimaging. 14:303–313. 2004.PubMed/NCBI View Article : Google Scholar | |
Rovaris M, Gass A, Bammer R, Hickman SJ, Ciccarelli O, Miller DH and Filippi M: Diffusion MRI in multiple sclerosis. Neurology. 65:1526–1532. 2005.PubMed/NCBI View Article : Google Scholar | |
Lapointe E, Li DKB, Traboulsee AL and Rauscher A: What Have We Learned from Perfusion MRI in Multiple Sclerosis? AJNR Am J Neuroradiol. 39:994–1000. 2018.PubMed/NCBI View Article : Google Scholar | |
Kotsiantis SB, Zaharakis I and Pintelas P: Supervised machine learning: A review of classification techniques. Emerging artificial intelligence applications in computer engineering. 160:3–24. 2007. | |
Mortazavi D, Kouzani AZ and Soltanian-Zadeh H: Segmentation of multiple sclerosis lesions in MR images: A review. Neuroradiology. 54:299–320. 2012.PubMed/NCBI View Article : Google Scholar | |
Uddin M, Wang Y and Woodbury-Smith M: Artificial intelligence for precision medicine in neurodevelopmental disorders. NPJ Digit Med. 2(112)2019.PubMed/NCBI View Article : Google Scholar | |
Bergsland N, Horakova D, Dwyer MG, Uher T, Vaneckova M, Tyblova M, Seidl Z, Krasensky J, Havrdova E and Zivadinov R: Gray matter atrophy patterns in multiple sclerosis: A 10-year source-based morphometry study. Neuroimage Clin. 17:444–451. 2017.PubMed/NCBI View Article : Google Scholar | |
Pontillo G, Petracca M, Cocozza S and Brunetti A: The Development of Subcortical Gray Matter Atrophy in Multiple Sclerosis: One Size Does Not Fit All. AJNR Am J Neuroradiol. 41:E80–E81. 2020.PubMed/NCBI View Article : Google Scholar | |
Almutairi AH, Hassan HA, Suppiah S, Alomair OI, Alshoaibi A, Almutairi H and Mahmud R: Lesion load assessment among multiple sclerosis patient using DIR, FLAIR, and T2WI sequences. Egypt J Radiol Nucl Med. 51(209)2020. | |
Thompson AJ, Banwell BL, Barkhof F, Carroll WM, Coetzee T, Comi G, Correale J, Fazekas F, Filippi M, Freedman MS, et al: Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol. 17:162–173. 2018.PubMed/NCBI View Article : Google Scholar | |
Valverde S, Cabezas M, Roura E, González-Villà S, Pareto D, Vilanova JC, Ramió-Torrentà L, Rovira À, Oliver A and Lladó X: Improving automated multiple sclerosis lesion segmentation with a cascaded 3D convolutional neural network approach. Neuroimage. 155:159–168. 2017.PubMed/NCBI View Article : Google Scholar | |
Birenbaum A and Greenspan H: Multi-view longitudinal CNN for multiple sclerosis lesion segmentation. Eng Appl Artif Intell. 65:111–118. 2017. | |
Carass A, Roy S, Jog A, Cuzzocreo JL, Magrath E, Gherman A, Button J, Nguyen J, Bazin PL, Calabresi PA, et al: Longitudinal multiple sclerosis lesion segmentation data resource. Data Brief. 12:346–350. 2017.PubMed/NCBI View Article : Google Scholar | |
Gros C, De Leener B, Badji A, Maranzano J, Eden D, Dupont SM, Talbott J, Zhuoquiong R, Liu Y, Granberg T, et al: Automatic segmentation of the spinal cord and intramedullary multiple sclerosis lesions with convolutional neural networks. Neuroimage. 184:901–915. 2019.PubMed/NCBI View Article : Google Scholar | |
Milletari F, Navab N and Ahmadi SA: V-Net: Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation. In: Proceedings of the 2016 Fourth International Conference on 3D Vision (3DV). IEEE, Stanford, CA, pp565-571, 2016. | |
De Leener B, Kadoury S and Cohen-Adad J: Robust, accurate and fast automatic segmentation of the spinal cord. Neuroimage. 98:528–536. 2014.PubMed/NCBI View Article : Google Scholar | |
Aslani S, Dayan M, Storelli L, Filippi M, Murino V, Rocca MA and Sona D: Multi-branch convolutional neural network for multiple sclerosis lesion segmentation. Neuroimage. 196:1–15. 2019.PubMed/NCBI View Article : Google Scholar | |
Sander L, Pezold S, Andermatt S, Amann M, Meier D, Wendebourg MJ, Sinnecker T, Radue EW, Naegelin Y, Granziera C, et al: Alzheimer's Disease Neuroimaging Initiative: Accurate, rapid and reliable, fully automated MRI brainstem segmentation for application in multiple sclerosis and neurodegenerative diseases. Hum Brain Mapp. 40:4091–4104. 2019.PubMed/NCBI View Article : Google Scholar | |
Iglesias JE, Van Leemput K, Bhatt P, Casillas C, Dutt S, Schuff N, Truran-Sacrey D, Boxer A and Fischl B: Alzheimer's Disease Neuroimaging Initiative. Bayesian segmentation of brainstem structures in MRI. Neuroimage. 113:184–195. 2015.PubMed/NCBI View Article : Google Scholar | |
Hashemi SR, Salehi SSM, Erdogmus D, Prabhu SP, Warfield SK and Gholipour A: Asymmetric Loss Functions and Deep Densely Connected Networks for Highly Imbalanced Medical Image Segmentation: Application to Multiple Sclerosis Lesion Detection. IEEE Access. 7:721–1735. 2019.PubMed/NCBI View Article : Google Scholar | |
Commowick O, Cervenansky F and Ameli R: MSSEG challenge proceedings: multiple sclerosis lesions segmentation challenge using a data management and processing infrastructure. MICCAI, Athens, 2016. | |
Carass A, Roy S, Jog A, Cuzzocreo JL, Magrath E, Gherman A, Button J, Nguyen J, Prados F, Sudre CH, et al: Longitudinal multiple sclerosis lesion segmentation: Resource and challenge. Neuroimage. 148:77–102. 2017.PubMed/NCBI View Article : Google Scholar | |
Gabr RE, Coronado I, Robinson M, Sujit SJ, Datta S, Sun X, Allen WJ, Lublin FD, Wolinsky JS and Narayana PA: Brain and lesion segmentation in multiple sclerosis using fully convolutional neural networks: A large-scale study. Mult Scler. 26:1217–1226. 2020.PubMed/NCBI View Article : Google Scholar | |
Weeda MM, Brouwer I, de Vos ML, de Vries MS, Barkhof F, Pouwels PJW and Vrenken H: Comparing lesion segmentation methods in multiple sclerosis: Input from one manually delineated subject is sufficient for accurate lesion segmentation. Neuroimage Clin. 24(102074)2019.PubMed/NCBI View Article : Google Scholar | |
Valverde S, Salem M, Cabezas M, Pareto D, Vilanova JC, Ramió-Torrentà L, Rovira À, Salvi J, Oliver A and Lladó X: One-shot domain adaptation in multiple sclerosis lesion segmentation using convolutional neural networks. Neuroimage Clin. 21(101638)2019.PubMed/NCBI View Article : Google Scholar | |
Shiee N, Bazin PL, Ozturk A, Reich DS, Calabresi PA and Pham DL: A topology-preserving approach to the segmentation of brain images with multiple sclerosis lesions. Neuroimage. 49:1524–1535. 2010.PubMed/NCBI View Article : Google Scholar | |
Schmidt P: Bayesian Inference for Structured Additive Regression Models for Large-Scale Problems with Applications to Medical Imaging (unpublished PhD thesis). Ludwig-Maximilians-Universität München, 2016. | |
Griffanti L, Zamboni G, Khan A, Li L, Bonifacio G, Sundaresan V, Schulz UG, Kuker W, Battaglini M, Rothwell PM, et al: BIANCA (Brain Intensity AbNormality Classification Algorithm): A new tool for automated segmentation of white matter hyperintensities. Neuroimage. 141:191–205. 2016.PubMed/NCBI View Article : Google Scholar | |
McKinley R, Wepfer R, Aschwanden F, Grunder L, Muri R, Rummel C, Verma R, Weisstanner C, Reyes M, Salmen A, et al: Simultaneous lesion and neuroanatomy segmentation in multiple sclerosis using deep neural networks. arXiv:1901.07419. | |
Narayana PA, Coronado I, Sujit SJ, Wolinsky JS, Lublin FD and Gabr RE: Deep-Learning-Based Neural Tissue Segmentation of MRI in Multiple Sclerosis: Effect of Training Set Size. J Magn Reson Imaging. 51:1487–1496. 2020.PubMed/NCBI View Article : Google Scholar | |
Nair T, Precup D, Arnold DL and Arbel T: Exploring uncertainty measures in deep networks for Multiple sclerosis lesion detection and segmentation. Med Image Anal. 59(101557)2020.PubMed/NCBI View Article : Google Scholar | |
McKinley R, Wepfer R, Aschwanden F, Grunder L, Muri R, Rummel C, Verma R, Weisstanner C, Reyes M, Salmen A, et al: Simultaneous lesion and brain segmentation in multiple sclerosis using deep neural networks. Sci Rep. 11(1087)2021.PubMed/NCBI View Article : Google Scholar | |
Narayana PA, Coronado I, Sujit SJ, Sun X, Wolinsky JS and Gabr RE: Are multi-contrast magnetic resonance images necessary for segmenting multiple sclerosis brains? A large cohort study based on deep learning. Magn Reson Imaging. 65:8–14. 2020.PubMed/NCBI View Article : Google Scholar | |
Salem M, Valverde S, Cabezas M, Pareto D, Oliver A, Salvi J, Rovira À and Lladó X: A fully convolutional neural network for new T2-w lesion detection in multiple sclerosis. Neuroimage Clin. 25(102149)2020.PubMed/NCBI View Article : Google Scholar | |
Brown RA, Fetco D, Fratila R, Fadda G, Jiang S, Alkhawajah NM, Yeh EA, Banwell B, Bar-Or A and Arnold DL: Canadian Pediatric Demyelinating Disease Network. Deep learning segmentation of orbital fat to calibrate conventional MRI for longitudinal studies. Neuroimage. 208(116442)2020.PubMed/NCBI View Article : Google Scholar | |
Ackaouy A, Courty N, Vallée E, Commowick O, Barillot C and Galassi F: Unsupervised Domain Adaptation With Optimal Transport in Multi-Site Segmentation of Multiple Sclerosis Lesions From MRI Data. Front Comput Neurosci. 14(19)2020.PubMed/NCBI View Article : Google Scholar | |
Commowick O, Istace A, Kain M, Laurent B, Leray F, Simon M, Pop SC, Girard P, Améli R, Ferré JC, et al: Objective Evaluation of Multiple Sclerosis Lesion Segmentation using a Data Management and Processing Infrastructure. Sci Rep. 8(13650)2018.PubMed/NCBI View Article : Google Scholar | |
Coronado I, Gabr RE and Narayana PA: Deep learning segmentation of gadolinium-enhancing lesions in multiple sclerosis. Mult Scler. 27:219–527. 2021.PubMed/NCBI View Article : Google Scholar | |
La Rosa F, Abdulkadir A, Fartaria MJ, Rahmanzadeh R, Lu PJ, Galbusera R, Barakovic M, Thiran JP, Granziera C and Cuadra MB: Multiple sclerosis cortical and WM lesion segmentation at 3T MRI: A deep learning method based on FLAIR and MP2RAGE. Neuroimage Clin. 27(102335)2020.PubMed/NCBI View Article : Google Scholar | |
Gessert N, Krüger J, Opfer R, Ostwaldt AC, Manogaran P, Kitzler HH, Schippling S and Schlaefer A: Multiple sclerosis lesion activity segmentation with attention-guided two-path CNNs. Comput Med Imaging Graph. 84(101772)2020.PubMed/NCBI View Article : Google Scholar | |
Essa E, Aldesouky D, Hussein SE and Rashad MZ: Neuro-fuzzy patch-wise R-CNN for multiple sclerosis segmentation. Med Biol Eng Comput. 58:2161–2175. 2020.PubMed/NCBI View Article : Google Scholar | |
Barquero G, La Rosa F, Kebiri H, Lu PJ, Rahmanzadeh R, Weigel M, Fartaria MJ, Kober T, Théaudin M, Du Pasquier R, et al: RimNet: A deep 3D multimodal MRI architecture for paramagnetic rim lesion assessment in multiple sclerosis. Neuroimage Clin. 28(102412)2020.PubMed/NCBI View Article : Google Scholar | |
Gautam R and Sharma M: Prevalence and Diagnosis of Neurological Disorders Using Different Deep Learning Techniques: A Meta-Analysis. J Med Syst. 44(49)2020.PubMed/NCBI View Article : Google Scholar | |
Yoo Y, Tang LYW, Brosch T, Li DKB, Kolind S, Vavasour I, Rauscher A, MacKay AL, Traboulsee A and Tam RC: Deep learning of joint myelin and T1w MRI features in normal-appearing brain tissue to distinguish between multiple sclerosis patients and healthy controls. Neuroimage Clin. 17:169–178. 2017.PubMed/NCBI View Article : Google Scholar | |
Wang SH, Tang C, Sun J, Yang J, Huang C, Phillips P and Zhang YD: Multiple Sclerosis Identification by 14-Layer Convolutional Neural Network With Batch Normalization, Dropout, and Stochastic Pooling. Front Neurosci. 12(818)2018.PubMed/NCBI View Article : Google Scholar | |
Zhang YD, Pan C, Sun J and Tang C: Multiple sclerosis identification by convolutional neural network with dropout and parametric ReLU. J Comput Sci. 28(818)2018. | |
Talo M, Baloglu UB, Yıldırım Ö and Acharya UR: Application of deep transfer learning for automated brain abnormality classification using MR images. Cogn Syst Res. 54:176–188. 2019. | |
Lu S, Lu Z and Zhang YD: Pathological brain detection based on AlexNet and transfer learning. J Comput Sci. 30:41–47. 2019. | |
McKinley R, Wepfer R, Grunder L, Aschwanden F, Fischer T, Friedli C, Muri R, Rummel C, Verma R, Weisstanner C, et al: Automatic detection of lesion load change in Multiple Sclerosis using convolutional neural networks with segmentation confidence. Neuroimage Clin. 25(102104)2020.PubMed/NCBI View Article : Google Scholar | |
Marzullo A, Kocevar G, Stamile C, Durand-Dubief F, Terracina G, Calimeri F and Sappey-Marinier D: Classification of Multiple Sclerosis Clinical Profiles via Graph Convolutional Neural Networks. Front Neurosci. 13(594)2019.PubMed/NCBI View Article : Google Scholar | |
Eitel F, Soehler E, Bellmann-Strobl J, Brandt AU, Ruprecht K, Giess RM, Kuchling J, Asseyer S, Weygandt M, Haynes JD, et al: Uncovering convolutional neural network decisions for diagnosing multiple sclerosis on conventional MRI using layer-wise relevance propagation. Neuroimage Clin. 24(102003)2019.PubMed/NCBI View Article : Google Scholar | |
Narayana PA, Coronado I, Sujit SJ, Wolinsky JS, Lublin FD and Gabr RE: Deep Learning for Predicting Enhancing Lesions in Multiple Sclerosis from Noncontrast MRI. Radiology. 294:398–404. 2020.PubMed/NCBI View Article : Google Scholar | |
Maggi P, Fartaria MJ, Jorge J, La Rosa F, Absinta M, Sati P, Meuli R, Du Pasquier R, Reich DS, Cuadra MB, et al: CVSnet: A machine learning approach for automated central vein sign assessment in multiple sclerosis. NMR Biomed. 33(e4283)2020.PubMed/NCBI View Article : Google Scholar | |
Wang Z, Yu Z, Wang Y, Zhang H, Luo Y, Shi L, Wang Y and Guo C: 3D Compressed Convolutional Neural Network Differentiates Neuromyelitis Optical Spectrum Disorders From Multiple Sclerosis Using Automated White Matter Hyperintensities Segmentations. Front Physiol. 11(612928)2020.PubMed/NCBI View Article : Google Scholar | |
Roca P, Attye A, Colas L, Tucholka A, Rubini P, Cackowski S, Ding J, Budzik JF, Renard F, Doyle S, et al: OFSEP Investigators; Steering Committee; Investigators; Imaging group: Artificial intelligence to predict clinical disability in patients with multiple sclerosis using FLAIR MRI. Diagn Interv Imaging. 101:795–802. 2020.PubMed/NCBI View Article : Google Scholar | |
Lopatina A, Ropele S, Sibgatulin R, Reichenbach JR and Güllmar D: Investigation of Deep-Learning-Driven Identification of Multiple Sclerosis Patients Based on Susceptibility-Weighted Images Using Relevance Analysis. Front Neurosci. 14(609468)2020.PubMed/NCBI View Article : Google Scholar | |
Sreekumari A, Shanbhag D, Yeo D, Foo T, Pilitsis J, Polzin J, Patil U, Coblentz A, Kapadia A, Khinda J, et al: A Deep Learning-Based Approach to Reduce Rescan and Recall Rates in Clinical MRI Examinations. AJNR Am J Neuroradiol. 40:217–223. 2019.PubMed/NCBI View Article : Google Scholar | |
Sujit SJ, Coronado I, Kamali A, Narayana PA and Gabr RE: Automated image quality evaluation of structural brain MRI using an ensemble of deep learning networks. J Magn Reson Imaging. 50:1260–1267. 2019.PubMed/NCBI View Article : Google Scholar | |
Lublin FD, Cofield SS, Cutter GR, Conwit R, Narayana PA, Nelson F, Salter AR, Gustafson T and Wolinsky JS: CombiRx Investigators. Randomized study combining interferon and glatiramer acetate in multiple sclerosis. Ann Neurol. 73:327–340. 2013.PubMed/NCBI View Article : Google Scholar | |
Zhao C, Shao M, Carass A, Li H, Dewey BE, Ellingsen LM, Woo J, Guttman MA, Blitz AM, Stone M, et al: Applications of a deep learning method for anti-aliasing and super-resolution in MRI. Magn Reson Imaging. 64:132–141. 2019.PubMed/NCBI View Article : Google Scholar | |
Jog A, Carass A and Prince JL: Self Super-resolution for Magnetic Resonance Images. Med Image Comput Comput Assist Interv. 9902:553–560. 2016.PubMed/NCBI View Article : Google Scholar | |
Wei W, Poirion E, Bodini B, Durrleman S, Colliot O, Stankoff B and Ayache N: Fluid-attenuated inversion recovery MRI synthesis from multisequence MRI using three-dimensional fully convolutional networks for multiple sclerosis. J Med Imaging (Bellingham). 6(014005)2019.PubMed/NCBI View Article : Google Scholar | |
Ye DH, Zikic D, Glocker B, Criminisi A and Konukoglu E: Modality propagation: coherent synthesis of subject-specific scans with data-driven regularization. Med Image Comput Comput Assist Interv. 13:606–613. 2013.PubMed/NCBI View Article : Google Scholar | |
Jog A, Carass A, Pham DL and Prince JL: RANDOM FOREST FLAIR RECONSTRUCTION FROM T1, T2, AND PD-WEIGHTED MRI. Proc IEEE Int Symp Biomed Imaging. 2014:1079–1082. 2014.PubMed/NCBI View Article : Google Scholar | |
Ronneberger O, Fischer P and Brox T: U-Net: Convolutional Networks for Biomedical Image Segmentation. Lect Notes Comput Sci. 9351:234–241. 2015. | |
Salem M, Valverde S, Cabezas M, Pareto D, Oliver A, Salvi J, Rovira À and Lladó X: Multiple sclerosis lesion synthesis in MRI using an encoder-decoder U-NET. IEEE Access. 7:25171–25184. 2019. | |
Wei W, Poirion E, Bodini B, Durrleman S, Ayache N, Stankoff B and Colliot O: Predicting PET-derived demyelination from multimodal MRI using sketcher-refiner adversarial training for multiple sclerosis. Med Image Anal. 58(101546)2019.PubMed/NCBI View Article : Google Scholar | |
Finck T, Li H, Grundl L, Eichinger P, Bussas M, Mühlau M, Menze B and Wiestler B: Deep-Learning Generated Synthetic Double Inversion Recovery Images Improve Multiple Sclerosis Lesion Detection. Invest Radiol. 55:318–323. 2020.PubMed/NCBI View Article : Google Scholar | |
Yoon J, Gong E, Chatnuntawech I, Bilgic B, Lee J, Jung W, Ko J, Jung H, Setsompop K, Zaharchuk G, et al: Quantitative susceptibility mapping using deep neural network: QSMnet. Neuroimage. 179:199–206. 2018.PubMed/NCBI View Article : Google Scholar | |
Bollmann S, Rasmussen KGB, Kristensen M, Blendal RG, Østergaard LR, Plocharski M, O'Brien K, Langkammer C, Janke A and Barth M: DeepQSM-using deep learning to solve the dipole inversion for quantitative susceptibility mapping. Neuroimage. 195:373–383. 2019.PubMed/NCBI View Article : Google Scholar | |
Dewey BE, Zhao C, Reinhold JC, Carass A, Fitzgerald KC, Sotirchos ES, Saidha S, Oh J, Pham DL, Calabresi PA, et al: DeepHarmony: A deep learning approach to contrast harmonization across scanner changes. Magn Reson Imaging. 64:160–170. 2019.PubMed/NCBI View Article : Google Scholar | |
Liu H, Xiang QS, Tam R, Dvorak AV, MacKay AL, Kolind SH, Traboulsee A, Vavasour IM, Li DKB, Kramer JK, et al: Myelin water imaging data analysis in less than one minute. Neuroimage. 210(116551)2020.PubMed/NCBI View Article : Google Scholar |