1
|
Wang L, Zhu X, Zhao LP, Wang M, Liu X,
Chen Y, Chen J and Xu W: Effect of beraprost on pulmonary
hypertension due to left ventricular systolic dysfunction. Medicine
(Baltimore). 98(e14965)2019.PubMed/NCBI View Article : Google Scholar
|
2
|
Mammoto T, Muyleart M, Konduri GG and
Mammoto A: Twist1 in hypoxia-induced pulmonary hypertension through
transforming growth factor-β-smad signaling. Am J Respir Cell Mol
Biol. 58:194–207. 2018.PubMed/NCBI View Article : Google Scholar
|
3
|
Agrawal V, Byrd BF III and Brittain EL:
Echocardiographic evaluation of diastolic function in the setting
of pulmonary hypertension. Pulmonary Circulation.
9(2045894019826043)2019.PubMed/NCBI View Article : Google Scholar
|
4
|
Bartelds B, van Loon RLE, Mohaupt S,
Wijnberg H, Dickinson MG, Boersma B, Takens J, van Albada M and
Berger RMF: Mast cell inhibition improves pulmonary vascular
remodeling in pulmonary hypertension. Chest. 141:651–660.
2012.PubMed/NCBI View Article : Google Scholar
|
5
|
Sayed BA, Christy A, Quirion MR and Brown
MA: The master switch: The role of mast cells in autoimmunity and
tolerance. Annu Rev Immunol. 26:705–739. 2008.PubMed/NCBI View Article : Google Scholar
|
6
|
Tkaczyk C, Frandji P, Botros HG, Poncet P,
Lapeyre J, Peronet R, David B and Mécheri S: Mouse bone
marrow-derived mast cells and mast cell lines constitutively
produce B cell growth and differentiation activities. J Immunol.
157:1720–1728. 1996.PubMed/NCBI
|
7
|
Breitling S, Hui Z, Zabini D, Hu Y,
Hoffmann J, Goldenberg NM, Tabuchi A, Buelow R, Dos Santos C and
Kuebler WM: The mast cell-B cell axis in lung vascular remodeling
and pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol.
312:L710–L721. 2017.PubMed/NCBI View Article : Google Scholar
|
8
|
Mao M, Yu X, Ge X, Gu R, Li Q, Song S,
Zheng X, Shen T, Li X, Fu Y, et al: Acetylated cyclophilin A is a
major mediator in hypoxia-induced autophagy and pulmonary vascular
angiogenesis. J Hypertens. 35:798–809. 2017.PubMed/NCBI View Article : Google Scholar
|
9
|
Rui C, Jiang M, Bo L, Zhong W, Wang Z,
Yuan W and Yan J: The role of autophagy in pulmonary hypertension:
A double-edge sword. Apoptosis. 23:459–469. 2018.PubMed/NCBI View Article : Google Scholar
|
10
|
Overgaard J: Hypoxic radiosensitization:
Adored and ignored. J Clin Oncol. 25:4066–4074. 2007.PubMed/NCBI View Article : Google Scholar
|
11
|
Barnes H, Brown Z, Burns A and Williams T:
Phosphodiesterase 5 inhibitors for pulmonary hypertension. Cochrane
Database Syst Rev. 31(CD012621)2019.PubMed/NCBI View Article : Google Scholar
|
12
|
West CM, Wearing OH, Rhem RG and Scott GR:
Pulmonary hypertension is attenuated and ventilation-perfusion
matching is maintained during chronic hypoxia in deer mice native
to high altitude. Am J Physiol Regul Integr Comp Physiol.
320:R800–R811. 2021.PubMed/NCBI View Article : Google Scholar
|
13
|
Pullamsetti SS, Kojonazarov B, Storn S,
Gall H, Salazar Y, Wolf J, Weigert A, El-Nikhely N, Ghofrani HA,
Krombach GA, et al: Lung cancer-associated pulmonary hypertension:
Role of microenvironmental inflammation based on tumor cell-immune
cell cross-talk. Sci Transl Med. 9(eaai9048)2017.PubMed/NCBI View Article : Google Scholar
|
14
|
Li XN, Xu JJ, Wu JB, Ji L, Yuan CH and
Wang ZP: Curcumin exerts protective effect on PC12 cells against
lidocaine-induced cytotoxicity by suppressing the formation of
NLRP3 inflammasome. Eur Rev Med Pharmacol Sci. 24:7092–7100.
2020.PubMed/NCBI View Article : Google Scholar
|
15
|
Zhao XK, Yu L, Cheng ML, Che P, Lu YY,
Zhang Q, Mu M, Li H, Zhu LL, Zhu JJ, et al: Focal adhesion kinase
regulates hepatic stellate cell activation and liver fibrosis. Sci
Rep. 7:4032–4044. 2017.PubMed/NCBI View Article : Google Scholar
|
16
|
Paulin R, Meloche J, Courboulin A, Lambert
C, Haromy A, Courchesne A, Bonnet P, Provencher S, Michelakis ED
and Bonnet S: Targeting cell motility in pulmonary arterial
hypertension. Eur Respir J. 43:531–544. 2013.PubMed/NCBI View Article : Google Scholar
|
17
|
Lin C, Li X, Luo Q, Yang H, Li L, Zhou Q,
Li Y, Tang H and Wu L: RELM-β promotes human pulmonary artery
smooth muscle cell proliferation via FAK-stimulated surviving. Exp
Cell Res. 351:43–50. 2017.PubMed/NCBI View Article : Google Scholar
|
18
|
Ferreira-Pinto MJ, Silva AF,
Nogueira-Ferreira R, Padrao AI, Moreira-Goncalves D, Carneiro F,
Costa R, Ribeiro L, Leite-Moreira AF and Henriques-Coelho T:
Survivin role in pulmonary arterial hypertension. Eur Heart J. 34
(Suppl 1)(P302)2013.
|
19
|
Fan Z, Liu B, Zhang S, Liu H, Li Y, Wang
D, Liu Y, Li J, Wang N, Liu Y and Zhang B: YM155, a selective
survivin inhibitor, reverses chronic hypoxic pulmonary hypertension
in rats via upregulating voltage-gated potassium channels. Clin Exp
Hypertens. 37:381–387. 2015.PubMed/NCBI View Article : Google Scholar
|
20
|
Mitra SK and Schlaepfer DD:
Integrin-regulated FAK-Src signaling in normal and cancer cells.
Curr Opin Cell Biol. 18:516–523. 2006.PubMed/NCBI View Article : Google Scholar
|
21
|
Clarke NE, Fisher MJ, Porter KE, Lambert
DW and Turner AJ: Angiotensin converting enzyme (ACE) and ACE2 bind
integrins and ACE2 regulates integrin signalling. PLoS One.
7(e34747)2012.PubMed/NCBI View Article : Google Scholar
|
22
|
Chen Y, Cao J, Zhao Q, Luo H, Wang Y and
Dai W: Silencing MR-1 attenuates atherosclerosis in
ApoE-/- mice induced by angiotensin II through
FAK-Akt-mTOR-NF-kappaB signaling pathway. Korean J Physiol
Pharmacol. 22:127–134. 2018.PubMed/NCBI View Article : Google Scholar
|
23
|
Xu XP, He HL, Hu SL, Han JB, Huang LL, Xu
JY, Xie JF, Liu AR, Yang Y and Qiu HB: Ang II-AT2R increases
mesenchymal stem cell migration by signaling through the FAK and
RhoA/Cdc42 pathways in vitro. Stem Cell Res Ther.
8(164)2017.PubMed/NCBI View Article : Google Scholar
|
24
|
Hall G, Wu G and Winn M: 112 Ang II
Induces FAK activation and podocyte migration via a TRPC6-dependent
mechanism. Am J Kidney Dis. 57(B44)2011.
|
25
|
Seguin LR, Villarreal RS and Ciuffo GM:
AT2receptors recruit c-Src, SHP-1 and FAK upon
activation by Ang II in PND15 rat hindbrain. Neurochem Int.
60:199–207. 2012.PubMed/NCBI View Article : Google Scholar
|
26
|
Watanabe F, Miyazaki T, Takeuchi T, Fukaya
M, Nomura T, Noguchi S, Mori H, Sakimura K, Watanabe M and Mishina
M: Effects of FAK ablation on cerebellar foliation, Bergmann glia
positioning and climbing fiber territory on Purkinje cells. Eur J
Neurosci. 27:836–854. 2010.PubMed/NCBI View Article : Google Scholar
|
27
|
George AJ, Thomas WG and Hannan RD: The
renin-angiotensin system and cancer: Old dog, new tricks. Nat Rev
Cancer. 10:745–759. 2010.PubMed/NCBI View
Article : Google Scholar
|
28
|
Jiang Y, Zhou Y, Peng G, Liu N, Tian H,
Pan D, Liu L, Yang X, Li C, Li W, et al: Topotecan prevents
hypoxia-induced pulmonary arterial hypertension and inhibits
hypoxia-inducible factor-1α and TRPC channels. Int J Biochem Cell
Biol. 104:161–170. 2018.PubMed/NCBI View Article : Google Scholar
|
29
|
Imanishi M, Tomita S, Ishizawa K, Kihira
Y, Ueno M, Izawa-Ishizawa Y, Ikeda Y, Yamano N, Tsuchiya K and
Tamaki T: Smooth muscle cell-specific Hif-1α deficiency suppresses
angiotensin II-induced vascular remodelling in mice. Cardiovasc
Res. 102:460–468. 2014.PubMed/NCBI View Article : Google Scholar
|
30
|
Kittana N: Angiotensin-converting enzyme
2-Angiotensin 1-7/1-9 system: Novel promising targets for heart
failure treatment. Fundam Clin Pharmacol. 32:14–25. 2018.PubMed/NCBI View Article : Google Scholar
|
31
|
Zhou X, Zhang P, Liang T, Chen Y, Liu D
and Yu H: Relationship between circulating levels of
angiotensin-converting enzyme 2-angiotensin-(1-7)-MAS axis and
coronary heart disease. Heart Vessels. 35:153–161. 2020.PubMed/NCBI View Article : Google Scholar
|
32
|
de Man FS, Tu L, Handoko ML, Rain S,
Ruiter G, François C, Schalij I, Dorfmüller P, Simonneau G, Fadel
E, et al: Dysregulated renin-angiotensin-aldosterone system
contributes to pulmonary arterial hypertension. Am J Respir Crit
Care Med. 186:780–789. 2012.PubMed/NCBI View Article : Google Scholar
|
33
|
National Research Council (US) Committee
for the Update of the Guide for the Care and Use of Laboratory
Animals: Guide for the care and use of laboratory animals. 8th
edition. The National Academies Press, Washington, DC, 2011.
|
34
|
Rigatto K, Casali KR, Shenoy V, Katovich
MJ and Raizada MK: Diminazene aceturate improves autonomic
modulation in pulmonary hypertension Eur J. Pharmacol. 713:89–93.
2013.PubMed/NCBI View Article : Google Scholar
|
35
|
Yanhong Z, Lina M and Shanshan C:
Mechanism of small intestine injury in non-steroidal
anti-inflammatory drugs rats mediated by RAS-p38MAPK signal
pathway. In: Proceedings of the 4th International Conference on
Digestive Diseases of the World Federation of Chinese Medicine
Societies, Zhengzhou, pp308-311, 2013.
|
36
|
Fraga-Silva RA, Sorg BS, Wankhede M,
Dedeugd C, Jun JY, Baker MB, Li Y, Castellano RK, Katovich MJ,
Raizada MK and Ferreira AJ: ACE2 activation promotes antithrombotic
activity. Mol Med. 16:210–215. 2010.PubMed/NCBI View Article : Google Scholar
|
37
|
Li Y, Wang Y, Li Y, Qian Z, Zhu L and Yang
D: Osthole attenuates pulmonary arterial hypertension in
monocrotaline-treated rats. Mol Med Rep. 16:2823–2829.
2017.PubMed/NCBI View Article : Google Scholar
|
38
|
Kwon MY, Hwang N, Park YJ, Perrella MA and
Chung SW: NOD2 deficiency exacerbates hypoxia-induced pulmonary
hypertension and enhances pulmonary vascular smooth muscle cell
proliferation. Oncotarget. 9:12671–12681. 2018.PubMed/NCBI View Article : Google Scholar
|
39
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408.
2001.PubMed/NCBI View Article : Google Scholar
|
40
|
Jones R, Jacobson M and Steudel W:
Alpha-smooth-muscle actin and microvascular precursor smooth-muscle
cells in pulmonary hypertension. Am J Respir Cell Mol Biol.
20:582–594. 1999.PubMed/NCBI View Article : Google Scholar
|
41
|
Hemnes AR, Rathinasabapathy A, Austin EA,
Brittain EL, Carrier EJ, Chen X, Fessel JP, Fike CD, Fong P,
Fortune N, et al: A potential therapeutic role for
angiotensin-converting enzyme 2 in human pulmonary arterial
hypertension. Eur Respir J. 51(1702638)2018.PubMed/NCBI View Article : Google Scholar
|
42
|
Wang J, He W, Guo L, Zhang Y, Li H, Han S
and Shen D: The ACE2-Ang (1-7)-Mas receptor axis attenuates cardiac
remodeling and fibrosis in post-myocardial infarction. Mol Med Rep.
16:1973–1981. 2017.PubMed/NCBI View Article : Google Scholar
|
43
|
Patel VB, Lezutekong JN, Chen X and Oudit
GY: Recombinant human ACE2 and the angiotensin 1-7 axis as
potential new therapies for heart failure. Can J Cardiol.
33:943–946. 2017.PubMed/NCBI View Article : Google Scholar
|
44
|
Hu Q, Hu Z, Chen Q, Huang Y, Mao Z, Xu F
and Zhou X: BML-111 equilibrated ACE-AngII-AT1R and
ACE2-Ang-(1-7)-Mas axis to protect hepatic fibrosis in rats.
Prostaglandins Other Lipid Mediat. 131:75–82. 2017.PubMed/NCBI View Article : Google Scholar
|
45
|
Shenoy V, Qi Y, Katovich MJ and Raizada
MK: ACE2, a promising therapeutic target for pulmonary
hypertension. Curr Opin Pharmacol. 11:150–155. 2011.PubMed/NCBI View Article : Google Scholar
|
46
|
Hammer A, Yang G, Friedrich J, Kovacs A,
Lee DH, Grave K, Jörg S, Alenina N, Grosch J, Winkler J, et al:
Role of the receptor Mas in macrophage-mediated inflammation in
vivo. Proc Natl Acad Sci USA. 113:14109–14114. 2016.PubMed/NCBI View Article : Google Scholar
|
47
|
Yang G, Chu PL, Rump LC, Le TH and
Stegbauer J: ACE2 and the homolog collectrin in the modulation of
nitric oxide and oxidative stress in blood pressure homeostasis and
vascular injury. Antioxid Redox Signal. 26:645–659. 2017.PubMed/NCBI View Article : Google Scholar
|
48
|
Zhang ZZ, Cheng YW, Jin HY, Chang Q, Shang
QH, Xu YL, Chen LX, Xu R, Song B and Zhong JC: The sirtuin 6
prevents angiotensin II-mediated myocardial fibrosis and injury by
targeting AMPK-ACE2 signaling. Oncotarget. 8:72302–72314.
2017.PubMed/NCBI View Article : Google Scholar
|
49
|
Zhang J, Dong J, Martin M, He M, Gongol B,
Marin TL, Chen L, Shi X, Yin Y, Shang F, et al: AMP-activated
protein kinase phosphorylation of angiotensin-converting enzyme 2
in endothelium mitigates pulmonary hypertension. Am J Respir Crit
Care Med. 198:509–520. 2018.PubMed/NCBI View Article : Google Scholar
|
50
|
Sun XQ, Abbate A and Bogaard HJ: Role of
cardiac inflammation in right ventricular failure. Cardiovasc Res.
113:1441–1452. 2017.PubMed/NCBI View Article : Google Scholar
|
51
|
Amsellem V, Lipskaia L, Abid S, Poupel L,
Houssaini A, Quarck R, Marcos E, Mouraret N, Parpaleix A, Bobe R,
et al: CCR5 as a treatment target in pulmonary arterial
hypertension. Circulation. 130:880–891. 2014.PubMed/NCBI View Article : Google Scholar
|
52
|
Bello-Klein A, Mancardi D, Araujo AS,
Schenkel PC, Turck P and de Lima Seolin BG: Role of redox
homeostasis and inflammation in the pathogenesis of pulmonary
arterial hypertension. Curr Med Chem. 25:1340–1351. 2018.PubMed/NCBI View Article : Google Scholar
|
53
|
Fang Y, Gao F, Hao J and Liu Z:
microRNA-1246 mediates lipopolysaccharide-induced pulmonary
endothelial cell apoptosis and acute lung injury by targeting
angiotensin-converting enzyme 2. Am J Transl Res. 9:1287–1296.
2017.PubMed/NCBI
|
54
|
Wang L, Li Y, Qin H, Xing D, Su J and Hu
Z: Crosstalk between ACE2 and PLGF regulates vascular permeability
during acute lung injury. Am J Transl Res. 8:1246–1252.
2016.PubMed/NCBI
|
55
|
Li G, Liu Y, Zhu Y, Liu A, Xu Y, Li X, Li
Z, Su J and Sun L: ACE2 activation confers endothelial protection
and attenuates neointimal lesions in prevention of severe pulmonary
arterial hypertension in rats. Lung. 191:327–336. 2013.PubMed/NCBI View Article : Google Scholar
|
56
|
Bujak-Gizycka B, Madej J, Bystrowska B,
Toton-Zuranska J, Kus K, Kolton-Wroz M, Jawien J and Olszanecki R:
Angiotensin 1-7 formation in breast tissue is attenuated in breast
cancer-a study on the metabolism of angiotensinogen in breast
cancer cell lines. J Physiol Pharmacol. 70:503–514. 2019.PubMed/NCBI View Article : Google Scholar
|
57
|
Amirfakhryan H and Safari F: Outbreak of
SARS-CoV2: Pathogenesis of infection and cardiovascular
involvement. Hellenic J Cardiol. 62:13–23. 2021.PubMed/NCBI View Article : Google Scholar
|
58
|
Zhang X, Pan Y and Jin HM: Aldosterone
induced endothelial cell apoptosis via modulation of ACE2-Ang
(1-7)-Mas receptor axis. J Shanghai Jiao Univ (Med Sci). 33:6–11.
2013.
|
59
|
Gao ML, Chen L, Li YF, Xue XC, Chen L,
Wang LN, Shah W and Kong Y: Synergistic increase of oxidative
stress and tumor markers in PAH-exposed workers. Asian Pac J Cancer
Prev. 15:7105–7112. 2014.PubMed/NCBI View Article : Google Scholar
|
60
|
Putt KS, Chen GW, Pearson JM, Sandhorst
JS, Hoagland MS, Kwon JT, Hwang SK, Jin H, Churchwell MI, Cho MH,
et al: Small-molecule activation of procaspase-3 to caspase-3 as a
personalized anticancer strategy. Nat Chem Biol. 2:543–550.
2006.PubMed/NCBI View Article : Google Scholar
|
61
|
Fujii T, Koshikawa K, Nomoto S, Okochi O,
Kaneko T, Inoue S, Yatabe Y, Takeda S and Nakao A: Focal adhesion
kinase is overexpressed in hepatocellular carcinoma and can be
served as an independent prognostic factor. J Hepatol. 41:104–111.
2004.PubMed/NCBI View Article : Google Scholar
|
62
|
Shang N, Bank T, Ding X, Breslin P, Li J,
Shi B and Qiu W: Caspase-3 suppresses diethylnitrosamine-induced
hepatocyte death, compensatory proliferation and
hepatocarcinogenesis through inhibiting p38 activation. Cell Death
Dis. 9(558)2018.PubMed/NCBI View Article : Google Scholar
|
63
|
Kanazawa H, Imoto K, Okada M and Yamawaki
H: Canstatin inhibits hypoxia-induced apoptosis through activation
of integrin/focal adhesion kinase/Akt signaling pathway in H9c2
cardiomyoblasts. PLoS One. 12(e0173051)2017.PubMed/NCBI View Article : Google Scholar
|
64
|
Oh E, Sung D, Cho Y, Kim JY, Lee N, Kim
YJ, Cho TM and Seo JH: Abstract 5463: Disulfiram suppresses
metastasis via induction of anoikis and calpain activation in
triple-negative breast cancer. Cancer Res. 77 (Suppl
13)(S5463)2017.
|
65
|
Cai F, Chen M, Zha D, Zhang P, Zhang X,
Cao N, Wang J, He Y, Fan X, Zhang W, et al: Curcumol potentiates
celecoxib-induced growth inhibition and apoptosis in human
non-small cell lung cancer. Oncotarget. 8:115526–115545.
2017.PubMed/NCBI View Article : Google Scholar
|