Open Access

Metformin attenuates angiotensin II‑induced cardiomyocyte hypertrophy by upregulating the MuRF1 and MAFbx pathway

  • Authors:
    • Fawang Du
    • Yalin Cao
    • Yan Ran
    • Qiang Wu
    • Baolin Chen
  • View Affiliations

  • Published online on: August 31, 2021     https://doi.org/10.3892/etm.2021.10665
  • Article Number: 1231
  • Copyright: © Du et al. This is an open access article distributed under the terms of Creative Commons Attribution License.

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Pathological cardiac hypertrophy induced by aging and neurohumoral activation, such as angiotensin II (Ang II) activation, is an independent risk factor for heart failure. The muscle really interesting new gene‑finger protein‑1 (MuRF1) and muscle atrophy F‑box (MAFbx) pathway has been previously reported to be an important mechanism underlying the pathogenesis of cardiac hypertrophy. Metformin is currently the first‑line blood glucose‑lowering agent that can be useful for the treatment of cardiovascular diseases. However, the potential role of metformin in the modulation of MuRF1 and MAFbx in cardiomyocyte hypertrophy remains poorly understood. The present study used H9c2 cells, a cardiomyocyte cell model. The surface area of cultured rat H9c2 myoblasts was measured and the expression levels of MuRF1 and MAFbx were quantified using western blot or reverse transcription‑quantitative PCR. H9c2 cells were transfected with MuRF1 and MAFbx small interfering (si) RNA. The present study revealed that Ang II treatment significantly increased the cell surface area of model cardiomyocytes. Additionally, atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) mRNA and protein expression was increased following this treatment. Ang II also downregulated MuRF1 and MAFbx protein and mRNA expression. In the H9C2, treatment with metformin attenuated hypertrophic remodeling. In addition, expression of ANP and BNP was significantly reduced in metformin‑treated H9C2 cells. The results indicated that metformin increased the activity of MuRF1 and MAFbx and upregulated their expression, the knockdown of which resulted in deteriorative Ang II‑induced cell hypertrophy, even following treatment with metformin. Taken together, data from the present study suggest that metformin can prevent cardiac hypertrophy through the MuRF1 and MAFbx pathways.
View Figures
View References

Related Articles

Journal Cover

November-2021
Volume 22 Issue 5

Print ISSN: 1792-0981
Online ISSN:1792-1015

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
x
Spandidos Publications style
Du F, Cao Y, Ran Y, Wu Q and Chen B: Metformin attenuates angiotensin II‑induced cardiomyocyte hypertrophy by upregulating the MuRF1 and MAFbx pathway. Exp Ther Med 22: 1231, 2021
APA
Du, F., Cao, Y., Ran, Y., Wu, Q., & Chen, B. (2021). Metformin attenuates angiotensin II‑induced cardiomyocyte hypertrophy by upregulating the MuRF1 and MAFbx pathway. Experimental and Therapeutic Medicine, 22, 1231. https://doi.org/10.3892/etm.2021.10665
MLA
Du, F., Cao, Y., Ran, Y., Wu, Q., Chen, B."Metformin attenuates angiotensin II‑induced cardiomyocyte hypertrophy by upregulating the MuRF1 and MAFbx pathway". Experimental and Therapeutic Medicine 22.5 (2021): 1231.
Chicago
Du, F., Cao, Y., Ran, Y., Wu, Q., Chen, B."Metformin attenuates angiotensin II‑induced cardiomyocyte hypertrophy by upregulating the MuRF1 and MAFbx pathway". Experimental and Therapeutic Medicine 22, no. 5 (2021): 1231. https://doi.org/10.3892/etm.2021.10665