1
|
Bacmeister L, Schwarzl M, Warnke S,
Stoffers B, Blankenberg S, Westermann D and Lindner D: Inflammation
and fibrosis in murine models of heart failure. Basic Res Cardiol.
114(19)2019.PubMed/NCBI View Article : Google Scholar
|
2
|
Herrmann M, Taban-Shomal O, Hübner U, Böhm
M and Herrmann W: A review of homocysteine and heart failure. Eur J
Heart Fail. 8:571–576. 2006.PubMed/NCBI View Article : Google Scholar
|
3
|
Zhao Q, Song W, Huang J, Wang D and Xu C:
Metformin decreased myocardial fibrosis and apoptosis in
hyperhomocysteinemia-induced cardiac hypertrophy. Curr Res Transl
Med. 69(103270)2021.PubMed/NCBI View Article : Google Scholar
|
4
|
Triposkiadis F, Xanthopoulos A and Butler
J: Cardiovascular aging and heart failure: JACC review topic of the
week. J Am Coll Cardiol. 74:804–813. 2019.PubMed/NCBI View Article : Google Scholar
|
5
|
Schomburg L, Orho-Melander M, Struck J,
Bergmann A and Melander O: Selenoprotein-P deficiency predicts
cardiovascular disease and death. Nutrients.
11(1852)2019.PubMed/NCBI View Article : Google Scholar
|
6
|
Huang JQ, Zhou JC, Wu YY, Ren FZ and Lei
XG: Role of glutathione peroxidase 1 in glucose and lipid
metabolism-related diseases. Free Radic Biol Med. 127:108–115.
2018.PubMed/NCBI View Article : Google Scholar
|
7
|
Hariharan S and Dharmaraj S: Selenium and
selenoproteins: It's role in regulation of inflammation.
Inflammopharmacology. 28:667–695. 2020.PubMed/NCBI View Article : Google Scholar
|
8
|
Liu X, Xia S, Zhang Z, Wu H and Lieberman
J: Channelling inflammation: Gasdermins in physiology and disease.
Nat Rev Drug Discov. 20:384–405. 2021.PubMed/NCBI View Article : Google Scholar
|
9
|
Zhu S, Li J, Bing Y, Yan W, Zhu Y, Xia B
and Chen M: Diet-induced hyperhomocysteinaemia increases intestinal
inflammation in an animal model of colitis. J Crohns Colitis.
9:708–719. 2015.PubMed/NCBI View Article : Google Scholar
|
10
|
Liu Z, Luo H, Zhang L, Huang Y, Liu B, Ma
K, Feng J, Xie J, Zheng J, Hu J, et al: Hyperhomocysteinemia
exaggerates adventitial inflammation and angiotensin II-induced
abdominal aortic aneurysm in mice. Circ Res. 111:1261–1273.
2012.PubMed/NCBI View Article : Google Scholar
|
11
|
Li Y, Duan JZ, He Q and Wang CQ: miR-155
modulates high glucose-induced cardiac fibrosis via the Nrf2/HO-1
signaling pathway. Mol Med Rep. 22:4003–4016. 2020.PubMed/NCBI View Article : Google Scholar
|
12
|
Luo S, Zhang M, Wu H, Ding X, Li D, Dong
X, Hu X, Su S, Shang W, Wu J, et al: SAIL: A new conserved
anti-fibrotic lncRNA in the heart. Basic Res Cardiol.
116(15)2021.PubMed/NCBI View Article : Google Scholar
|
13
|
Zhang F, Fu X, Kataoka M, Liu N, Wang Y,
Gao F, Liang T, Dong X, Pei J, Hu X, et al: Long noncoding RNA
Cfast regulates cardiac fibrosis. Mol Ther Nucleic Acids.
23:377–392. 2020.PubMed/NCBI View Article : Google Scholar
|
14
|
Statello L, Guo CJ, Chen LL and Huarte M:
Gene regulation by long non-coding RNAs and its biological
functions. Nat Rev Mol Cell Biol. 22:96–118. 2021.PubMed/NCBI View Article : Google Scholar
|
15
|
Su J, Fang M, Tian B, Luo J, Jin C, Wang
X, Ning Z and Li X: Atorvastatin protects cardiac progenitor cells
from hypoxia-induced cell growth inhibition via MEG3/miR-22/HMGB1
pathway. Acta Biochim Biophys Sin (Shanghai). 50:1257–1265.
2018.PubMed/NCBI View Article : Google Scholar
|
16
|
Li X, Zhao J, Geng J, Chen F, Wei Z, Liu
C, Zhang X, Li Q, Zhang J, Gao L, et al: Long non-coding RNA MEG3
knockdown attenuates endoplasmic reticulum stress-mediated
apoptosis by targeting p53 following myocardial infarction. J Cell
Mol Med. 23:8369–8380. 2019.PubMed/NCBI View Article : Google Scholar
|
17
|
Wu H, Zhao ZA, Liu J, Hao K, Yu Y, Han X,
Li J, Wang Y, Lei W, Dong N, et al: Long noncoding RNA Meg3
regulates cardiomyocyte apoptosis in myocardial infarction. Gene
Ther. 25:511–523. 2018.PubMed/NCBI View Article : Google Scholar
|
18
|
Gong L, Xu H, Chang H, Tong Y, Zhang T and
Guo G: Knockdown of long non-coding RNA MEG3 protects H9c2 cells
from hypoxia-induced injury by targeting microRNA-183. J Cell
Biochem. 119:1429–1440. 2018.PubMed/NCBI View Article : Google Scholar
|
19
|
Qu C, Liu X, Ye T, Wang L, Liu S, Zhou X,
Wu G, Lin J, Shi S and Yang B: miR-216a exacerbates TGF-β-induced
myofibroblast transdifferentiation via PTEN/AKT signaling. Mol Med
Rep. 19:5345–5352. 2019.PubMed/NCBI View Article : Google Scholar
|
20
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408.
2001.PubMed/NCBI View Article : Google Scholar
|
21
|
Piccoli MT, Gupta SK, Viereck J,
Foinquinos A, Samolovac S, Kramer FL, Garg A, Remke J, Zimmer K,
Batkai S and Thum T: Inhibition of the cardiac fibroblast-enriched
lncRNA Meg3 prevents cardiac fibrosis and diastolic dysfunction.
Circ Res. 121:575–583. 2017.PubMed/NCBI View Article : Google Scholar
|
22
|
Purnomo Y, Piccart Y, Coenen T, Prihadi JS
and Lijnen PJ: Oxidative stress and transforming growth
factor-β1-induced cardiac fibrosis. Cardiovasc Hematol Disord Drug
Targets. 13:165–172. 2013.PubMed/NCBI View Article : Google Scholar
|
23
|
Wu J, Xia S, Kalionis B, Wan W and Sun T:
The role of oxidative stress and inflammation in cardiovascular
aging. Biomed Res Int. 2014(615312)2014.PubMed/NCBI View Article : Google Scholar
|
24
|
Tsutsui H, Kinugawa S and Matsushima S:
Mitochondrial oxidative stress and dysfunction in myocardial
remodelling. Cardiovasc Res. 81:449–456. 2009.PubMed/NCBI View Article : Google Scholar
|
25
|
Zhang Y, Dees C, Beyer C, Lin NY, Distler
A, Zerr P, Palumbo K, Susok L, Kreuter A, Distler O, et al:
Inhibition of casein kinase II reduces TGFβ induced fibroblast
activation and ameliorates experimental fibrosis. Ann Rheum Dis.
74:936–943. 2015.PubMed/NCBI View Article : Google Scholar
|
26
|
Milara J, Hernandez G, Ballester B, Morell
A, Roger I, Montero P, Escrivá J, Lloris JM, Molina-Molina M,
Morcillo E and Cortijo J: The JAK2 pathway is activated in
idiopathic pulmonary fibrosis. Respir Res. 19(24)2018.PubMed/NCBI View Article : Google Scholar
|
27
|
Yusuf S, Joseph P, Rangarajan S, Islam S,
Mente A, Hystad P, Brauer M, Kutty VR, Gupta R, Wielgosz A, et al:
Modifiable risk factors, cardiovascular disease, and mortality in
155 722 individuals from 21 high-income, middle-income, and
low-income countries (PURE): A prospective cohort study. Lancet.
395:795–808. 2020.PubMed/NCBI View Article : Google Scholar
|
28
|
El-Baz FK, Aly HF and Abd-Alla HI: The
ameliorating effect of carotenoid rich fraction extracted from
Dunaliella salina microalga against inflammation-associated cardiac
dysfunction in obese rats. Toxicol Rep. 7:118–124. 2019.PubMed/NCBI View Article : Google Scholar
|
29
|
Xu H, Shen Y, Liang C, Wang H, Huang J,
Xue P and Luo M: Inhibition of the mevalonate pathway improves
myocardial fibrosis. Exp Ther Med. 21(224)2021.PubMed/NCBI View Article : Google Scholar
|
30
|
Hu F, Li M, Han F, Zhang Q, Zeng Y, Zhang
W and Cheng X: Role of TRPM7 in cardiac fibrosis: A potential
therapeutic target (review). Exp Ther Med. 21(173)2021.PubMed/NCBI View Article : Google Scholar
|
31
|
Nasir K, Tsai M, Rosen BD, Fernandes V,
Bluemke DA, Folsom AR and Lima JA: Elevated homocysteine is
associated with reduced regional left ventricular function: The
multi-ethnic study of atherosclerosis. Circulation. 115:180–187.
2007.PubMed/NCBI View Article : Google Scholar
|
32
|
Stampfer MJ, Malinow MR, Willett WC,
Newcomer LM, Upson B, Ullmann D, Tishler PV and Hennekens CH: A
prospective study of plasma homocyst(e)ine and risk of myocardial
infarction in US physicians. JAMA. 268:877–881. 1992.PubMed/NCBI
|
33
|
Zhao Q, Song W, Huang J, Wang D and Xu C:
Metformin decreased myocardial fibrosis and apoptosis in
hyperhomocysteinemia-induced cardiac hypertrophy. Curr Res Transl
Med. 69(103270)2021.PubMed/NCBI View Article : Google Scholar
|
34
|
Perbellini F, Watson SA, Scigliano M,
Alayoubi S, Tkach S, Bardi I, Quaife N, Kane C, Dufton NP, Simon A,
et al: Investigation of cardiac fibroblasts using myocardial
slices. Cardiovasc Res. 114:77–89. 2018.PubMed/NCBI View Article : Google Scholar
|
35
|
Moghadaszadeh B and Beggs AH:
Selenoproteins and their impact on human health through diverse
physiological pathways. Physiology (Bethesda). 21:307–315.
2006.PubMed/NCBI View Article : Google Scholar
|
36
|
Papp LV, Lu J, Holmgren A and Khanna KK:
From selenium to selenoproteins: Synthesis, identity, and their
role in human health. Antioxid Redox Signal. 9:775–806.
2007.PubMed/NCBI View Article : Google Scholar
|
37
|
Rayman MP: Selenium and human health.
Lancet. 379:1256–1268. 2012.PubMed/NCBI View Article : Google Scholar
|
38
|
Gao Y, Feng HC, Walder K, Bolton K,
Sunderland T, Bishara N, Quick M, Kantham L and Collier GR:
Regulation of the selenoprotein SelS by glucose deprivation and
endoplasmic reticulum stress-SelS is a novel glucose-regulated
protein. FEBS Lett. 563:185–190. 2004.PubMed/NCBI View Article : Google Scholar
|
39
|
Bomer N, Grote Beverborg N, Hoes MF,
Streng KW, Vermeer M, Dokter MM, IJmker J, Anker SD, Cleland JGF,
Hillege HL, et al: Selenium and outcome in heart failure. Eur J
Heart Fail. 22:1415–1423. 2020.PubMed/NCBI View Article : Google Scholar
|
40
|
Liu H, Xu H and Huang K: Selenium in the
prevention of atherosclerosis and its underlying mechanisms.
Metallomics. 9:21–37. 2017.PubMed/NCBI View Article : Google Scholar
|
41
|
Chen Y, Zhang Z, Zhu D, Zhao W and Li F:
Long non-coding RNA MEG3 serves as a ceRNA for microRNA-145 to
induce apoptosis of AC16 cardiomyocytes under high glucose
condition. Biosci Rep. 39(BSR20190444)2019.PubMed/NCBI View Article : Google Scholar
|
42
|
Zou L, Ma X, Lin S, Wu B, Chen Y and Peng
C: Long noncoding RNA-MEG3 contributes to myocardial
ischemia-reperfusion injury through suppression of miR-7-5p
expression. Biosci Rep. 39(BSR20190210)2019.PubMed/NCBI View Article : Google Scholar
|
43
|
Uchida S: Besides imprinting: Meg3
regulates cardiac remodeling in cardiac hypertrophy. Circ res.
121:486–487. 2017.PubMed/NCBI View Article : Google Scholar
|
44
|
Suzuki S, Tanaka K and Suzuki N:
Ambivalent aspects of interleukin-6 in cerebral ischemia:
Inflammatory versus neurotrophic aspects. J Cereb Blood Flow Metab.
29:464–479. 2009.PubMed/NCBI View Article : Google Scholar
|
45
|
Bujak M, Dobaczewski M, Chatila K, Mendoza
LH, Li N, Reddy A and Frangogiannis NG: Interleukin-1 receptor type
I signaling critically regulates infarct healing and cardiac
remodeling. Am J Pathol. 173:57–67. 2008.PubMed/NCBI View Article : Google Scholar
|
46
|
Takahashi K, Fukushima S, Yamahara K,
Yashiro K, Shintani Y, Coppen SR, Salem HK, Brouilette SW, Yacoub
MH and Suzuki K: Modulated inflammation by injection of
high-mobility group box 1 recovers post-infarction chronically
failing heart. Circulation. 118 (Suppl 14):S106–S114.
2008.PubMed/NCBI View Article : Google Scholar
|
47
|
Zhang C, Deng Y, Lei Y, Zhao J, Wei W and
Li Y: Effects of selenium on myocardial apoptosis by modifying the
activity of mitochondrial STAT3 and regulating potassium channel
expression. Exp Ther Med. 14:2201–2205. 2017.PubMed/NCBI View Article : Google Scholar
|
48
|
Kucinski I, Dinan M, Kolahgar G and
Piddini E: Chronic activation of JNK JAK/STAT and oxidative stress
signalling causes the loser cell status. Nat Commun.
8(136)2017.PubMed/NCBI View Article : Google Scholar
|
49
|
Magaye RR, Savira F, Hua Y, Xiong X, Huang
L, Reid C, Flynn B, Kaye D, Liew D and Wang BH: Exogenous
dihydrosphingosine 1 phosphate mediates collagen synthesis in
cardiac fibroblasts through JAK/STAT signalling and regulation of
TIMP1. Cell Signal. 72(109629)2020.PubMed/NCBI View Article : Google Scholar
|
50
|
Su SA, Yang D, Wu Y, Xie Y, Zhu W, Cai Z,
Shen J, Fu Z, Wang Y, Jia L, et al: EphrinB2 regulates cardiac
fibrosis through modulating the interaction of Stat3 and
TGF-β/Smad3 signaling. Circ Res. 121:617–627. 2017.PubMed/NCBI View Article : Google Scholar
|
51
|
Liu M, Li Y, Liang B, Li Z, Jiang Z, Chu C
and Yang J: Hydrogen sulfide attenuates myocardial fibrosis in
diabetic rats through the JAK/STAT signaling pathway. Int J Mol
Med. 41:1867–1876. 2018.PubMed/NCBI View Article : Google Scholar
|