1
|
Siegel RL, Miller KD and Jemal A: Cancer
statistics, 2017. CA Cancer J Clin. 67:7–30. 2017.PubMed/NCBI View Article : Google Scholar
|
2
|
Katz MHG and Varadhachary GR: Borderline
resectable pancreatic cancer-at the crossroads of precision
medicine. Cancer. 125:1584–1587. 2019.PubMed/NCBI View Article : Google Scholar
|
3
|
Ilic M and Ilic I: Epidemiology of
pancreatic cancer. World J Gastroenterol. 22:9694–9705.
2016.PubMed/NCBI View Article : Google Scholar
|
4
|
Aoyama T, Atsumi Y, Kazama K, Murakawa M,
Shiozawa M, Kobayashi S, Ueno M, Morimoto M, Yukawa N, Oshima T, et
al: Survival and the prognosticators of peritoneal
cytology-positive pancreatic cancer patients undergoing curative
resection followed by adjuvant chemotherapy. J Cancer Res Ther. 14
(Suppl):S1129–S1134. 2018.PubMed/NCBI View Article : Google Scholar
|
5
|
Zhang L, Sanagapalli S and Stoita A:
Challenges in diagnosis of pancreatic cancer. World J
Gastroenterol. 24:2047–2060. 2018.PubMed/NCBI View Article : Google Scholar
|
6
|
Li Petri G, Cascioferro S, El Hassouni B,
Carbone D, Parrino B, Cirrincione G, Peters GJ, Diana P and
Giovannetti E: Biological evaluation of the antiproliferative and
anti-migratory activity of a series of
3-(6-phenylimidazo[2,1-b][1,3,4]thiadiazol-2-yl)-1H-indole
derivatives against pancreatic cancer cells. Anticancer Res.
39:3615–3620. 2019.PubMed/NCBI View Article : Google Scholar
|
7
|
Cascioferro S, Petri GL, Parrino B,
Carbone D, Funel N, Bergonzini C, Mantini G, Dekker H, Geerke D,
Peters GJ, et al: Imidazo[2,1-b] [1,3,4]thiadiazoles with
antiproliferative activity against primary and
gemcitabine-resistant pancreatic cancer cells. Eur J Med Chem.
189(112088)2020.PubMed/NCBI View Article : Google Scholar
|
8
|
Cascioferro S, Li Petri G, Parrino B, El
Hassouni B, Carbone D, Arizza V, Perricone U, Padova A, Funel N,
Peters GJ, et al: 3-(6-phenylimidazo
[2,1-b][1,3,4]thiadiazol-2-yl)-1H-indole derivatives as new
anticancer agents in the treatment of pancreatic ductal
adenocarcinoma. Molecules. 25(329)2020.PubMed/NCBI View Article : Google Scholar
|
9
|
Jarroux J, Morillon A and Pinskaya M:
History, discovery, and classification of lncRNAs. Adv Exp Med
Biol. 1008:1–46. 2017.PubMed/NCBI View Article : Google Scholar
|
10
|
Bhan A, Soleimani M and Mandal SS: Long
noncoding RNA and cancer: A new paradigm. Cancer Res. 77:3965–3981.
2017.PubMed/NCBI View Article : Google Scholar
|
11
|
Wang J, Su Z, Lu S, Fu W, Liu Z, Jiang X
and Tai S: lncRNA HOXA-AS2 and its molecular mechanisms in human
cancer. Clin Chim Acta. 485:229–233. 2018.PubMed/NCBI View Article : Google Scholar
|
12
|
Li J, Li Z, Zheng W, Li X, Wang Z, Cui Y
and Jiang X: lncRNA-ATB: An indispensable cancer-related long
noncoding RNA. Cell Prolif. 50(e12381)2017.PubMed/NCBI View Article : Google Scholar
|
13
|
Yin Z, Zhou Y, Ma T, Chen S, Shi N, Zou Y,
Hou B and Zhang C: Down-regulated lncRNA SBF2-AS1 in M2
macrophage-derived exosomes elevates miR-122-5p to restrict XIAP,
thereby limiting pancreatic cancer development. J Cell Mol Med.
24:5028–5038. 2020.PubMed/NCBI View Article : Google Scholar
|
14
|
Yin F, Zhang Q, Dong Z, Hu J and Ma Z:
lncRNA HOTTIP participates in cisplatin resistance of tumor cells
by regulating miR-137 expression in pancreatic cancer. Onco Targets
Ther. 13:2689–2699. 2020.PubMed/NCBI View Article : Google Scholar
|
15
|
Hua X, Liu Z, Zhou M, Tian Y, Zhao PP, Pan
WH, Li CX, Huang XX, Liao ZX, Xian Q, et al: LSAMP-AS1 binds to
microRNA-183-5p to suppress the progression of prostate cancer by
up-regulating the tumor suppressor DCN. EBioMedicine. 50:178–190.
2019.PubMed/NCBI View Article : Google Scholar
|
16
|
Collisson EA, Bailey P, Chang DK and
Biankin AV: Molecular subtypes of pancreatic cancer. Nat Rev
Gastroenterol Hepatol. 16:207–220. 2019.PubMed/NCBI View Article : Google Scholar
|
17
|
Previdi MC, Carotenuto P, Zito D, Pandolfo
R and Braconi C: Noncoding RNAs as novel biomarkers in pancreatic
cancer: What do we know? Future Oncol. 13:443–453. 2017.PubMed/NCBI View Article : Google Scholar
|
18
|
Tani H and Torimura M: Identification of
short-lived long non-coding RNAs as surrogate indicators for
chemical stress response. Biochem Biophys Res Commun. 439:547–551.
2013.PubMed/NCBI View Article : Google Scholar
|
19
|
Guo XB, Yin HS and Wang JY: Evaluating the
diagnostic and prognostic value of long non-coding RNA SNHG15 in
pancreatic ductal adenocarcinoma. Eur Rev Med Pharmacol Sci.
22:5892–5898. 2018.PubMed/NCBI View Article : Google Scholar
|
20
|
Zhang Y, Zhang D, Lv J, Wang S and Zhang
Q: lncRNA SNHG15 acts as an oncogene in prostate cancer by
regulating miR-338-3p/FKBP1A axis. Gene. 705:44–50. 2019.PubMed/NCBI View Article : Google Scholar
|
21
|
Ma Z, Huang H, Wang J, Zhou Y, Pu F, Zhao
Q, Peng P, Hui B, Ji H and Wang K: Long non-coding RNA SNHG15
inhibits P15 and KLF2 expression to promote pancreatic cancer
proliferation through EZH2-mediated H3K27me3. Oncotarget.
8:84153–84167. 2017.PubMed/NCBI View Article : Google Scholar
|
22
|
Keller C, Kulasegaran-Shylini R, Shimada
Y, Hotz HR and Bühler M: Noncoding RNAs prevent spreading of a
repressive histone mark. Nat Struct Mol Biol. 20:994–1000.
2013.PubMed/NCBI View Article : Google Scholar
|
23
|
Srivastava SK, Bhardwaj A, Arora S, Tyagi
N, Singh S, Andrews J, McClellan S, Wang B and Singh AP:
MicroRNA-345 induces apoptosis in pancreatic cancer cells through
potentiation of caspase-dependent and -independent pathways. Br J
Cancer. 113:660–668. 2015.PubMed/NCBI View Article : Google Scholar
|
24
|
Uz M, Kalaga M, Pothuraju R, Ju J, Junker
WM, Batra SK, Mallapragada S and Rachagani S: Dual delivery
nanoscale device for miR-345 and gemcitabine co-delivery to treat
pancreatic cancer. J Control Release. 294:237–246. 2019.PubMed/NCBI View Article : Google Scholar
|
25
|
Mou T, Xie F, Zhong P, Hua H, Lai L, Yang
Q and Wang J: miR-345-5p functions as a tumor suppressor in
pancreatic cancer by directly targeting CCL8. Biomed Pharmacother.
111:891–900. 2019.PubMed/NCBI View Article : Google Scholar
|
26
|
Chia WJ and Tang BL: Emerging roles for
Rab family GTPases in human cancer. Biochim Biophys Acta.
1795:110–116. 2009.PubMed/NCBI View Article : Google Scholar
|
27
|
Zhao H, Wang Q, Wang X, Zhu H, Zhang S,
Wang W, Wang Z and Huang J: Correlation between RAB27B and p53
expression and overall survival in pancreatic cancer. Pancreas.
45:204–210. 2016.PubMed/NCBI View Article : Google Scholar
|
28
|
Yang J, Zhang Z, Zhang Y, Ni X, Zhang G,
Cui X, Liu M, Xu C, Zhang Q, Zhu H, et al: ZIP4 promotes muscle
wasting and cachexia in mice with orthotopic pancreatic tumors by
stimulating RAB27B-regulated release of extracellular vesicles from
cancer cells. Gastroenterology. 156:722–734.e6. 2019.PubMed/NCBI View Article : Google Scholar
|
29
|
Li J, Jin Q, Huang F, Tang Z and Huang J:
Effects of Rab27A and Rab27B on invasion, proliferation, apoptosis,
and chemoresistance in human pancreatic cancer cells. Pancreas.
46:1173–1179. 2017.PubMed/NCBI View Article : Google Scholar
|
30
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408.
2001.PubMed/NCBI View Article : Google Scholar
|
31
|
Renganathan A and Felley-Bosco E: Long
noncoding RNAs in cancer and therapeutic potential. Adv Exp Med
Biol. 1008:199–222. 2017.PubMed/NCBI View Article : Google Scholar
|
32
|
Sun J, Zhang P, Yin T, Zhang F and Wang W:
Upregulation of lncRNA PVT1 facilitates pancreatic ductal
adenocarcinoma cell progression and glycolysis by regulating
miR-519d-3p and HIF-1A. J Cancer. 11:2572–2579. 2020.PubMed/NCBI View Article : Google Scholar
|
33
|
Cheng D, Fan J, Ma Y, Zhou Y, Qin K, Shi M
and Yang J: lncRNA SNHG7 promotes pancreatic cancer proliferation
through ID4 by sponging miR-342-3p. Cell Biosci.
9(28)2019.PubMed/NCBI View Article : Google Scholar
|
34
|
Lowder CY, Metkus J, Epstein J, Kozak GM,
Lavu H, Yeo CJ and Winter JM: Clinical implications of extensive
lymph node metastases for resected pancreatic cancer. Ann Surg
Oncol. 25:4004–4011. 2018.PubMed/NCBI View Article : Google Scholar
|
35
|
Sun X, Bai Y, Yang C, Hu S, Hou Z and Wang
G: Long noncoding RNA SNHG15 enhances the development of colorectal
carcinoma via functioning as a ceRNA through
miR-141/SIRT1/Wnt/β-catenin axis. Artif Cells Nanomed Biotechnol.
47:2536–2544. 2019.PubMed/NCBI View Article : Google Scholar
|
36
|
Brennecke J, Hipfner DR, Stark A, Russell
RB and Cohen SM: Bantam encodes a developmentally regulated
microRNA that controls cell proliferation and regulates the
proapoptotic gene hid in Drosophila. Cell. 113:25–36.
2003.PubMed/NCBI View Article : Google Scholar
|
37
|
Wang W, Lou W, Ding B, Yang B, Lu H, Kong
Q and Fan W: A novel mRNA-miRNA-lncRNA competing endogenous RNA
triple sub-network associated with prognosis of pancreatic cancer.
Aging (Albany NY). 11:2610–2627. 2019.PubMed/NCBI View Article : Google Scholar
|
38
|
Wei W, Liu Y, Lu Y, Yang B and Tang L:
lncRNA XIST promotes pancreatic cancer proliferation through
miR-133a/EGFR. J Cell Biochem. 118:3349–3358. 2017.PubMed/NCBI View Article : Google Scholar
|
39
|
Gao H, Gong N, Ma Z, Miao X, Chen J, Cao Y
and Zhang G: lncRNA ZEB2-AS1 promotes pancreatic cancer cell growth
and invasion through regulating the miR-204/HMGB1 axis. Int J Biol
Macromol. 116:545–551. 2018.PubMed/NCBI View Article : Google Scholar
|
40
|
Jiang Y, Wang X, Zhang J and Lai R:
MicroRNA-599 suppresses glioma progression by targeting RAB27B.
Oncol Lett. 16:1243–1252. 2018.PubMed/NCBI View Article : Google Scholar
|
41
|
Peng D, Wang H, Li L, Ma X, Chen Y, Zhou
H, Luo Y, Xiao Y and Liu L: miR-34c-5p promotes eradication of
acute myeloid leukemia stem cells by inducing senescence through
selective RAB27B targeting to inhibit exosome shedding. Leukemia.
32:1180–1188. 2018.PubMed/NCBI View Article : Google Scholar
|
42
|
Pu Y, Zhao F, Cai W, Meng X, Li Y and Cai
S: miR-193a-3p and miR-193a-5p suppress the metastasis of human
osteosarcoma cells by down-regulating Rab27B and SRR, respectively.
Clin Exp Metastasis. 33:359–372. 2016.PubMed/NCBI View Article : Google Scholar
|