1
|
Taruc-Uy RL and Lynch SA: Diagnosis and
treatment of osteoarthritis. Prim Care. 40:821–836. 2013.PubMed/NCBI View Article : Google Scholar
|
2
|
Felson DT, Naimark A, Anderson J, Kazis L,
Castelli W and Meenan RF: The prevalence of knee osteoarthritis in
the elderly. The framingham osteoarthritis study. Arthritis Rheum.
30:914–918. 1987.PubMed/NCBI View Article : Google Scholar
|
3
|
Oliveria SA, Felson DT, Reed JI, Cirillo
PA and Walker AM: Incidence of symptomatic hand, hip, and knee
osteoarthritis among patients in a health maintenance organization.
Arthritis Rheum. 38:1134–1141. 1995.PubMed/NCBI View Article : Google Scholar
|
4
|
Prieto-Alhambra D, Judge A, Javaid MK,
Cooper C, Diez-Perez A and Arden NK: Incidence and risk factors for
clinically diagnosed knee, hip and hand osteoarthritis: Influences
of age, gender and osteoarthritis affecting other joints. Ann Rheum
Dis. 73:1659–1664. 2014.PubMed/NCBI View Article : Google Scholar
|
5
|
Murphy L, Schwartz TA, Helmick CG, Renner
JB, Tudor G, Koch G, Dragomir A, Kalsbeek WD, Luta G and Jordan JM:
Lifetime risk of symptomatic knee osteoarthritis. Arthritis Rheum.
59:1207–1213. 2008.PubMed/NCBI View Article : Google Scholar
|
6
|
Zhang W: Risk factors of knee
osteoarthritis-excellent evidence but little has been done.
Osteoarthritis Cartilage. 18:1–2. 2010.PubMed/NCBI View Article : Google Scholar
|
7
|
Glyn-Jones S, Palmer AJ, Agricola R, Price
AJ, Vincent TL, Weinans H and Carr AJ: Osteoarthritis. Lancet.
386:376–387. 2015.PubMed/NCBI View Article : Google Scholar
|
8
|
Lasda E and Parker R: Circular RNAs:
Diversity of form and function. RNA. 20:1829–1842. 2014.PubMed/NCBI View Article : Google Scholar
|
9
|
Yu CX and Sun S: An emerging role for
circular RNAs in osteoarthritis. Yonsei Med J. 59:349–355.
2018.PubMed/NCBI View Article : Google Scholar
|
10
|
Sanger HL, Klotz G, Riesner D, Gross HJ
and Kleinschmidt AK: Viroids are single-stranded covalently closed
circular RNA molecules existing as highly base-paired rod-like
structures. Proc Natl Acad Sci USA. 73:3852–3856. 1976.PubMed/NCBI View Article : Google Scholar
|
11
|
Hsu MT and Coca-Prados M: Electron
microscopic evidence for the circular form of RNA in the cytoplasm
of eukaryotic cells. Nature. 280:339–340. 1979.PubMed/NCBI View
Article : Google Scholar
|
12
|
Kos A, Dijkema R, Arnberg AC, van der
Meide PH and Schellekens H: The hepatitis delta (delta) virus
possesses a circular RNA. Nature. 323:558–560. 1986.PubMed/NCBI View
Article : Google Scholar
|
13
|
Salzman J, Gawad C, Wang PL, Lacayo N and
Brown PO: Circular RNAs are the predominant transcript isoform from
hundreds of human genes in diverse cell types. PLoS One.
7(e30733)2012.PubMed/NCBI View Article : Google Scholar
|
14
|
Jeck WR, Sorrentino JA, Wang K, Slevin MK,
Burd CE, Liu J, Marzluff WF and Sharpless NE: Circular RNAs are
abundant, conserved, and associated with ALU repeats. RNA.
19:141–157. 2013.PubMed/NCBI View Article : Google Scholar
|
15
|
Hou LD and Zhang J: Circular RNAs: An
emerging type of RNA in cancer. Int J Immunopathol Pharmacol.
30:1–6. 2017.PubMed/NCBI View Article : Google Scholar
|
16
|
Chen LL and Yang L: Regulation of circRNA
biogenesis. RNA Biol. 12:381–388. 2015.PubMed/NCBI View Article : Google Scholar
|
17
|
Vicens Q and Westhof E: Biogenesis of
circular RNAs. Cell. 159:13–14. 2014.PubMed/NCBI View Article : Google Scholar
|
18
|
Wang Y and Wang Z: Efficient backsplicing
produces translatable circular mRNAs. RNA. 21:172–179.
2015.PubMed/NCBI View Article : Google Scholar
|
19
|
Chen I, Chen CY and Chuang TJ: Biogenesis,
identification, and function of exonic circular RNAs. Wiley
Interdiscip Rev RNA. 6:563–579. 2015.PubMed/NCBI View Article : Google Scholar
|
20
|
Li Z, Huang C, Bao C, Chen L, Lin M, Wang
X, Zhong G, Yu B, Hu W, Dai L, et al: Exon-intron circular RNAs
regulate transcription in the nucleus. Nat Struct Mol Biol.
22:256–264. 2015.PubMed/NCBI View Article : Google Scholar
|
21
|
Zhang Y, Zhang XO, Chen T, Xiang JF, Yin
QF, Xing YH, Zhu S, Yang L and Chen LL: Circular intronic long
noncoding RNAs. Mol Cell. 51:792–806. 2013.PubMed/NCBI View Article : Google Scholar
|
22
|
Conn SJ, Pillman KA, Toubia J, Conn VM,
Salmanidis M, Phillips CA, Roslan S, Schreiber AW, Gregory PA and
Goodall GJ: The RNA binding protein quaking regulates formation of
circRNAs. Cell. 160:1125–1134. 2015.PubMed/NCBI View Article : Google Scholar
|
23
|
Ashwal-Fluss R, Meyer M, Pamudurti NR,
Ivanov A, Bartok O, Hanan M, Evantal N, Memczak S, Rajewsky N and
Kadener S: circRNA biogenesis competes with pre-mRNA splicing. Mol
Cell. 56:55–66. 2014.PubMed/NCBI View Article : Google Scholar
|
24
|
Memczak S, Jens M, Elefsinioti A, Torti F,
Krueger J, Rybak A, Maier L, Mackowiak SD, Gregersen LH, Munschauer
M, et al: Circular RNAs are a large class of animal RNAs with
regulatory potency. Nature. 495:333–338. 2013.PubMed/NCBI View Article : Google Scholar
|
25
|
Hansen TB, Jensen TI, Clausen BH, Bramsen
JB, Finsen B, Damgaard CK and Kjems J: Natural RNA circles function
as efficient microRNA sponges. Nature. 495:384–388. 2013.PubMed/NCBI View Article : Google Scholar
|
26
|
You X, Vlatkovic I, Babic A, Will T,
Epstein I, Tushev G, Akbalik G, Wang M, Glock C, Quedenau C, et al:
Neural circular RNAs are derived from synaptic genes and regulated
by development and plasticity. Nat Neurosci. 18:603–610.
2015.PubMed/NCBI View
Article : Google Scholar
|
27
|
Huang S, Yang B, Chen BJ, Bliim N,
Ueberham U, Arendt T and Janitz M: The emerging role of circular
RNAs in transcriptome regulation. Genomics. 109:401–407.
2017.PubMed/NCBI View Article : Google Scholar
|
28
|
Chen X, Han P, Zhou T, Guo X, Song X and
Li Y: circRNADb: A comprehensive database for human circular RNAs
with protein-coding annotations. Sci Rep. 6(34985)2016.PubMed/NCBI View Article : Google Scholar
|
29
|
Granados-Riveron JT and Aquino-Jarquin G:
The complexity of the translation ability of circRNAs. Biochim
Biophys Acta. 1859:1245–1251. 2016.PubMed/NCBI View Article : Google Scholar
|
30
|
Ebert MS and Sharp PA: MicroRNA sponges:
Progress and possibilities. RNA. 16:2043–2050. 2010.PubMed/NCBI View Article : Google Scholar
|
31
|
Abdelmohsen K, Kuwano Y, Kim HH and
Gorospe M: Posttranscriptional gene regulation by RNA-binding
proteins during oxidative stress: Implications for cellular
senescence. Biol Chem. 389:243–255. 2008.PubMed/NCBI View Article : Google Scholar
|
32
|
Yin QF, Yang L, Zhang Y, Xiang JF, Wu YW,
Carmichael GG and Chen LL: Long noncoding RNAs with snoRNA ends.
Mol Cell. 48:219–230. 2012.PubMed/NCBI View Article : Google Scholar
|
33
|
Qu S, Yang X, Li X, Wang J, Gao Y, Shang
R, Sun W, Dou K and Li H: Circular RNA: A new star of noncoding
RNAs. Cancer Lett. 365:141–148. 2015.PubMed/NCBI View Article : Google Scholar
|
34
|
Chen CY and Sarnow P: Initiation of
protein synthesis by the eukaryotic translational apparatus on
circular RNAs. Science. 268:415–417. 1995.PubMed/NCBI View Article : Google Scholar
|
35
|
Yang Y, Fan X, Mao M, Song X, Wu P, Zhang
Y, Jin Y, Yang Y, Chen LL, Wang Y, et al: Extensive translation of
circular RNAs driven by N6-methyladenosine. Cell Res.
27:626–641. 2017.PubMed/NCBI View Article : Google Scholar
|
36
|
Pamudurti NR, Bartok O, Jens M,
Ashwal-Fluss R, Stottmeister C, Ruhe L, Hanan M, Wyler E,
Perez-Hernandez D, Ramberger E, et al: Translation of circRNAs. Mol
Cell. 66:9–21. 2017.PubMed/NCBI View Article : Google Scholar
|
37
|
Greene J, Baird AM, Brady L, Lim M, Gray
SG, McDermott R and Finn SP: Circular RNAs: Biogenesis, function
and role in human diseases. Front Mol Biosci. 4(38)2017.PubMed/NCBI View Article : Google Scholar
|
38
|
Hsiao KY, Sun HS and Tsai SJ: Circular
RNA-New member of noncoding RNA with novel functions. Exp Biol Med
(Maywood). 242:1136–1141. 2017.PubMed/NCBI View Article : Google Scholar
|
39
|
Li H, Yang HH, Sun ZG, Tang HB and Min JK:
Whole-transcriptome sequencing of knee joint cartilage from
osteoarthritis patients. Bone Joint Res. 8:288–301. 2019.PubMed/NCBI View Article : Google Scholar
|
40
|
Xiang S, Li Z, Bian Y and Weng X: RNA
sequencing reveals the circular RNA expression profiles of
osteoarthritic synovium. J Cell Biochem. 120:18031–18040.
2019.PubMed/NCBI View Article : Google Scholar
|
41
|
Xiao K, Xia Z, Feng B, Bian Y, Fan Y, Li
Z, Wu Z, Qiu G and Weng X: Circular RNA expression profile of knee
condyle in osteoarthritis by illumina HiSeq platform. J Cell
Biochem. 120:17500–17511. 2019.PubMed/NCBI View Article : Google Scholar
|
42
|
Liu Q, Zhang X, Hu X, Dai L, Fu X, Zhang J
and Ao Y: Circular RNA related to the chondrocyte ECM regulates
MMP13 expression by functioning as a MiR-136 ‘Sponge’ in human
cartilage degradation. Sci Rep. 6(22572)2016.PubMed/NCBI View Article : Google Scholar
|
43
|
Rahmati M, Nalesso G, Mobasheri A and
Mozafari M: Aging and osteoarthritis: Central role of the
extracellular matrix. Ageing Res Rev. 40:20–30. 2017.PubMed/NCBI View Article : Google Scholar
|
44
|
Loeser RF, Goldring SR, Scanzello CR and
Goldring MB: Osteoarthritis: A disease of the joint as an organ.
Arthritis Rheum. 64:1697–1707. 2012.PubMed/NCBI View Article : Google Scholar
|
45
|
Marchev AS, Dimitrova PA, Burns AJ, Kostov
RV, Dinkova-Kostova AT and Georgiev MI: Oxidative stress and
chronic inflammation in osteoarthritis: Can NRF2 counteract these
partners in crime? Ann NY Acad Sci. 1401:114–135. 2017.PubMed/NCBI View Article : Google Scholar
|
46
|
Sun MM, Beier F and Pest MA: Recent
developments in emerging therapeutic targets of osteoarthritis.
Curr Opin Rheumatol. 29:96–102. 2017.PubMed/NCBI View Article : Google Scholar
|
47
|
Laiguillon MC, Houard X, Bougault C,
Gosset M, Nourissat G, Sautet A, Jacques C, Berenbaum F and Sellam
J: Expression and function of visfatin (Nampt), an adipokine-enzyme
involved in inflammatory pathways of osteoarthritis. Arthritis Res
Ther. 16(R38)2014.PubMed/NCBI View
Article : Google Scholar
|
48
|
Salzman J, Chen RE, Olsen MN, Wang PL and
Brown PO: Cell-type specific features of circular RNA expression.
PLoS Genet. 9(e1003777)2013.PubMed/NCBI View Article : Google Scholar
|
49
|
Liu Q, Zhang X, Hu X, Yuan L, Cheng J,
Jiang Y and Ao Y: Emerging roles of circRNA related to the
mechanical stress in human cartilage degradation of osteoarthritis.
Mol Ther Nucleic Acids. 7:223–230. 2017.PubMed/NCBI View Article : Google Scholar
|
50
|
Wu Y, Zhang Y, Zhang Y and Wang JJ:
CircRNA hsa_circ_0005105 upregulates NAMPT expression and promotes
chondrocyte extracellular matrix degradation by sponging miR-26a.
Cell Biol Int. 41:1283–1289. 2017.PubMed/NCBI View Article : Google Scholar
|
51
|
Zhou ZB, Du D, Huang GX, Chen A and Zhu L:
Circular RNA Atp9b, a competing endogenous RNA, regulates the
progression of osteoarthritis by targeting miR-138-5p. Gene.
646:203–209. 2018.PubMed/NCBI View Article : Google Scholar
|
52
|
Zhou ZB, Huang GX, Fu Q, Han B, Lu JJ,
Chen AM and Zhu L: circRNA.33186 contributes to the pathogenesis of
osteoarthritis by sponging miR-127-5p. Mol Ther. 27:531–541.
2019.PubMed/NCBI View Article : Google Scholar
|
53
|
Chen G, Liu T, Yu B, Wang B and Peng Q:
CircRNA-UBE2G1 regulates LPS-induced osteoarthritis through
miR-373/HIF-1a axis. Cell Cycle. 19:1696–1705. 2020.PubMed/NCBI View Article : Google Scholar
|
54
|
Zhu H, Zhu S, Shang X, Meng X, Jing S, Yu
L and Deng Y: Exhausting circ_0136474 and restoring miR-766-3p
attenuate chondrocyte oxidative injury in IL-1β-induced
osteoarthritis progression through regulating DNMT3A. Front Genet.
12(648709)2021.PubMed/NCBI View Article : Google Scholar
|
55
|
Ni JL, Dang XQ and Shi ZB: CircPSM3
inhibits the proliferation and differentiation of OA chondrocytes
by targeting miRNA-296-5p. Eur Rev Med Pharmacol Sci. 24:3467–3475.
2020.PubMed/NCBI View Article : Google Scholar
|
56
|
Zhang W, Zhang C, Hu C, Luo C, Zhong B and
Yu X: Circular RNA-CDR1as acts as the sponge of microRNA-641 to
promote osteoarthritis progression. J Inflamm (Lond).
17(8)2020.PubMed/NCBI View Article : Google Scholar
|
57
|
Zhu H, Hu Y, Wang C, Zhang X and He D:
CircGCN1L1 promotes synoviocyte proliferation and chondrocyte
apoptosis by targeting miR-330-3p and TNF-α in TMJ osteoarthritis.
Cell Death Dis. 11(284)2020.PubMed/NCBI View Article : Google Scholar
|
58
|
Zhou X, Jiang L, Fan G, Yang H, Wu L,
Huang Y, Xu N and Li J: Role of the ciRS-7/miR-7 axis in the
regulation of proliferation, apoptosis and inflammation of
chondrocytes induced by IL-1β. Int Immunopharmacol. 71:233–240.
2019.PubMed/NCBI View Article : Google Scholar
|
59
|
Boulaftali Y, François D, Venisse L,
Jandrot-Perrus M, Arocas V and Bouton MC: Endothelial protease
nexin-1 is a novel regulator of a disintegrin and metalloproteinase
17 maturation and endothelial protein C receptor shedding via furin
inhibition. Arterioscler Thromb Vasc Biol. 33:1647–1654.
2013.PubMed/NCBI View Article : Google Scholar
|
60
|
Pagliara V, Adornetto A, Mammì M, Masullo
M, Sarnataro D, Pietropaolo C and Arcone R: Protease Nexin-1
affects the migration and invasion of C6 glioma cells through the
regulation of urokinase plasminogen activator and matrix
metalloproteinase-9/2. Biochim Biophys Acta. 1843:2631–2644.
2014.PubMed/NCBI View Article : Google Scholar
|
61
|
Rao JS, Kahler CB, Baker JB and Festoff
BW: Protease nexin I, a serpin, inhibits plasminogen-dependent
degradation of muscle extracellular matrix. Muscle Nerve.
12:640–646. 1989.PubMed/NCBI View Article : Google Scholar
|
62
|
Shen S, Wu Y, Chen J, Xie Z, Huang K, Wang
G, Yang Y, Ni W, Chen Z, Shi P, et al: CircSERPINE2 protects
against osteoarthritis by targeting miR-1271 and ETS-related gene.
Ann Rheum Dis. 78:826–836. 2019.PubMed/NCBI View Article : Google Scholar
|
63
|
Jones SW, Watkins G, Le Good N, Roberts S,
Murphy CL, Brockbank SM, Needham MR, Read SJ and Newham P: The
identification of differentially expressed microRNA in
osteoarthritic tissue that modulate the production of TNF-alpha and
MMP13. Osteoarthritis Cartilage. 17:464–472. 2009.PubMed/NCBI View Article : Google Scholar
|
64
|
Zhang Y, Moerkens M, Ramaiahgari S, de
Bont H, Price L, Meerman J and van de Water B: Elevated
insulin-like growth factor 1 receptor signaling induces
antiestrogen resistance through the MAPK/ERK and PI3K/Akt signaling
routes. Breast Cancer Res. 13(R52)2011.PubMed/NCBI View Article : Google Scholar
|
65
|
Zhang M, Zhou Q, Liang QQ, Li CG, Holz JD,
Tang D, Sheu TJ, Li TF, Shi Q and Wang YJ: IGF-1 regulation of type
II collagen and MMP-13 expression in rat endplate chondrocytes via
distinct signaling pathways. Osteoarthritis Cartilage. 17:100–106.
2009.PubMed/NCBI View Article : Google Scholar
|
66
|
Li BF, Zhang Y, Xiao J, Wang F, Li M, Guo
XZ, Xie HB, Xia H and Chen B: Hsa_circ_0045714 regulates
chondrocyte proliferation, apoptosis and extracellular matrix
synthesis by promoting the expression of miR-193b target gene
IGF1R. Hum Cell. 30:311–318. 2017.PubMed/NCBI View Article : Google Scholar
|