1
|
World Health Organization (WHO): Global
status report on alcohol and health 2018. WHO, Geneva, Switzerland,
2018.
|
2
|
Vassallo G, Mirijello A, Ferrulli A,
Antonelli M, Landolfi R, Gasbarrini A and Addolorato G: Review
article: Alcohol and gut microbiota-the possible role of gut
microbiota modulation in the treatment of alcoholic liver disease.
Aliment Pharmacol Ther. 41:917–927. 2015.PubMed/NCBI View Article : Google Scholar
|
3
|
Avila MA, Dufour JF, Gerbes AL, Zoulim F,
Bataller R, Burra P, Cortez-Pinto H, Gao B, Gilmore I, Mathurin P,
et al: Recent advances in alcohol-related liver disease (ALD):
Summary of a gut round table meeting. Gut. 69:764–780.
2020.PubMed/NCBI View Article : Google Scholar
|
4
|
Bajaj JS: Alcohol, liver disease and the
gut microbiota. Nat Rev Gastroenterol Hepatol. 16:235–246.
2019.PubMed/NCBI View Article : Google Scholar
|
5
|
Zhong W and Zhou Z: Alterations of the gut
microbiome and metabolome in alcoholic liver disease. World J
Gastrointest Pathophysiol. 5:514–522. 2014.PubMed/NCBI View Article : Google Scholar
|
6
|
Cai X, Bao L, Wang N, Ren J, Chen Q, Xu M,
Li D, Mao R and Li Y: Dietary nucleotides protect against alcoholic
liver injury by attenuating inflammation and regulating gut
microbiota in rats. Food Funct. 7:2898–2908. 2016.PubMed/NCBI View Article : Google Scholar
|
7
|
Chen J, Xuan YH, Luo MX, Ni XG, Ling LQ,
Hu SJ, Chen JQ, Xu JY, Jiang LY, Si WZ, et al: Kaempferol
alleviates acute alcoholic liver injury in mice by regulating
intestinal tight junction proteins and butyrate receptors and
transporters. Toxicology. 429(152338)2020.PubMed/NCBI View Article : Google Scholar
|
8
|
Zhou Z and Zhong W: Targeting the gut
barrier for the treatment of alcoholic liver disease. Liver Res.
1:197–207. 2017.PubMed/NCBI View Article : Google Scholar
|
9
|
Jiang Y, Chen B, Duan C, Sun B, Yang J and
Yang S: Multigene editing in the escherichia coli genome via the
CRISPR-Cas9 system. Appl Environ Microbiol. 81:2506–2514.
2015.PubMed/NCBI View Article : Google Scholar
|
10
|
Addolorato G, Ponziani FR, Dionisi T,
Mosoni C, Vassallo GA, Sestito L, Petito V, Picca A, Marzetti E,
Tarli C, et al: Gut microbiota compositional and functional
fingerprint in patients with alcohol use disorder and
alcohol-associated liver disease. Liver Int. 40:878–888.
2020.PubMed/NCBI View Article : Google Scholar
|
11
|
Parlesak A, Schafer C, Schutz T, Bode JC
and Bode C: Increased intestinal permeability to macromolecules and
endotoxemia in patients with chronic alcohol abuse in different
stages of alcohol-induced liver disease. J Hepatol. 32:742–747.
2000.PubMed/NCBI View Article : Google Scholar
|
12
|
Hoque R, Farooq A, Ghani A, Gorelick F and
Mehal WZ: Lactate reduces liver and pancreatic injury in Toll-like
receptor- and inflammasome-mediated inflammation via GPR81-mediated
suppression of innate immunity. Gastroenterology. 146:1763–1774.
2014.PubMed/NCBI View Article : Google Scholar
|
13
|
Kageyama S, Nakamura K, Fujii T, Ke B,
Sosa RA, Reed EF, Datta N, Zarrinpar A, Busuttil RW and
Kupiec-Weglinski JW: Recombinant relaxin protects liver transplants
from ischemia damage by hepatocyte glucocorticoid receptor: From
bench-to-bedside. Hepatology. 68:258–273. 2018.PubMed/NCBI View Article : Google Scholar
|
14
|
Cui K, Yan G, Xu C, Chen Y, Wang J, Zhou
R, Bai L, Lian Z, Wei H, Sun R and Tian Z: Invariant NKT cells
promote alcohol-induced steatohepatitis through interleukin-1β in
mice. J Hepatol. 62:1311–1318. 2015.PubMed/NCBI View Article : Google Scholar
|
15
|
Wieser V, Tymoszuk P, Adolph TE, Grander
C, Grabherr F, Enrich B, Pfister A, Lichtmanegger L, Gerner R,
Drach M, et al: Lipocalin 2 drives neutrophilic inflammation in
alcoholic liver disease. J Hepatol. 64:872–880. 2016.PubMed/NCBI View Article : Google Scholar
|
16
|
Osna NA, Donohue TM Jr and Kharbanda KK:
Alcoholic liver disease: Pathogenesis and current management.
Alcohol Res. 38:147–161. 2017.PubMed/NCBI
|
17
|
You Y, Li WZ, Zhang S, Hu B, Li YX, Li HD,
Tang HH, Li QW, Guan YY, Liu LX, et al: SNX10 mediates
alcohol-induced liver injury and steatosis by regulating the
activation of chaperone-mediated autophagy. J Hepatol. 69:129–141.
2018.PubMed/NCBI View Article : Google Scholar
|
18
|
You M and Arteel GE: Effect of ethanol on
lipid metabolism. J Hepatol. 70:237–248. 2019.PubMed/NCBI View Article : Google Scholar
|
19
|
Valenzuela R and Videla LA: The importance
of the long-chain polyunsaturated fatty acid n-6/n-3 ratio in
development of non-alcoholic fatty liver associated with obesity.
Food Funct. 2:644–648. 2011.PubMed/NCBI View Article : Google Scholar
|
20
|
Zhang W, Sun Q, Zhong W, Sun X and Zhou Z:
Hepatic peroxisome proliferator-activated receptor gamma signaling
contributes to alcohol-induced hepatic steatosis and inflammation
in mice. Alcohol Clin Exp Res. 40:988–999. 2016.PubMed/NCBI View Article : Google Scholar
|
21
|
Mandrekar P and Szabo G: Signalling
pathways in alcohol-induced liver inflammation. J Hepatol.
50:1258–1266. 2009.PubMed/NCBI View Article : Google Scholar
|
22
|
Shimizu H, Masujima Y, Ushiroda C,
Mizushima R, Taira S, Ohue-Kitano R and Kimura I: Dietary
short-chain fatty acid intake improves the hepatic metabolic
condition via FFAR3. Sci Rep. 9:16574. 2019.PubMed/NCBI View Article : Google Scholar
|
23
|
Makki K, Deehan EC, Walter J and Bäckhed
F: The impact of dietary fiber on gut microbiota in host health and
disease. Cell Host Microbe. 23:705–715. 2018.PubMed/NCBI View Article : Google Scholar
|
24
|
Tsai YL, Lin TL, Chang CJ, Wu TR, Lai WF,
Lu CC and Lai HC: Probiotics, prebiotics and amelioration of
diseases. J Biomed Sci. 26(3)2019.PubMed/NCBI View Article : Google Scholar
|
25
|
Vétizou M, Pitt JM, Daillère R, Lepage P,
Waldschmitt N, Flament C, Rusakiewicz S, Routy B, Roberti MP, Duong
CP, et al: Anticancer immunotherapy by CTLA-4 blockade relies on
the gut microbiota. Science. 350:1079–1084. 2015.PubMed/NCBI View Article : Google Scholar
|
26
|
Khochamit N, Siripornadulsil S, Sukon P
and Siripornadulsil W: Antibacterial activity and
genotypic-phenotypic characteristics of bacteriocin-producing
Bacillus subtilis KKU213: Potential as a probiotic strain.
Microbiol Res. 170:36–50. 2015.PubMed/NCBI View Article : Google Scholar
|
27
|
Compaoré CS, Nielsen DS, Ouoba LII, Berner
TS, Nielsen KF, Sawadogo-Lingani H, Diawara B, Ouédraogo GA,
Jakobsen M and Thorsen L: Co-production of surfactin and a novel
bacteriocin by Bacillus subtilis subsp. subtilis H4
isolated from Bikalga, an African alkaline Hibiscus
sabdariffa seed fermented condiment. Int J Food Microbiol.
162:297–307. 2013.PubMed/NCBI View Article : Google Scholar
|
28
|
Elshaghabee FMF, Rokana N, Gulhane RD,
Sharma C and Panwar H: Bacillus as potential probiotics: Status,
concerns, and future perspectives. Front Microbiol.
8(1490)2017.PubMed/NCBI View Article : Google Scholar
|
29
|
Horosheva TV, Vodyanoy V and Sorokulova I:
Efficacy of Bacillus probiotics in prevention of
antibiotic-associated diarrhoea: A randomized, double-blind,
placebo-controlled clinical trial. JMM Case Rep. 1:2014.
|
30
|
Hickson M: Probiotics in the prevention of
antibiotic-associated diarrhoea and Clostridium difficile
infection. Therap Adv Gastroenterol. 4:185–197. 2011.PubMed/NCBI View Article : Google Scholar
|
31
|
Bertola A, Mathews S, Ki SH, Wang H and
Gao B: Mouse model of chronic and binge ethanol feeding (the NIAAA
model). Nat Protoc. 8:627–637. 2013.PubMed/NCBI View Article : Google Scholar
|
32
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408.
2001.PubMed/NCBI View Article : Google Scholar
|
33
|
Caporaso JG, Kuczynski J, Stombaugh J,
Bittinger K, Bushman FD, Costello EK, Fierer N, Peña AG, Goodrich
JK, Gordon JI, et al: QIIME allows analysis of high-throughput
community sequencing data. Nat Methods. 7:335–336. 2010.PubMed/NCBI View Article : Google Scholar
|
34
|
Hill TC, Walsh KA, Harris JA and Moffett
BF: Using ecological diversity measures with bacterial communities.
FEMS Microbiol Ecol. 43:1–11. 2003.PubMed/NCBI View Article : Google Scholar
|
35
|
Cho YE and Song BJ: Pomegranate prevents
binge alcohol-induced gut leakiness and hepatic inflammation by
suppressing oxidative and nitrative stress. Redox Biol. 18:266–278.
2018.PubMed/NCBI View Article : Google Scholar
|
36
|
Shao T, Zhao C, Li F, Gu Z, Liu L, Zhang
L, Wang Y, He L, Liu Y, Liu Q, et al: Intestinal HIF-1α deletion
exacerbates alcoholic liver disease by inducing intestinal
dysbiosis and barrier dysfunction. J Hepatol. 69:886–895.
2018.PubMed/NCBI View Article : Google Scholar
|
37
|
Antón M, Rodríguez-González A, Ballesta A,
González N, Del Pozo A, de Fonseca FR, Gómez-Lus ML, Leza JC,
García-Bueno B, Caso JR and Orio L: Alcohol binge disrupts the rat
intestinal barrier: The partial protective role of
oleoylethanolamide. Br J Pharmacol. 175:4464–4479. 2018.PubMed/NCBI View Article : Google Scholar
|
38
|
Ambade A, Lowe P, Kodys K, Catalano D,
Gyongyosi B, Cho Y, Iracheta-Vellve A, Adejumo A, Saha B, Calenda
C, et al: Pharmacological inhibition of CCR2/5 signaling prevents
and reverses alcohol-induced liver damage, steatosis, and
inflammation in mice. Hepatology. 69:1105–1121. 2019.PubMed/NCBI View Article : Google Scholar
|
39
|
Ferrere G, Wrzosek L, Cailleux F, Turpin
W, Puchois V, Spatz M, Ciocan D, Rainteau D, Humbert L, Hugot C, et
al: Fecal microbiota manipulation prevents dysbiosis and
alcohol-induced liver injury in mice. J Hepatol. 66:806–815.
2017.PubMed/NCBI View Article : Google Scholar
|
40
|
Arab JP, Arrese M and Shah VH: Gut
microbiota in non-alcoholic fatty liver disease and alcohol-related
liver disease: Current concepts and perspectives. Hepatol Res.
50:407–418. 2020.PubMed/NCBI View Article : Google Scholar
|
41
|
Dubinkina VB, Tyakht AV, Odintsova VY,
Yarygin KS, Kovarsky BA, Pavlenko AV, Ischenko DS, Popenko AS,
Alexeev DG, Taraskina AY, et al: Links of gut microbiota
composition with alcohol dependence syndrome and alcoholic liver
disease. Microbiome. 5(141)2017.PubMed/NCBI View Article : Google Scholar
|
42
|
Vital M, Penton CR, Wang Q, Young VB,
Antonopoulos DA, Sogin ML, Morrison HG, Raffals L, Chang EB,
Huffnagle GB, et al: A gene-targeted approach to investigate the
intestinal butyrate-producing bacterialcommunity. Microbiome.
1(8)2013.PubMed/NCBI View Article : Google Scholar
|
43
|
Yan AW, Fouts DE, Brandl J, Stärkel P,
Torralba M, Schott E, Tsukamoto H, Nelson KE, Brenner DA and
Schnabl B: Enteric dysbiosis associated with a mouse model of
alcoholic liver disease. Hepatology. 53:96–105. 2011.PubMed/NCBI View Article : Google Scholar
|
44
|
Mutlu EA, Gillevet PM, Rangwala H,
Sikaroodi M, Naqvi A, Engen PA, Kwasny M, Lau CK and Keshavarzian
A: Colonic microbiome is altered in alcoholism. Am J Physiol
Gastrointest Liver Physiol. 302:G966–G978. 2012.PubMed/NCBI View Article : Google Scholar
|
45
|
Wang L, Fouts DE, Stärkel P, Hartmann P,
Chen P, Llorente C, DePew J, Moncera K, Ho SB, Brenner DA, et al:
Intestinal REG3 lectins protect against alcoholic steatohepatitis
by reducing mucosa-associated microbiota and preventing bacterial
translocation. Cell Host Microbe. 19:227–239. 2016.PubMed/NCBI View Article : Google Scholar
|
46
|
Tilg H, Cani PD and Mayer EA: Gut
microbiome and liver diseases. Gut. 65:2035–2044. 2016.PubMed/NCBI View Article : Google Scholar
|
47
|
Wells JM, Brummer RJ, Derrien M, MacDonald
TT, Troost F, Cani PD, Theodorou V, Dekker J, Méheust A, de Vos WM,
et al: Homeostasis of the gut barrier and potential biomarkers. Am
J Physiol Gastrointest Liver Physiol. 312:G171–G193.
2017.PubMed/NCBI View Article : Google Scholar
|
48
|
Lindner C, Thomsen I, Wahl B, Ugur M,
Sethi MK, Friedrichsen M, Smoczek A, Ott S, Baumann U, Suerbaum S,
et al: Diversification of memory B cells drives the continuous
adaptation of secretory antibodies to gut microbiota. Nat Immunol.
16:880–888. 2015.PubMed/NCBI View Article : Google Scholar
|
49
|
Rogier EW, Frantz AL, Bruno ME, Wedlund L,
Cohen DA, Stromberg AJ and Kaetzel CS: Secretory antibodies in
breast milk promote long-term intestinal homeostasis by regulating
the gut microbiota and host gene expression. Proc Natl Acad Sci
USA. 111:3074–3079. 2014.PubMed/NCBI View Article : Google Scholar
|
50
|
Brown GD, Willment JA and Whitehead L:
C-type lectins in immunity and homeostasis. Nat Rev Immunol.
18:374–389. 2018.PubMed/NCBI View Article : Google Scholar
|
51
|
Seo GY, Giles DA and Kronenberg M: The
role of innate lymphoid cells in response to microbes at mucosal
surfaces. Mucosal Immunol. 13:399–412. 2020.PubMed/NCBI View Article : Google Scholar
|
52
|
Guerville M, Leroy A, Sinquin A,
Laugerette F, Michalski MC and Boudry G: Western-diet consumption
induces alteration of barrier function mechanisms in the ileum that
correlates with metabolic endotoxemia in rats. Am J Physiol
Endocrinol Metab. 313:E107–E120. 2017.PubMed/NCBI View Article : Google Scholar
|
53
|
van Ampting MT, Loonen LM, Schonewille AJ,
Konings I, Vink C, Iovanna J, Chamaillard M, Dekker J, van der Meer
R, Wells JM and Bovee-Oudenhoven IMJ: Intestinally secreted C-type
lectin Reg3b attenuates salmonellosis but not listeriosis in mice.
Infect Immun. 80:1115–1120. 2012.PubMed/NCBI View Article : Google Scholar
|
54
|
Eslamparast T, Eghtesad S, Hekmatdoost A
and Poustchi H: Probiotics and nonalcoholic fatty liver disease.
Middle East J Dig Dis. 5:129–136. 2013.PubMed/NCBI
|
55
|
Koutnikova H, Genser B, Monteiro-Sepulveda
M, Faurie MJ, Rizkalla S, Schrezenmeir J and Clément K: Impact of
bacterial probiotics on obesity, diabetes and non-alcoholic fatty
liver disease related variables: A systematic review and
meta-analysis of randomised controlled trials. BMJ Open.
9(e017995)2019.PubMed/NCBI View Article : Google Scholar
|
56
|
Hong M, Han DH, Hong J, Kim DJ and Suk KT:
Are probiotics effective in targeting alcoholic liver diseases?
Probiotics Antimicrob Proteins. 11:335–347. 2019.PubMed/NCBI View Article : Google Scholar
|
57
|
Wang J, Dong X, Shao Y, Guo H, Pan L, Hui
W, Kwok LY, Zhang H and Zhang W: Genome adaptive evolution of
Lactobacillus casei under long-term antibiotic selection
pressures. BMC Genomics. 18(320)2017.PubMed/NCBI View Article : Google Scholar
|
58
|
Koga H, Tamiya Y, Mitsuyama K, Ishibashi
M, Matsumoto S, Imaoka A, Hara T, Nakano M, Ooeda K, Umezaki Y and
Sata M: Probiotics promote rapid-turnover protein production by
restoring gut flora in patients with alcoholic liver cirrhosis.
Hepatol Int. 7:767–774. 2013.PubMed/NCBI View Article : Google Scholar
|
59
|
Forsyth CB, Farhadi A, Jakate SM, Tang Y,
Shaikh M and Keshavarzian A: Lactobacillus GG treatment ameliorates
alcohol-induced intestinal oxidative stress, gut leakiness, and
liver injury in a rat model of alcoholic steatohepatitis. Alcohol.
43:163–172. 2009.PubMed/NCBI View Article : Google Scholar
|
60
|
Gao B, Xu MJ, Bertola A, Wang H, Zhou Z
and Liangpunsakul S: Animal models of alcoholic liver disease:
Pathogenesis and clinical relevance. Gene Expr. 17:173–186.
2017.PubMed/NCBI View Article : Google Scholar
|
61
|
Barrera C, Valenzuela R, Rincón M,
Espinosa A, Echeverria F, Romero N, Gonzalez-Mañan D and Videla LA:
Molecular mechanisms related to the hepatoprotective effects of
antioxidant-rich extra virgin olive oil supplementation in rats
subjected to short-term iron administration. Free Radic Biol Med.
126:313–321. 2018.PubMed/NCBI View Article : Google Scholar
|
62
|
Valenzuela R, Illesca P, Echeverría F,
Espinosa A, Rincón-Cervera MA, Ortiz M, Hernandez-Rodas MC,
Valenzuela A and Videla LA: Molecular adaptations underlying the
beneficial effects of hydroxytyrosol in the pathogenic alterations
induced by a high-fat diet in mouse liver: PPAR-α and Nrf2
activation, and NF-κB down-regulation. Food Funct. 8:1526–1537.
2017.PubMed/NCBI View Article : Google Scholar
|
63
|
Ortiz M, Soto-Alarcón SA, Orellana P,
Espinosa A, Campos C, López-Arana S, Rincón MA, Illesca P,
Valenzuela R and Videla LA: Suppression of high-fat diet-induced
obesity-associated liver mitochondrial dysfunction by
docosahexaenoic acid and hydroxytyrosol co-administration. Dig
Liver Dis. 52:895–904. 2020.PubMed/NCBI View Article : Google Scholar
|
64
|
Soto-Alarcón SA, Ortiz M, Orellana P,
Echeverría F, Bustamante A, Espinosa A, Illesca P, Gonzalez-Mañán
D, Valenzuela R and Videla LA: Docosahexaenoic acid and
hydroxytyrosol co-administration fully prevents liver steatosis and
related parameters in mice subjected to high-fat diet: A molecular
approach. Biofactors. 45:930–943. 2019.PubMed/NCBI View Article : Google Scholar
|