1
|
DeSantis CE, Ma J, Gaudet MM, Newman LA,
Miller KD, Goding Sauer A, Jemal A and Siegel RL: Breast cancer
statistics, 2019. CA Cancer J Clin. 69:438–451. 2019.PubMed/NCBI View Article : Google Scholar
|
2
|
Zhang ML, Peng P, Wu CX, Gong YM, Zhang
SW, Chen WQ and Bao PP: Report of breast cancer incidence and
mortality in China registry regions, 2008-2012. Zhonghua Zhong Liu
Za Zhi. 41:315–320. 2019.PubMed/NCBI View Article : Google Scholar : (In Chinese).
|
3
|
Wu H, Wang Q, Zhong H, Li L, Zhang Q,
Huang Q and Yu Z: Differentially expressed microRNAs in exosomes of
patients with breast cancer revealed by next-generation sequencing.
Oncol Rep. 43:240–250. 2020.PubMed/NCBI View Article : Google Scholar
|
4
|
Rossing M, Sørensen CS, Ejlertsen B and
Nielsen FC: Whole genome sequencing of breast cancer. APMIS.
127:303–315. 2019.PubMed/NCBI View Article : Google Scholar
|
5
|
Lytle JR, Yario TA and Steitz JA: Target
mRNAs are repressed as efficiently by microRNA-binding sites in the
5' UTR as in the 3' UTR. Proc Natl Acad Sci USA. 104:9667–9672.
2007.PubMed/NCBI View Article : Google Scholar
|
6
|
Ma C, Miao C, Wang C, Song F and Luo M:
PELP1 is a novel oncogene in gastric tumorigenesis and negatively
regulated by miR-15 family microRNAs. Cancer Biomark. 26:1–9.
2019.PubMed/NCBI View Article : Google Scholar
|
7
|
Zhang C, Liu J, Tan C, Yue X, Zhao Y, Peng
J, Wang X, Laddha SV, Chan CS, Zheng S, et al: microRNA-1827
represses MDM2 to positively regulate tumor suppressor p53 and
suppress tumorigenesis. Oncotarget. 7:8783–8796. 2016.PubMed/NCBI View Article : Google Scholar
|
8
|
Kim S, Lee E, Jung J, Lee JW, Kim HJ, Kim
J, Yoo HJ, Lee HJ, Chae SY, Jeon SM, et al: microRNA-155 positively
regulates glucose metabolism via PIK3R1-FOXO3a-cMYC axis in breast
cancer. Oncogene. 37:2982–2991. 2018.PubMed/NCBI View Article : Google Scholar
|
9
|
Shao B, Wang X, Zhang L, Li D, Liu X, Song
G, Cao H, Zhu J and Li H: Plasma microRNAs predict chemoresistance
in patients with metastatic breast cancer. Technol Cancer Res
Treat. 18(1533033819828709)2019.PubMed/NCBI View Article : Google Scholar
|
10
|
Hromadníková I, Kotlabová K, Jirásek JE
and Doucha J: Detection of placenta-specific microRNAs in maternal
circulation. Ceska Gynekol. 75:252–256. 2010.PubMed/NCBI(In Czech).
|
11
|
Zheng J, Sadot E, Vigidal JA, Klimstra DS,
Balachandran VP, Kingham TP, Allen PJ, D'Angelica MI, DeMatteo RP,
Jarnagin WR and Ventura A: Characterization of hepatocellular
adenoma and carcinoma using microRNA profiling and targeted gene
sequencing. PLoS One. 13(e0200776)2018.PubMed/NCBI View Article : Google Scholar
|
12
|
Zhang X, Zhou J, Xue D, Li Z, Liu Y and
Dong L: MiR-515-5p acts as a tumor suppressor via targeting TRIP13
in prostate cancer. Int J Biol Macromol. 129:227–232.
2019.PubMed/NCBI View Article : Google Scholar
|
13
|
Li J, Tang Z, Wang H, Wu W, Zhou F, Ke H,
Lu W, Zhang S, Zhang Y, Yang S, et al: CXCL6 promotes non-small
cell lung cancer cell survival and metastasis via down-regulation
of miR-515-5p. Biomed Pharmacother. 97:1182–1188. 2018.PubMed/NCBI View Article : Google Scholar
|
14
|
Chen Y, Du J, Wang Y, Shi H, Jiang Q, Wang
Y, Zhang H, Wei Y, Xue W, Pu Z, et al: MicroRNA-497-5p induces cell
cycle arrest of cervical cancer cells in s phase by targeting CBX4.
Onco Targets Ther. 12:10535–10545. 2019.PubMed/NCBI View Article : Google Scholar
|
15
|
Rodriguez LG, Wu X and Guan JL:
Wound-healing assay. Methods Mol Biol. 294:23–29. 2005.PubMed/NCBI View Article : Google Scholar
|
16
|
Das PK, Siddika MA, Asha SY, Aktar S,
Rakib MA, Khanam JA, Pillai S and Islam F: MicroRNAs, a promising
target for breast cancer stem cells. Mol Diagn Ther. 24:69–83.
2020.PubMed/NCBI View Article : Google Scholar
|
17
|
Cuk K, Zucknick M, Heil J, Madhavan D,
Schott S, Turchinovich A, Arlt D, Rath M, Sohn C, Benner A, et al:
Circulating microRNAs in plasma as early detection markers for
breast cancer. Int J Cancer. 132:1602–1612. 2013.PubMed/NCBI View Article : Google Scholar
|
18
|
Bahrami A, Aledavood A, Anvari K,
Hassanian SM, Maftouh M, Yaghobzade A, Salarzaee O, ShahidSales S
and Avan A: The prognostic and therapeutic application of microRNAs
in breast cancer: Tissue and circulating microRNAs. J Cell Physiol.
233:774–786. 2018.PubMed/NCBI View Article : Google Scholar
|
19
|
Hafez MM, Hassan ZK, Zekri AR, Gaber AA,
Al Rejaie SS, Sayed-Ahmed MM and Al Shabanah O: MicroRNAs and
metastasis-related gene expression in Egyptian breast cancer
patients. Asian Pac J Cancer Prev. 13:591–598. 2012.PubMed/NCBI View Article : Google Scholar
|
20
|
Ai H, Zhou W, Wang Z, Qiong G, Chen Z and
Deng S: microRNAs-107 inhibited autophagy, proliferation, and
migration of breast cancer cells by targeting HMGB1. J Cell
Biochem: Dec 2, 2018 (Epub ahead of print). doi:
10.1002/jcb.28157.
|
21
|
Wang D, Liu K and Chen E: LINC00511
promotes proliferation and invasion by sponging miR-515-5p in
gastric cancer. Cell Mol Biol Lett. 25(4)2020.PubMed/NCBI View Article : Google Scholar
|
22
|
Pardo OE, Castellano L, Munro CE, Hu Y,
Mauri F, Krell J, Lara R, Pinho FG, Choudhury T, Frampton AE, et
al: miR-515-5p controls cancer cell migration through MARK4
regulation. EMBO Rep. 17:570–584. 2016.PubMed/NCBI View Article : Google Scholar
|
23
|
Pinho FG, Frampton AE, Nunes J, Krell J,
Alshaker H, Jacob J, Pellegrino L, Roca-Alonso L, de Giorgio A,
Harding V, et al: Downregulation of microRNA-515-5p by the estrogen
receptor modulates sphingosine kinase 1 and breast cancer cell
proliferation. Cancer Res. 73:5936–5948. 2013.PubMed/NCBI View Article : Google Scholar
|
24
|
Ismail IH, Gagné JP, Caron MC, McDonald D,
Xu Z, Masson JY, Poirier GG and Hendzel MJ: CBX4-mediated SUMO
modification regulates BMI1 recruitment at sites of DNA damage.
Nucleic Acids Res. 40:5497–5510. 2012.PubMed/NCBI View Article : Google Scholar
|
25
|
Hu C, Zhang Q, Tang Q, Zhou H, Liu W,
Huang J, Liu Y, Wang Q, Zhang J, Zhou M, et al: CBX4 promotes the
proliferation and metastasis via regulating BMI-1 in lung cancer. J
Cell Mol Med. 24:618–631. 2020.PubMed/NCBI View Article : Google Scholar
|
26
|
Tan C, Bei C, Zhu X, Zhang Y, Qin L and
Tan S: Single nucleotide polymorphisms of CBX4 and CBX7 decrease
the risk of hepatocellular carcinoma. Biomed Res Int.
2019(6436825)2019.PubMed/NCBI View Article : Google Scholar
|
27
|
Meng R, Fang J, Yu Y, Hou LK, Chi JR, Chen
AX, Zhao Y and Cao XC: miR-129-5p suppresses breast cancer
proliferation by targeting CBX4. Neoplasma. 65:572–578.
2018.PubMed/NCBI View Article : Google Scholar
|
28
|
Chen Q, Huang L, Pan D, Zhu LJ and Wang
YX: Cbx4 sumoylates Prdm16 to regulate adipose tissue
thermogenesis. Cell Rep. 22:2860–2872. 2018.PubMed/NCBI View Article : Google Scholar
|
29
|
Li B, Zhou J, Liu P, Hu J, Jin H, Shimono
Y, Takahashi M and Xu G: Polycomb protein Cbx4 promotes SUMO
modification of de novo DNA methyltransferase Dnmt3a. Biochem J.
405:369–378. 2007.PubMed/NCBI View Article : Google Scholar
|
30
|
Li J, Xu Y, Long XD, Wang W, Jiao HK, Mei
Z, Yin QQ, Ma LN, Zhou AW, Wang LS, et al: Cbx4 governs HIF-1α to
potentiate angiogenesis of hepatocellular carcinoma by its SUMO E3
ligase activity. Cancer Cell. 25:118–131. 2014.PubMed/NCBI View Article : Google Scholar
|