Computational healthcare: Present and future perspectives (Review)
- Authors:
- Ayumu Asai
- Masamitsu Konno
- Masateru Taniguchi
- Andrea Vecchione
- Hideshi Ishii
-
Affiliations: Center of Medical Innovation and Translational Research, Department of Medical Data Science, Graduate School of Medicine, Osaka University, Suita, Osaka 565‑0871, Japan, The Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka 567‑0047, Japan, Department of Clinical and Molecular Medicine, University of Rome ‘Sapienza’, Santo Andrea Hospital, I‑1035‑00189 Rome, Italy - Published online on: September 23, 2021 https://doi.org/10.3892/etm.2021.10786
- Article Number: 1351
-
Copyright: © Asai et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Santos DP and Baeßler B: Big data, artificial intelligence, and structured reporting. Eur Radiol Exp. 2(42)2018.PubMed/NCBI View Article : Google Scholar | |
Akyazi T, Goti A, Oyarbide A, Alberdi E and Bayon F: A guide for the food industry to meet the future skills requirements emerging with industry 4.0. Foods. 9(492)2020.PubMed/NCBI View Article : Google Scholar | |
Favaretto M, Shaw D, De Clercq E, Joda T and Elger BS: Big data and digitalization in dentistry: A systematic review of the ethical issues. Int J Environ Res Public Health. 17(2495)2020.PubMed/NCBI View Article : Google Scholar | |
Etienne H, Hamdi S, Le Roux M, Camuset J, Khalife-Hocquemiller T, Giol M, Debrosse D and Assouad J: Artificial intelligence in thoracic surgery: Past, present, perspective and limits. Eur Respir Rev. 29(200010)2020.PubMed/NCBI View Article : Google Scholar | |
McCarthy J, Minsky ML, Rochester N and Shannon CE: A Proposal for the Dartmouth Summer Research Project on Artificial Intelligence, August 31, 1955. AI Magazine. 27(12)2006. | |
Samuel AL: Some studies in machine learning using the game of checkers. IBM J Res Dev. 3:210–229. 1959. | |
Wied GL, Bahr GF, Oldfield DG and Bartels PH: Computer-assisted identification of cells from uterine adenocarcinoma. A clinical feasibility study with TICAS. I. Measurements at wavelength 530 nm. Acta Cytol. 12:357–370. 1968.PubMed/NCBI | |
Ishiyama T, Tsubura E, Hirao F, Yamamura Y, Takeda S, Tateisi K, Yamamoto M, Uemura M, Yaida K, Hayakawa F, et al: A study of the automation of cytodiagnosis. Med Biol Eng. 7:297–306. 1969.PubMed/NCBI View Article : Google Scholar | |
Shortliffe EH, Axline SG, Buchanan BG, Merigan TC and Cohen SN: An artificial intelligence program to advise physicians regarding antimicrobial therapy. Comput Biomed Res. 6:544–560. 1973.PubMed/NCBI View Article : Google Scholar | |
Miller RA, Pople HE and Myers JD: INTERNIST-1, An experimental computer-based diagnostic consultant for general internal medicine. N Engl J Med. 307:478–486. 1982.PubMed/NCBI View Article : Google Scholar | |
Dechter R: Learning while searching in constraint-satisfaction-problems. In: Proceedings of the Fifth National Conference on Artificial Intelligence. American Association for Artificial Intelligence, Philadelphia, pp178-183, 1986. | |
LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W and Jackel LD: Backpropagation applied to handwritten zip code recognition. Neural Comput. 1:541–551. 1989. | |
Kwoh YS, Hou J, Jonckheere EA and Hayati S: A robot with improved absolute positioning accuracy for CT guided stereotactic brain surgery. IEEE Trans Biomed Eng. 35:153–160. 1988.PubMed/NCBI View Article : Google Scholar | |
Jacobs LK, Shayani V and Sackier JM: Determination of the learning curve of the AESOP robot. Surg Endosc. 11:54–55. 1997.PubMed/NCBI View Article : Google Scholar | |
Sung GT and Gill IS: Robotic laparoscopic surgery: A comparison of the DA Vinci and Zeus systems. Urology. 58:893–898. 2001.PubMed/NCBI View Article : Google Scholar | |
Weinstein GS, O'malley BW Jr and Hockstein NG: Transoral robotic surgery: Supraglottic laryngectomy in a canine model. Laryngoscope. 115:1315–1319. 2005.PubMed/NCBI View Article : Google Scholar | |
Kurumbail RG, Stevens AM, Gierse JK, McDonald JJ, Stegeman RA, Pak JY, Gildehaus D, Miyashiro JM, Penning TD, Seibert K, et al: Structural basis for selective inhibition of cyclooxygenase-2 by anti-inflammatory agents. Nature. 384:644–648. 1996.PubMed/NCBI View Article : Google Scholar | |
Molnár L and Losonczy H: Tyrosine kinase inhibitor STI571: New possibility in the treatment of chronic myeloid leukemia. Orv Hetil. 143:2379–2384. 2002.PubMed/NCBI(In Hu). | |
Lanfranco AR, Castellanos AE, Desai JP and Meyers WC: Robotic surgery: A current perspective. Ann Surg. 239:14–21. 2004.PubMed/NCBI View Article : Google Scholar | |
Hinton GE, Osindero S and The YW: A fast learning algorithm for deep belief nets. Neural Comput. 18:1527–1554. 2006.PubMed/NCBI View Article : Google Scholar | |
Hinton GE and Salakhutdinov RR: Reducing the dimensionality of data with neural networks. Science. 313:504–507. 2006.PubMed/NCBI View Article : Google Scholar | |
Komura D and Ishikawa S: Machine learning approaches for pathologic diagnosis. Virchows Arch. 475:131–138. 2019.PubMed/NCBI View Article : Google Scholar | |
American College of Radiology. Cleared AI Algorithms. 2021. https://models.acrdsi.org. Accessed July 1, 2021. | |
U.S. Food and Drug Administration: FDA allows marketing of first whole slide imaging system for digital pathology. 2017. https://www.fda.gov/news-events/press-announcements/fda-allows-marketing-first-whole-slide-imaging-system-digital-pathology. Accessed July 1, 2021. | |
Mills AM, Gradecki SE, Horton BJ, Blackwell R, Moskaluk CA, Mandell JW, Mills SE and Cathro HP: Diagnostic efficiency in digital pathology: A comparison of optical versus digital assessment in 510 surgical pathology cases. Am J Surg Pathol. 42:53–59. 2018.PubMed/NCBI View Article : Google Scholar | |
The Medical Futurist: FDA-approved A.I.-based algorithms. 2021. https://medicalfuturist.com/fda-approved-ai-based-algorithms/. Accessed July 1, 2021. | |
Asai A, Koseki J, Konno M, Nishimura T, Gotoh N, Satoh T, Doki Y, Mori M and Ishii H: Drug discovery of anticancer drugs targeting methylenetetrahydrofolate dehydrogenase 2. Heliyon. 4(e01021)2018.PubMed/NCBI View Article : Google Scholar | |
Spangler S, Wilkins AD, Bachman BJ, Nagarajan M, Dayaram T, Haas P, Regenbogen S, Pickering CR, Comer A, Myers JN, et al: Automated hypothesis generation based on mining scientific literature. KDD'14: Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining: 1877-1886, 2014. | |
Doyle-Lindrud S: Watson will see you now: A supercomputer to help clinicians make informed treatment decisions. Clin J Oncol Nurs. 19:31–32. 2015.PubMed/NCBI View Article : Google Scholar | |
Tojo A: Clinical sequencing in leukemia with the assistance of artificial intelligence. Rinsho Ketsueki. 58:1913–1917. 2017.PubMed/NCBI View Article : Google Scholar : (In Japanese). | |
Esteva A, Kuprel B, Novoa RA, Ko J, Swetter SM, Blau HM and Thrun S: Dermatologist-level classification of skin cancer with deep neural networks. Nature. 542:115–118. 2017.PubMed/NCBI View Article : Google Scholar | |
Toratani M, Konno M, Asai A, Koseki J, Kawamoto K, Tamari K, Li Z, Sakai D, Kudo T, Satoh T, et al: A convolutional neural network uses microscopic images to differentiate between mouse and human cell lines and their radioresistant clones. Cancer Res. 78:6703–6707. 2018.PubMed/NCBI View Article : Google Scholar | |
Yanagisawa K, Toratani M, Asai A, Konno M, Niioka H, Mizushima T, Satoh T, Miyake J, Ogawa K, Vecchione A, et al: Convolutional neural network can recognize drug resistance of single cancer cells. Int J Mol Sci. 21(3166)2020.PubMed/NCBI View Article : Google Scholar | |
Tanos R, Tosato G, Otandault A, Al Amir Dache Z, Pique Lasorsa L, Tousch G, El Messaoudi S, Meddeb R, Assaf MD, Ychou M, et al: Machine learning-assisted evaluation of circulating DNA quantitative analysis for cancer screening. Adv Sci (Weinh). 7(2000486)2020.PubMed/NCBI View Article : Google Scholar | |
Im YR, Tsui DWY, Diaz LA Jr and Wan JCM: Next-generation liquid biopsies: Embracing data science in oncology. Trends Cancer. 7:283–292. 2021.PubMed/NCBI View Article : Google Scholar | |
Harada Y and Shimizu T: Impact of a Commercial Artificial Intelligence-Driven Patient Self-Assessment Solution on Waiting Times at General Internal Medicine Outpatient Departments: Retrospective Study. JMIR Med Inform. 8(e21056)2020.PubMed/NCBI View Article : Google Scholar | |
Litjens G, Kooi T, Bejnordi BE, Setio AAA, Ciompi F, Ghafoorian M, van Der Laak JA, van Ginneken B and Sánchez CI: A survey on deep learning in medical image analysis. Med Image Anal. 42:60–88. 2017.PubMed/NCBI View Article : Google Scholar | |
Khosravi P, Kazemi E, Imielinski M, Elemento O and Hajirasouliha I: Deep convolutional neural networks enable discrimination of heterogeneous digital pathology images. EBioMedicine. 27:317–328. 2018.PubMed/NCBI View Article : Google Scholar | |
Meyer A, Zverinski D, Pfahringer B, Kempfert J, Kuehne T, Sündermann SH, Stamm C, Hofmann T, Falk V and Eickhoff C: Machine learning for real-time prediction of complications in critical care: A retrospective study. Lancet Respir Med. 6:905–914. 2018.PubMed/NCBI View Article : Google Scholar | |
Saeidi H, Opfermann JD, Kam M, Raghunathan S, Leonard S and Krieger A: A confidence-based shared control strategy for the smart tissue autonomous robot (STAR). Rep US. 2018:1268–1275. 2018.PubMed/NCBI View Article : Google Scholar | |
Brown N, Cambruzzi J, Cox PJ, Davies M, Dunbar J, Plumbley D, Sellwood MA, Sim A, Williams-Jones BI, Zwierzyna M and Sheppard DW: Big data in drug discovery. Prog Med Chem. 57:277–356. 2018.PubMed/NCBI View Article : Google Scholar | |
Vélez-Guerrero MA, Callejas-Cuervo M and Mazzoleni S: Artificial intelligence-based wearable robotic exoskeletons for upper limb rehabilitation: A review. Sensors (Basel). 21(2146)2021.PubMed/NCBI View Article : Google Scholar | |
Comendador B, Francisco B, Medenilla J, Nacion S and Serac T: Pharmabot: A pediatric generic medicine consultant chatbot. J Automat Control Eng. 3:137–140. 2015. | |
Wong V, Rosenbaum S, Sung W, Kaplan RM, Bott N, Platchek T, Milstein A and Shah NR: Caring for caregivers: bridging the gap between family caregiving policy and practice. NEJM Catal Innov Care Deliv. 2:2021. | |
Paul D, Sanap G, Shenoy S, Kalyane D, Kalia K and Tekade RK: Artificial intelligence in drug discovery and development. Drug Discov Today. 26:80–93. 2021.PubMed/NCBI View Article : Google Scholar | |
AlQuraishi M: AlphaFold at CASP13. Bioinformatics. 35:4862–4865. 2019.PubMed/NCBI View Article : Google Scholar | |
Wang C and Zhang Y: Improving scoring-docking-screening powers of protein-ligand scoring functions using random forest. J Comput Chem. 38:169–177. 2017.PubMed/NCBI View Article : Google Scholar | |
Durrant JD and McCammon JA: NNScore 2.0: A neural-network receptor-ligand scoring function. J Chem Inf Model. 51:2897–2903. 2011.PubMed/NCBI View Article : Google Scholar | |
Feinberg EN, Sur D, Wu Z, Husic BE, Mai H, Li Y, Sun S, Yang J, Ramsundar B and Pande VS: PotentialNet for molecular property prediction. ACS Cent Sci. 4:1520–1530. 2018.PubMed/NCBI View Article : Google Scholar | |
Yasuo N and Sekijima M: Improved method of structure-based virtual screening via interaction-energy-based learning. J Chem Inf Model. 59:1050–1061. 2019.PubMed/NCBI View Article : Google Scholar | |
Wallach I, Dzamba M and Heifets A: AtomNet: A deep convolutional neural network for bioactivity prediction in structure-based drug discovery. arXiv: 1510.02855, 2015. | |
Stork C, Chen Y, Šícho M and Kirchmair J: Hit dexter 2.0: Machine-learning models for the prediction of frequent hitters. J Chem Inf Model. 59:1030–1043. 2019.PubMed/NCBI View Article : Google Scholar | |
Wójcikowski M, Zielenkiewicz P and Siedlecki P: Open drug discovery toolkit (ODDT): A new open-source player in the drug discovery field. J Cheminform. 7(26)2015.PubMed/NCBI View Article : Google Scholar | |
Rifaioglu AS, Nalbat E, Atalay V, Martin MJ, Cetin-Atalay R and Doğan T: DEEPScreen: High performance drug-target interaction prediction with convolutional neural networks using 2-D structural compound representations. Chem Sci. 11:2531–2557. 2020.PubMed/NCBI View Article : Google Scholar | |
Xu Y, Ma J, Liaw A, Sheridan RP and Svetnik V: Demystifying multitask deep neural networks for quantitative structure-activity relationships. J Chem Inf Model. 57:2490–2504. 2017.PubMed/NCBI View Article : Google Scholar | |
Awale M and Reymond JL: Polypharmacology Browser PPB2: Target prediction combining nearest neighbors with machine learning. J Chem Inf Model. 59:10–17. 2019.PubMed/NCBI View Article : Google Scholar | |
Duvenaud DK, Maclaurin D, Iparraguirre J, Bombarell R, Hirzel T, Aspuru-Guzik A and Adams RP: Convolutional networks on graphs for learning molecular fingerprints. In: Advances in neural information processing systems 28. NIPS Foundation, Montreal. 2:2224–2232. 2015. | |
Putin E, Asadulaev A, Ivanenkov Y, Aladinskiy V, Sanchez-Lengeling B, Aspuru-Guzik A and Zhavoronkov A: Reinforced adversarial neural computer for de novo molecular design. J Chem Inf Model. 58:1194–1204. 2018.PubMed/NCBI View Article : Google Scholar | |
Olivecrona M, Blaschke T, Engkvist O and Chen H: Molecular de-novo design through deep reinforcement learning. J Cheminform. 9(48)2017.PubMed/NCBI View Article : Google Scholar | |
Mayr A, Klambauer G, Unterithiner T and Hochreiter S: DeepTox: Toxicity prediction using deep learning. Front Environ Sci. 3(80)2016. | |
Steiner S, Wolf J, Glatzel S, Andreou A, Granda JM, Keenan G, Hinkley T, Aragon-Camarasa G, Kitson PJ, Angelone D and Cronin L: Organic synthesis in a modular robotic system driven by a chemical programming language. Science. 363(eaav2211)2019.PubMed/NCBI View Article : Google Scholar | |
Coley CW, Rogers L, Green WH and Jensen KF: SCScore: Synthetic complexity learned from a reaction corpus. J Chem Inf Model. 58:252–261. 2018.PubMed/NCBI View Article : Google Scholar | |
Antunes DA, Devaurs D and Kavraki LE: Understanding the challenges of protein flexibility in drug design. Expert Opin Drug Discov. 10:1301–1313. 2015.PubMed/NCBI View Article : Google Scholar | |
Uehara S and Tanaka S: AutoDock-GIST: Incorporating thermodynamics of active-site water into scoring function for accurate protein-ligand docking. Molecules. 21(1604)2016.PubMed/NCBI View Article : Google Scholar | |
Jamal S, Ali W, Nagpal P, Grover S and Grover A: Computational models for the prediction of adverse cardiovascular drug reactions. J Transl Med. 17(171)2019.PubMed/NCBI View Article : Google Scholar | |
Walonoski J, Kramer M, Nichols J, Quina A, Moesel C, Hall D, Duffett C, Dube K, Gallagher T and McLachlan S: Synthea: An approach, method, and software mechanism for generating synthetic patients and the synthetic electronic health care record. J Am Med Inform Assoc. 25:230–238. 2018.PubMed/NCBI View Article : Google Scholar | |
Choi E, Biswal S, Malin B, Duke J, Stewart WF and Sun J: Generating multi-label discrete patient records using generative adversarial networks. PMLR. 68:286–305. 2017. | |
Linardatos P, Papastefanopoulos V and Kotsiantis S: Explainable AI: A Review of Machine Learning Interpretability Methods. Entropy (Basel). 23(18)2021.PubMed/NCBI View Article : Google Scholar |