1
|
Hodson R: Inflammatory bowel disease.
Nature. 540(S97)2016.PubMed/NCBI View
Article : Google Scholar
|
2
|
Chu H, Khosravi A, Kusumawardhani IP, Kwon
AH, Vasconcelos AC, Cunha LD, Mayer AE, Shen Y, Wu WL, Kambal A, et
al: Gene-microbiota interactions contribute to the pathogenesis of
inflammatory bowel disease. Science. 352:1116–1120. 2016.PubMed/NCBI View Article : Google Scholar
|
3
|
Neurath MF: Cytokines in inflammatory
bowel disease. Nat Rev Immunol. 14:329–342. 2014.PubMed/NCBI View
Article : Google Scholar
|
4
|
Kaser A, Zeissig S and Blumberg RS:
Inflammatory bowel disease. Annu Rev Immunol. 28:573–621.
2010.PubMed/NCBI View Article : Google Scholar
|
5
|
Maloy KJ and Powrie F: Intestinal
homeostasis and its breakdown in inflammatory bowel disease.
Nature. 474:298–306. 2011.PubMed/NCBI View Article : Google Scholar
|
6
|
Cho JH: The genetics and
immunopathogenesis of inflammatory bowel disease. Nat Rev Immunol.
8:458–466. 2008.PubMed/NCBI View
Article : Google Scholar
|
7
|
Khor B, Gardet A and Xavier RJ: Genetics
and pathogenesis of inflammatory bowel disease. Nature.
474:307–317. 2011.PubMed/NCBI View Article : Google Scholar
|
8
|
Liang J, Sha SM and Wu KC: Role of the
intestinal microbiota and fecal transplantation in inflammatory
bowel diseases. J Dig Dis. 15:641–646. 2014.PubMed/NCBI View Article : Google Scholar
|
9
|
Lopetuso LR, Petito V, Graziani C,
Schiavoni E, Paroni Sterbini F, Poscia A, Gaetani E, Franceschi F,
Cammarota G, Sanguinetti M, et al: Gut microbiota in health,
diverticular disease, irritable bowel syndrome, and inflammatory
bowel diseases: Time for microbial marker of gastrointestinal
disorders. Dig Dis. 36:56–65. 2018.PubMed/NCBI View Article : Google Scholar
|
10
|
Wehkamp J and Frick JS: Microbiome and
chronic inflammatory bowel diseases. J Mol Med (Berl). 95:21–28.
2017.PubMed/NCBI View Article : Google Scholar
|
11
|
Miyoshi J and Chang EB: The gut microbiota
and inflammatory bowel diseases. Transl Res. 179:38–48.
2017.PubMed/NCBI View Article : Google Scholar
|
12
|
Baumgart DC and Carding SR: Inflammatory
bowel disease: Cause and immunobiology. Lancet. 369:1627–1640.
2007.PubMed/NCBI View Article : Google Scholar
|
13
|
Campbell AW: Autoimmunity and the gut.
Autoimmune Dis. 2014(152428)2014.PubMed/NCBI View Article : Google Scholar
|
14
|
Musso G, Gambino R and Cassader M:
Obesity, diabetes, and gut microbiota: The hygiene hypothesis
expanded? Diabetes Care. 33:2277–2284. 2010.PubMed/NCBI View Article : Google Scholar
|
15
|
Yi J, Jung J, Han D, Surh CD and Lee YJ:
Segmented filamentous bacteria induce divergent populations of
Antigen-Specific CD4 T cells in the small intestine. Mol Cells.
42:228–236. 2019.PubMed/NCBI View Article : Google Scholar
|
16
|
Ivanov II, Atarashi K, Manel N, Brodie EL,
Shima T, Karaoz U, Wei D, Goldfarb KC, Santee CA, Lynch SV, et al:
Induction of intestinal Th17 cells by segmented filamentous
bacteria. Cell. 139:485–498. 2009.PubMed/NCBI View Article : Google Scholar
|
17
|
Molist F, Manzanilla EG, Perez JF and
Nyachoti CM: Coarse, but not finely ground, dietary fibre increases
intestinal Firmicutes:Bacteroidetes ratio and reduces
diarrhoea induced by experimental infection in piglets. Br J Nutr.
108:9–15. 2012.PubMed/NCBI View Article : Google Scholar
|
18
|
Boulangé CL, Neves AL, Chilloux J,
Nicholson JK and Dumas ME: Impact of the gut microbiota on
inflammation, obesity, and metabolic disease. Genome Med.
8(42)2016.PubMed/NCBI View Article : Google Scholar
|
19
|
Liu X, Lu J, Liu Z, Zhao J, Sun H, Wu N,
Liu H, Liu W, Hu Z, Meng G, et al: Intestinal Epithelial
Cell-Derived LKB1 suppresses colitogenic microbiota. J Immunol.
200:1889–1900. 2018.PubMed/NCBI View Article : Google Scholar
|
20
|
Sekirov I, Russell SL, Antunes LC and
Finlay BB: Gut microbiota in health and disease. Physiol Rev.
90:859–904. 2010.PubMed/NCBI View Article : Google Scholar
|
21
|
Ding Y, Yanagi K, Cheng C, Alaniz RC, Lee
K and Jayaraman A: Interactions between gut microbiota and
non-alcoholic liver disease: The role of microbiota-derived
metabolites. Pharmacol Res. 141:521–529. 2019.PubMed/NCBI View Article : Google Scholar
|
22
|
Ramirez-Carrozzi V, Sambandam A, Luis E,
Lin Z, Jeet S, Lesch J, Hackney J, Kim J, Zhou M, Lai J, et al:
IL-17C regulates the innate immune function of epithelial cells in
an autocrine manner. Nat Immunol. 12:1159–1166. 2011.PubMed/NCBI View
Article : Google Scholar
|
23
|
Munoz M, Eidenschenk C, Ota N, Wong K,
Lohmann U, Kühl AA, Wang X, Manzanillo P, Li Y, Rutz S, et al:
Interleukin-22 induces interleukin-18 expression from epithelial
cells during intestinal infection. Immunity. 42:321–331.
2015.PubMed/NCBI View Article : Google Scholar
|
24
|
Gao X, Cao Q, Cheng Y, Zhao D, Wang Z,
Yang H, Wu Q, You L, Wang Y, Lin Y, et al: Chronic stress promotes
colitis by disturbing the gut microbiota and triggering immune
system response. Proc Natl Acad Sci USA. 115:E2960–E2969.
2018.PubMed/NCBI View Article : Google Scholar
|
25
|
Mehta A and Baltimore D: MicroRNAs as
regulatory elements in immune system logic. Nat Rev Immunol.
16:279–294. 2016.PubMed/NCBI View Article : Google Scholar
|
26
|
Li Z and Rana TM: Therapeutic targeting of
microRNAs: Current status and future challenges. Nat Rev Drug
Discov. 13:622–638. 2014.PubMed/NCBI View
Article : Google Scholar
|
27
|
Whiteoak SR, Felwick R, Sanchez-Elsner T
and Fraser Cummings JR: MicroRNAs in inflammatory bowel diseases:
Paradoxes and possibilities. Inflamm Bowel Dis. 21:1160–1165.
2015.PubMed/NCBI View Article : Google Scholar
|
28
|
Kalla R, Ventham NT, Kennedy NA, Quintana
JF, Nimmo ER, Buck AH and Satsangi J: MicroRNAs: New players in
IBD. Gut. 64:504–517. 2015.PubMed/NCBI View Article : Google Scholar
|
29
|
Wu F, Zikusoka M, Trindade A, Dassopoulos
T, Harris ML, Bayless TM, Brant SR, Chakravarti S and Kwon JH:
MicroRNAs are differentially expressed in ulcerative colitis and
alter expression of macrophage inflammatory peptide-2 alpha.
Gastroenterology. 135:1624–1635.e24. 2008.PubMed/NCBI View Article : Google Scholar
|
30
|
Neudecker V, Haneklaus M, Jensen O,
Khailova L, Masterson JC, Tye H, Biette K, Jedlicka P, Brodsky KS,
Gerich ME, et al: Myeloid-derived miR-223 regulates intestinal
inflammation via repression of the NLRP3 inflammasome. J Exp Med.
214:1737–1752. 2017.PubMed/NCBI View Article : Google Scholar
|
31
|
Yang L, Ma Z, Wang D, Zhao W, Chen L and
Wang G: MicroRNA-602 regulating tumor suppressive gene RASSF1A is
overexpressed in hepatitis B virus-infected liver and
hepatocellular carcinoma. Cancer Biol Ther. 9:803–808.
2010.PubMed/NCBI View Article : Google Scholar
|
32
|
Akhtar N, Makki MS and Haqqi TM:
MicroRNA-602 and microRNA-608 regulate sonic hedgehog expression
via target sites in the coding region in human chondrocytes.
Arthritis Rheumatol. 67:423–434. 2015.PubMed/NCBI View Article : Google Scholar
|
33
|
Shen J, Qiao Y, Ran Z and Wang T:
Different activation of TRAF4 and TRAF6 in inflammatory bowel
disease. Mediators Inflamm. 2013(647936)2013.PubMed/NCBI View Article : Google Scholar
|
34
|
Wu H, Fan H, Shou Z, Xu M, Chen Q, Ai C,
Dong Y, Liu Y, Nan Z, Wang Y, et al: Extracellular vesicles
containing miR-146a attenuate experimental colitis by targeting
TRAF6 and IRAK1. Int Immunopharmacol. 68:204–212. 2019.PubMed/NCBI View Article : Google Scholar
|
35
|
Stickel N, Prinz G, Pfeifer D, Hasselblatt
P, Schmitt-Graeff A, Follo M, Thimme R, Finke J, Duyster J, Salzer
U and Zeiser R: miR-146a regulates the TRAF6/TNF-axis in donor T
cells during GVHD. Blood. 124:2586–2595. 2014.PubMed/NCBI View Article : Google Scholar
|
36
|
Xia Z, Huang L, Yin P, Liu F, Liu Y, Zhang
Z, Lin J, Zou W and Li C: L-Arginine alleviates heat stress-induced
intestinal epithelial barrier damage by promoting expression of
tight junction proteins via the AMPK pathway. Mol Biol Rep.
46:6435–6451. 2019.PubMed/NCBI View Article : Google Scholar
|
37
|
Chen Z, Yu K, Zhu F and Gorczynski R:
Over-Expression of CD200 protects mice from dextran sodium sulfate
induced colitis. PLoS One. 11(e0146681)2016.PubMed/NCBI View Article : Google Scholar
|
38
|
Zaki MH, Boyd KL, Vogel P, Kastan MB,
Lamkanfi M and Kanneganti TD: The NLRP3 inflammasome protects
against loss of epithelial integrity and mortality during
experimental colitis. Immunity. 32:379–391. 2010.PubMed/NCBI View Article : Google Scholar
|
39
|
Rodrigues RR, Greer RL, Dong X, Dsouza KN,
Gurung M, Wu JY, Morgun A and Shulzhenko N: Antibiotic-Induced
alterations in gut microbiota are associated with changes in
glucose metabolism in healthy mice. Front Microbiol.
8(2306)2017.PubMed/NCBI View Article : Google Scholar
|
40
|
Le Roy T, Debédat J, Marquet F, Da-Cunha
C, Ichou F, Guerre-Millo M, Kapel N, Aron-Wisnewsky J and Clément
K: Comparative evaluation of microbiota engraftment following fecal
microbiota transfer in mice models: Age, kinetic and microbial
status matter. Front Microbiol. 9(3289)2019.PubMed/NCBI View Article : Google Scholar
|
41
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) Method. Methods. 25:402–408.
2001.PubMed/NCBI View Article : Google Scholar
|
42
|
Yu X, Wang D, Wang X, Sun S, Zhang Y, Wang
S, Miao R, Xu X and Qu X: CXCL12/CXCR4 promotes inflammation-driven
colorectal cancer progression through activation of RhoA signaling
by sponging miR-133a-3p. J Exp Clin Cancer Res.
38(32)2019.PubMed/NCBI View Article : Google Scholar
|
43
|
Khan I, Ullah N, Zha L, Bai Y, Khan A,
Zhao T, Che T and Zhang C: Alteration of gut microbiota in
Inflammatory Bowel Disease (IBD): Cause or consequence? IBD
treatment targeting the gut microbiome. Pathogens.
8(126)2019.PubMed/NCBI View Article : Google Scholar
|
44
|
Dalal SR and Chang EB: The microbial basis
of inflammatory bowel diseases. J Clin Invest. 124:4190–4196.
2014.PubMed/NCBI View Article : Google Scholar
|
45
|
Zhu Y, Gu L, Li Y, Lin X, Shen H, Cui K,
Chen L, Zhou F, Zhao Q, Zhang J, et al: miR-148a inhibits colitis
and colitis-associated tumorigenesis in mice. Cell Death Differ.
24:2199–2209. 2017.PubMed/NCBI View Article : Google Scholar
|
46
|
Ye YL, Pang Z, Gu W and Zheng JJ:
Expression of microRNA-155 in inflammatory bowel disease and its
clinical significance. Zhonghua Yi Xue Za Zhi. 97:3716–3719.
2017.PubMed/NCBI View Article : Google Scholar : (In Chinese).
|
47
|
Han D, Walsh MC, Cejas PJ, Dang NN, Kim
YF, Kim J, Charrier-Hisamuddin L, Chau L, Zhang Q, Bittinger K, et
al: Dendritic cell expression of the signaling molecule TRAF6 is
critical for gut microbiota-dependent immune tolerance. Immunity.
38:1211–1222. 2013.PubMed/NCBI View Article : Google Scholar
|
48
|
Zundler S and Neurath MF: Pathogenic T
cell subsets in allergic and chronic inflammatory bowel disorders.
Immunol Rev. 278:263–276. 2017.PubMed/NCBI View Article : Google Scholar
|
49
|
Strober W and Fuss IJ: Proinflammatory
cytokines in the pathogenesis of inflammatory bowel diseases.
Gastroenterology. 140:1756–1767. 2011.PubMed/NCBI View Article : Google Scholar
|
50
|
Perrier C and Rutgeerts P: Cytokine
blockade in inflammatory bowel diseases. Immunotherapy.
3:1341–1352. 2011.PubMed/NCBI View Article : Google Scholar
|
51
|
Roy S and Trinchieri G: Microbiota: A key
orchestrator of cancer therapy. Nat Rev Cancer. 17:271–285.
2017.PubMed/NCBI View Article : Google Scholar
|
52
|
Zhu W, Winter MG, Byndloss MX, Spiga L,
Duerkop BA, Hughes ER, Büttner L, de Lima Romão E, Behrendt CL,
Lopez CA, et al: Precision editing of the gut microbiota
ameliorates colitis. Nature. 553:208–211. 2018.PubMed/NCBI View Article : Google Scholar
|
53
|
Chu F, Shi M, Lang Y, Shen D, Jin T, Zhu J
and Cui L: Gut microbiota in multiple sclerosis and experimental
autoimmune encephalomyelitis: Current applications and future
perspectives. Mediators Inflamm. 2018(8168717)2018.PubMed/NCBI View Article : Google Scholar
|
54
|
Vivarelli S, Salemi R, Candido S, Falzone
L, Santagati M, Stefani S, Torino F, Banna GL, Tonini G and Libra
M: Gut microbiota and cancer: From pathogenesis to therapy. Cancers
(Basel). 11(38)2019.PubMed/NCBI View Article : Google Scholar
|