1
|
Sanderson JE, Mayosi B, Yusuf S, Reddy S, Hu S, Chen Z and Timmis A: Global burden of cardiovascular disease. Heart. 93(1175)2007.PubMed/NCBI View Article : Google Scholar
|
2
|
Mahmood SS, Levy D, Vasan RS and Wang TJ: The Framingham Heart Study and the epidemiology of cardiovascular disease: A historical perspective. Lancet. 383:999–1008. 2014.PubMed/NCBI View Article : Google Scholar
|
3
|
Zhang G, Gao S, Li X, Zhang L, Tan H, Xu L, Chen Y, Geng Y, Lin Y, Aertker B, et al: Pharmacological postconditioning with lactic acid and hydrogen rich saline alleviates myocardial reperfusion injury in rats. Sci Rep. 5(9858)2015.PubMed/NCBI View Article : Google Scholar
|
4
|
Najib K, Boateng S, Sangodkar S, Mahmood S, Whitney H, Wang CE, Racsa P and Sanborn TA: Incidence and characteristics of patients presenting with acute myocardial infarction and non-obstructive coronary artery disease. Catheter Cardiovasc Interv. 86 (Suppl 1):S23–S27. 2015.PubMed/NCBI View Article : Google Scholar
|
5
|
O'Neill WW, Topol EJ and Pitt B: Reperfusion therapy of acute myocardial infarction. Prog Cardiovasc Dis. 30:235–266. 1988.PubMed/NCBI View Article : Google Scholar
|
6
|
Braunwald E and Kloner RA: Myocardial reperfusion: A double-edged sword? J Clin Invest. 76:1713–1719. 1985.PubMed/NCBI View Article : Google Scholar
|
7
|
Hausenloy DJ and Yellon DM: Targeting myocardial reperfusion injury-the search continues. N Engl J Med. 373:1073–1075. 2015.PubMed/NCBI View Article : Google Scholar
|
8
|
Jennings RB: Historical perspective on the pathology of myocardial ischemia/reperfusion injury. Circ Res. 113:428–438. 2013.PubMed/NCBI View Article : Google Scholar
|
9
|
Turer AT and Hill JA: Pathogenesis of myocardial ischemia-reperfusion injury and rationale for therapy. Am J Cardiol. 106:360–368. 2010.PubMed/NCBI View Article : Google Scholar
|
10
|
Moens AL, Claeys MJ, Timmermans JP and Vrints CJ: Myocardial ischemia/reperfusion-injury, a clinical view on a complex pathophysiological process. Int J Cardiol. 100:179–190. 2005.PubMed/NCBI View Article : Google Scholar
|
11
|
Cheng BC, Huang HS, Chao CM, Hsu CC, Chen CY and Chang CP: Hypothermia may attenuate ischemia/reperfusion-induced cardiomyocyte death by reducing autophagy. Int J Cardiol. 168:2064–2069. 2013.PubMed/NCBI View Article : Google Scholar
|
12
|
Reeve JL, Duffy AM, O'Brien T and Samali A: Don't lose heart - therapeutic value of apoptosis prevention in the treatment of cardiovascular disease. J Cell Mol Med. 9:609–622. 2005.PubMed/NCBI View Article : Google Scholar
|
13
|
Blebea J, Kerr JC, Padberg FT Jr and Hobson RW II: Triphenyl tetrazolium chloride as a histochemical marker of skeletal muscle ischemia and reperfusion injury. Curr Surg. 44:134–136. 1987.PubMed/NCBI
|
14
|
Heusch G: Molecular basis of cardioprotection: Signal transduction in ischemic pre-, post-, and remote conditioning. Circ Res. 116:674–699. 2015.PubMed/NCBI View Article : Google Scholar
|
15
|
Hausenloy DJ and Yellon DM: Survival kinases in ischemic preconditioning and postconditioning. Cardiovasc Res. 70:240–253. 2006.PubMed/NCBI View Article : Google Scholar
|
16
|
Ban K, Cooper AJ, Samuel S, Bhatti A, Patel M, Izumo S, Penninger JM, Backx PH, Oudit GY and Tsushima RG: Phosphatidylinositol 3-kinase gamma is a critical mediator of myocardial ischemic and adenosine-mediated preconditioning. Circ Res. 103:643–653. 2008.PubMed/NCBI View Article : Google Scholar
|
17
|
Zhang CM, Gao L, Zheng YJ and Yang HT: Berbamine protects the heart from ischemia/reperfusion injury by maintaining cytosolic Ca(2+) homeostasis and preventing calpain activation. Circ J. 76:1993–2002. 2012.PubMed/NCBI View Article : Google Scholar
|
18
|
Wu QL, Shen T, Ma H and Wang JK: Sufentanil postconditioning protects the myocardium from ischemia-reperfusion via PI3K/Akt-GSK-3β pathway. J Surg Res. 178:563–570. 2012.PubMed/NCBI View Article : Google Scholar
|
19
|
Quintieri AM, Baldino N, Filice E, Seta L, Vitetti A, Tota B, De Cindio B, Cerra MC and Angelone T: Malvidin, a red wine polyphenol, modulates mammalian myocardial and coronary performance and protects the heart against ischemia/reperfusion injury. J Nutr Biochem. 24:1221–1231. 2013.PubMed/NCBI View Article : Google Scholar
|
20
|
Miura T and Miki T: GSK-3beta, a therapeutic target for cardiomyocyte protection. Circ J. 73:1184–1192. 2009.PubMed/NCBI View Article : Google Scholar
|
21
|
Abu-Izneid T, Rauf A, Khalil AA, Olatunde A, Khalid A, Alhumaydhi FA, Aljohani AS, Sahab Uddin M, Heydari M, Khayrullin M, et al: Nutritional and health beneficial properties of saffron (Crocus sativus L): A comprehensive review. Crit Rev Food Sci Nutr. 17:1–24. 2020.PubMed/NCBI View Article : Google Scholar
|
22
|
Arzi L and Hoshyar R: Saffron anti-metastatic properties, ancient spice novel application. Crit Rev Food Sci Nutr. 3:1–12. 2021.PubMed/NCBI View Article : Google Scholar
|
23
|
Maggi MA, Bisti S and Picco C: Saffron: Chemical composition and neuroprotective activity. Molecules. 25(5618)2020.PubMed/NCBI View Article : Google Scholar
|
24
|
Su X, Yuan C, Wang L, Chen R, Li X, Zhang Y, Liu C, Liu X, Liang W and Xing Y: The beneficial effects of saffron extract on potential oxidative stress in cardiovascular diseases. Oxid Med Cell Longev. 2021(6699821)2021.PubMed/NCBI View Article : Google Scholar
|
25
|
Rameshrad M, Razavi BM and Hosseinzadeh H: Saffron and its derivatives, crocin, crocetin and safranal: A patent review. Expert Opin Ther Pat. 28:147–165. 2018.PubMed/NCBI View Article : Google Scholar
|
26
|
Cerdá-Bernad D, Valero-Cases E, Pastor JJ and Frutos MJ: Saffron bioactives crocin, crocetin and safranal: Effect on oxidative stress and mechanisms of action. Crit Rev Food Sci Nutr. 24:1–18. 2020.PubMed/NCBI View Article : Google Scholar
|
27
|
Forouzanfar F, Asadpour E, Hosseinzadeh H, Boroushaki MT, Adab A, Dastpeiman SH and Sadeghnia HR: Safranal protects against ischemia-induced PC12 cell injury through inhibiting oxidative stress and apoptosis. Naunyn Schmiedebergs Arch Pharmacol. 394:707–716. 2021.PubMed/NCBI View Article : Google Scholar
|
28
|
Lambrianidou A, Koutsougianni F, Papapostolou I and Dimas K: Recent advances on the anticancer properties of saffron (Crocus sativus L.) and its major constituents. Molecules. 26(86)2020.PubMed/NCBI View Article : Google Scholar
|
29
|
Jiang X, Li Y, Feng JL, Nik Nabil WN, Wu R, Lu Y, Liu H, Xi ZC and Xu HX: Safrana l prevents prostate cancer recurrence by blocking the re-activation of quiescent cancer cells via downregulation of S-Phase kinase-associated protein 2. Front Cell Dev Biol. 8(598620)2020.PubMed/NCBI View Article : Google Scholar
|
30
|
Jin W, Xue Y, Xue Y, Liang Y, Zhang Y, Zhang J, Chu X, Wang H and Guan S: Inhibitory effects of four active components in saffron on human ether-a-go-go-related gene (hERG) K+ currents. Gen Physiol Biophys. 39:491–498. 2020.PubMed/NCBI View Article : Google Scholar
|
31
|
Mehdizadeh R, Parizadeh MR, Khooei AR, Mehri S and Hosseinzadeh H: Cardioprotective effect of saffron extract and safranal in isoproterenol-induced myocardial infarction in wistar rats. Iran J Basic Med Sci. 16:56–63. 2013.PubMed/NCBI
|
32
|
Bharti S, Golechha M, Kumari S, Siddiqui KM and Arya DS: Akt/GSK-3β/eNOS phosphorylation arbitrates safranal-induced myocardial protection against ischemia-reperfusion injury in rats. Eur J Nutr. 51:719–727. 2012.PubMed/NCBI View Article : Google Scholar
|
33
|
Xue Y, Jin W, Xue Y, Zhang Y, Wang H, Zhang Y, Guan S, Chu X and Zhang J: Safranal, an active constituent of saffron, ameliorates myocardial ischemia via reduction of oxidative stress and regulation of Ca2+ homeostasis. J Pharmacol Sci. 143:156–164. 2020.PubMed/NCBI View Article : Google Scholar
|
34
|
Kooy NW, Royall JA and Ischiropoulos H: Oxidation of 2',7'-dichlorofluorescin by peroxynitrite. Free Radic Res. 27:245–254. 1997.PubMed/NCBI View Article : Google Scholar
|
35
|
Sivandzade F, Bhalerao A and Cucullo L: Analysis of the mitochondrial membrane potential using the cationic JC-1 dye as a sensitive fluorescent probe. Bio Protoc. 9(e3128)2019.PubMed/NCBI View Article : Google Scholar
|
36
|
Cui H, Miao S, Esworthy T, Zhou X, Lee SJ, Liu C, Yu ZX, Fisher JP, Mohiuddin M and Zhang LG: 3D bioprinting for cardiovascular regeneration and pharmacology. Adv Drug Deliv Rev. 132:252–269. 2018.PubMed/NCBI View Article : Google Scholar
|
37
|
Virani SS, Alonso A, Benjamin EJ, Bittencourt MS, Callaway CW, Carson AP, Chamberlain AM, Chang AR, Cheng S, Delling FN, et al: American Heart Association Council on Epidemiology and Prevention Statistics Committee and Stroke Statistics Subcommittee: Heart disease and stroke statistics-2020 Update: A report from the American Heart Association. Circulation. 141:e139–e596. 2020.PubMed/NCBI View Article : Google Scholar
|
38
|
Simon-Yarza T, Bataille I and Letourneur D: Cardiovascular Bio-Engineering: Current State of the Art. J Cardiovasc Transl Res. 10:180–193. 2017.PubMed/NCBI View Article : Google Scholar
|
39
|
Pang Z, Wang T, Li Y, Wang L, Yang J, Dong H and Li S: Liraglutide ameliorates COCl2-induced oxidative stress and apoptosis in H9C2 cells via regulating cell autophagy. Exp Ther Med. 19:3716–3722. 2020.PubMed/NCBI View Article : Google Scholar
|
40
|
Fang Z, Luo W and Luo Y: Protective effect of α-mangostin against CoCl2-induced apoptosis by suppressing oxidative stress in H9C2 rat cardiomyoblasts. Mol Med Rep. 17:6697–6704. 2018.PubMed/NCBI View Article : Google Scholar
|
41
|
Yang Z, Yang C, Xiao L, Liao X, Lan A, Wang X, Guo R, Chen P, Hu C and Feng J: Novel insights into the role of HSP90 in cytoprotection of H2S against chemical hypoxia-induced injury in H9c2 cardiac myocytes. Int J Mol Med. 28:397–403. 2011.PubMed/NCBI View Article : Google Scholar
|
42
|
Muñoz-Sánchez J and Chánez-Cárdenas ME: The use of cobalt chloride as a chemical hypoxia model. J Appl Toxicol. 39:556–570. 2019.PubMed/NCBI View Article : Google Scholar
|
43
|
Xiao L, Lan A, Mo L, Xu W, Jiang N, Hu F, Feng J and Zhang C: Hydrogen sulfide protects PC12 cells against reactive oxygen species and extracellular signal-regulated kinase 1/2-mediated downregulation of glutamate transporter-1 expression induced by chemical hypoxia. Int J Mol Med. 30:1126–1132. 2012.PubMed/NCBI View Article : Google Scholar
|
44
|
Hescheler J, Meyer R, Plant S, Krautwurst D, Rosenthal W and Schultz G: Morphological, biochemical, and electrophysiological characterization of a clonal cell (H9c2) line from rat heart. Circ Res. 69:1476–1486. 1991.PubMed/NCBI View Article : Google Scholar
|
45
|
Goyal SN, Arora S, Sharma AK, Joshi S, Ray R, Bhatia J, Kumari S and Arya DS: Preventive effect of crocin of Crocus sativus on hemodynamic, biochemical, histopathological and ultrastuctural alterations in isoproterenol-induced cardiotoxicity in rats. Phytomedicine. 17:227–232. 2010.PubMed/NCBI View Article : Google Scholar
|
46
|
Muders F, Neubauer S, Luchner A, Fredersdorf S, Ickenstein G, Riegger GA, Horn M and Elsner D: Alterations in myocardial creatinine kinase (CK) and lactate dehydrogenase (LDH) isoenzyme-distribution in a model of left ventricular dysfunction. Eur J Heart Fail. 3:1–5. 2001.PubMed/NCBI View Article : Google Scholar
|
47
|
Amani M, Jeddi S, Ahmadiasl N, Usefzade N and Zaman J: Effect of HEMADO on level of CK-MB and LDH enzymes after ischemia/reperfusion injury in isolated rat heart. Bioimpacts. 3:101–104. 2013.PubMed/NCBI View Article : Google Scholar
|
48
|
Ding M, Li M, Zhang EM and Yang HL: FULLEROL alleviates myocardial ischemia-reperfusion injury by reducing inflammation and oxidative stress in cardiomyocytes via activating the Nrf2/HO-1 signaling pathway. Eur Rev Med Pharmacol Sci. 24:9665–9674. 2020.PubMed/NCBI View Article : Google Scholar
|
49
|
Madungwe NB, Zilberstein NF, Feng Y and Bopassa JC: Critical role of mitochondrial ROS is dependent on their site of production on the electron transport chain in ischemic heart. Am J Cardiovasc Dis. 6:93–108. 2016.PubMed/NCBI
|
50
|
Del Rio D, Stewart AJ and Pellegrini N: A review of recent studies on malondialdehyde as toxic molecule and biological marker of oxidative stress. Nutr Metab Cardiovasc Dis. 15:316–328. 2005.PubMed/NCBI View Article : Google Scholar
|
51
|
Giordano FJ: Oxygen, oxidative stress, hypoxia, and heart failure. J Clin Invest. 115:500–508. 2005.PubMed/NCBI View Article : Google Scholar
|
52
|
Ghadrdoost B, Vafaei AA, Rashidy-Pour A, Hajisoltani R, Bandegi AR, Motamedi F, Haghighi S, Sameni HR and Pahlvan S: Protective effects of saffron extract and its active constituent crocin against oxidative stress and spatial learning and memory deficits induced by chronic stress in rats. Eur J Pharmacol. 667:222–229. 2011.PubMed/NCBI View Article : Google Scholar
|
53
|
Rahaiee S, Moini S, Hashemi M and Shojaosadati SA: Evaluation of antioxidant activities of bioactive compounds and various extracts obtained from saffron (Crocus sativus L.): A review. J Food Sci Technol. 52:1881–1888. 2015.PubMed/NCBI View Article : Google Scholar
|
54
|
Assimopoulou AN, Sinakos Z and Papageorgiou VP: Radical scavenging activity of Crocus sativus L. extract and its bioactive constituents. Phytother Res. 19:997–1000. 2005.PubMed/NCBI View Article : Google Scholar
|
55
|
Ong SB, Samangouei P, Kalkhoran SB and Hausenloy DJ: The mitochondrial permeability transition pore and its role in myocardial ischemia reperfusion injury. J Mol Cell Cardiol. 78:23–34. 2015.PubMed/NCBI View Article : Google Scholar
|
56
|
Ertracht O, Malka A, Atar S and Binah O: The mitochondria as a target for cardioprotection in acute myocardial ischemia. Pharmacol Ther. 142:33–40. 2014.PubMed/NCBI View Article : Google Scholar
|
57
|
Weiss JN, Korge P, Honda HM and Ping P: Role of the mitochondrial permeability transition in myocardial disease. Circ Res. 93:292–301. 2003.PubMed/NCBI View Article : Google Scholar
|
58
|
Park SS, Zhao H, Mueller RA and Xu Z: Bradykinin prevents reperfusion injury by targeting mitochondrial permeability transition pore through glycogen synthase kinase 3beta. J Mol Cell Cardiol. 40:708–716. 2006.PubMed/NCBI View Article : Google Scholar
|
59
|
McCully JD, Wakiyama H, Hsieh YJ, Jones M and Levitsky S: Differential contribution of necrosis and apoptosis in myocardial ischemia-reperfusion injury. Am J Physiol Heart Circ Physiol. 286:H1923–H1935. 2004.PubMed/NCBI View Article : Google Scholar
|
60
|
Yu P, Ma S, Dai X and Cao F: Elabela alleviates myocardial ischemia reperfusion-induced apoptosis, fibrosis and mitochondrial dysfunction through PI3K/AKT signaling. Am J Transl Res. 12:4467–4477. 2020.PubMed/NCBI
|
61
|
Tao J, Abudoukelimu M, Ma YT, Yang YN, Li XM, Chen BD, Liu F, He CH and Li HY: Secreted frizzled related protein 1 protects H9C2 cells from hypoxia/re-oxygenation injury by blocking the Wnt signaling pathway. Lipids Health Dis. 15(72)2016.PubMed/NCBI View Article : Google Scholar
|
62
|
Li HW and Xiao FY: Effect of hydrogen sulfide on cardiomyocyte apoptosis in rats with myocardial ischemia-reperfusion injury via the JNK signaling pathway. Eur Rev Med Pharmacol Sci. 24:2054–2061. 2020.PubMed/NCBI View Article : Google Scholar
|
63
|
Dong JW, Zhu HF, Zhu WZ, Ding HL, Ma TM and Zhou ZN: Intermittent hypoxia attenuates ischemia/reperfusion induced apoptosis in cardiac myocytes via regulating Bcl-2/Bax expression. Cell Res. 13:385–391. 2003.PubMed/NCBI View Article : Google Scholar
|
64
|
Jayanthi S, Deng X, Bordelon M, McCoy MT and Cadet JL: Methamphetamine causes differential regulation of pro-death and anti-death Bcl-2 genes in the mouse neocortex. FASEB J. 15:1745–1752. 2001.PubMed/NCBI View Article : Google Scholar
|
65
|
Zhou T, Guo S, Wang S, Li Q and Zhang M: Protective effect of sevoflurane on myocardial ischemia-reperfusion injury in rat hearts and its impact on HIF-1α and caspase-3 expression. Exp Ther Med. 14:4307–4311. 2017.PubMed/NCBI View Article : Google Scholar
|
66
|
Wang J, Liu J, Xie L, Cai X, Ma X and Gong J: Bisoprolol, a β1 antagonist, protects myocardial cells from ischemia-reperfusion injury via PI3K/AKT/GSK3β pathway. Fundam Clin Pharmacol. 34:708–720. 2020.PubMed/NCBI View Article : Google Scholar
|
67
|
Maulik A, Davidson SM, Piotrowska I, Walker M and Yellon DM: Ischaemic preconditioning protects cardiomyocytes from anthracycline-induced toxicity via the PI3K pathway. Cardiovasc Drugs Ther. 32:245–253. 2018.PubMed/NCBI View Article : Google Scholar
|
68
|
Wu X, Kihara T, Akaike A, Niidome T and Sugimoto H: PI3K/Akt/mTOR signaling regulates glutamate transporter 1 in astrocytes. Biochem Biophys Res Commun. 393:514–518. 2010.PubMed/NCBI View Article : Google Scholar
|
69
|
Wang MY, Meng M, Yang CC, Zhang L, Li YL, Zhang L and Li L: Cornel iridoid glycoside improves cognitive impairment induced by chronic cerebral hypoperfusion via activating PI3K/Akt/GSK-3β/CREB pathway in rats. Behav Brain Res. 379(112319)2020.PubMed/NCBI View Article : Google Scholar
|
70
|
Thirunavukkarasu M, Selvaraju V, Tapias L, Sanchez JA, Palesty JA and Maulik N: Protective effects of Phyllanthus emblica against myocardial ischemia-reperfusion injury: The role of PI3-kinase/glycogen synthase kinase 3β/β-catenin pathway. J Physiol Biochem. 71:623–633. 2015.PubMed/NCBI View Article : Google Scholar
|
71
|
Wang D, Zhang X, Li D, Hao W, Meng F, Wang B, Han J and Zheng Q: Kaempferide protects against myocardial ischemia/reperfusion injury through activation of the PI3K/Akt/GSK-3beta pathway. Mediators Inflamm. 2017(5278218)2017.PubMed/NCBI View Article : Google Scholar
|