1
|
Bray F, Ferlay J, Soerjomataram I, Siegel
RL, Torre LA and Jemal A: Global cancer statistics 2018: GLOBOCAN
estimates of incidence and mortality worldwide for 36 cancers in
185 countries. CA Cancer J Clin. 68:394–424. 2018.PubMed/NCBI View Article : Google Scholar
|
2
|
Global Burden of Disease Cancer
Collaboration. Fitzmaurice C, Abate D, Abbasi N, Abbastabar H,
Abd-Allah F, Abdel-Rahman O, Abdelalim A, Abdoli A, Abdollahpour I,
et al: Global, regional, and national cancer incidence, mortality,
years of life lost, years lived with disability, and
disability-adjusted life-years for 29 cancer groups, 1990 to 2017:
A systematic analysis for the global burden of disease study. JAMA
Oncol. 5:1749–1768. 2019.PubMed/NCBI View Article : Google Scholar
|
3
|
Hagedoorn P, Vandenheede H, Willaert D,
Vanthomme K and Gadeyne S: Regional inequalities in lung cancer
mortality in belgium at the beginning of the 21st century: The
contribution of individual and area-level socioeconomic status and
industrial exposure. PLoS One. 11(e0147099)2016.PubMed/NCBI View Article : Google Scholar
|
4
|
Bagcchi S: Lung cancer survival only
increases by a small amount despite recent treatment advances.
Lancet Respir Med. 5(169)2017.PubMed/NCBI View Article : Google Scholar
|
5
|
Li X, Li J, Wu P, Zhou L, Lu B, Ying K,
Chen E, Lu Y and Liu P: Smoker and non-smoker lung adenocarcinoma
is characterized by distinct tumor immune microenvironments.
Oncoimmunology. 7(e1494677)2018.PubMed/NCBI View Article : Google Scholar
|
6
|
Saito S, Espinoza-Mercado F, Liu H, Sata
N, Cui X and Soukiasian HJ: Current status of research and
treatment for non-small cell lung cancer in never-smoking females.
Cancer Biol Ther. 18:359–368. 2017.PubMed/NCBI View Article : Google Scholar
|
7
|
Li J, He J, Zhang Y, Huang Y, Liu S, Li Y,
Xu J, He X and Lan Q: Survival in lung cancer among female
never-smokers in rural xuanwei and fuyuan counties in eastern
yunnan province, China. Zhongguo Fei Ai Za Zhi. 22:477–487.
2019.PubMed/NCBI View Article : Google Scholar : (In Chinese).
|
8
|
Park C, Lee Y, Je S, Chang S, Kim N, Jeong
E and Yoon S: Overexpression and selective anticancer efficacy of
ENO3 in STK11 mutant lung cancers. Mol Cells. 42:804–809.
2019.PubMed/NCBI View Article : Google Scholar
|
9
|
Skoulidis F, Goldberg ME, Greenawalt DM,
Hellmann MD, Awad MM, Gainor JF, Schrock AB, Hartmaier RJ, Trabucco
SE, Gay L, et al: STK11/LKB1 mutations and PD-1 inhibitor
resistance in KRAS-mutant lung adenocarcinoma. Cancer Discov.
8:822–835. 2018.PubMed/NCBI View Article : Google Scholar
|
10
|
Facchinetti F, Bluthgen MV,
Tergemina-Clain G, Faivre L, Pignon JP, Planchard D, Remon J, Soria
JC, Lacroix L and Besse B: LKB1/STK11 mutations in non-small cell
lung cancer patients: Descriptive analysis and prognostic value.
Lung Cancer. 112:62–68. 2017.PubMed/NCBI View Article : Google Scholar
|
11
|
Keshavarz P, Inoue H, Nakamura N,
Yoshikawa T, Tanahashi T and Itakura M: Single nucleotide
polymorphisms in genes encoding LKB1 (STK11), TORC2 (CRTC2) and
AMPK alpha2-subunit (PRKAA2) and risk of type 2 diabetes. Mol Genet
Metab. 93:200–209. 2008.PubMed/NCBI View Article : Google Scholar
|
12
|
Shan T, Xu Z, Liu J, Wu W and Wang Y: Lkb1
regulation of skeletal muscle development, metabolism and muscle
progenitor cell homeostasis. J Cell Physiol. 232:2653–2656.
2017.PubMed/NCBI View Article : Google Scholar
|
13
|
Li Y, Hu S, Wang J, Chen S, Jia X and Lai
S: Molecular cloning, polymorphism, and expression analysis of the
LKB1/STK11 gene and its association with non-specific digestive
disorder in rabbits. Mol Cell Biochem. 449:127–136. 2018.PubMed/NCBI View Article : Google Scholar
|
14
|
Tuo L, Xiang J, Pan X, Hu J, Tang H, Liang
L, Xia J, Hu Y, Zhang W, Huang A, et al: PCK1 negatively regulates
cell cycle progression and hepatoma cell proliferation via the
AMPK/p27Kip1 axis. J Exp Clin Cancer Res.
38(50)2019.PubMed/NCBI View Article : Google Scholar
|
15
|
Li N, Wang Y, Neri S, Zhen Y, Fong LWR,
Qiao Y, Li X, Chen Z, Stephan C, Deng W, et al: Tankyrase disrupts
metabolic homeostasis and promotes tumorigenesis by inhibiting
LKB1-AMPK signalling. Nat Commun. 10(4363)2019.PubMed/NCBI View Article : Google Scholar
|
16
|
Wang S, Ma K, Zhou C, Wang Y, Hu G, Chen
L, Li Z, Hu C, Xu Q, Zhu H, et al: LKB1 and YAP phosphorylation
play important roles in Celastrol-induced β-catenin degradation in
colorectal cancer. Ther Adv Med Oncol.
11(1758835919843736)2019.PubMed/NCBI View Article : Google Scholar
|
17
|
Zhu XN, He P, Zhang L, Yang S, Zhang HL,
Zhu D, Liu MD and Yu Y: FBXO22 mediates polyubiquitination and
inactivation of LKB1 to promote lung cancer cell growth. Cell Death
Dis. 10(486)2019.PubMed/NCBI View Article : Google Scholar
|
18
|
Kiss T, Giles CB, Tarantini S,
Yabluchanskiy A, Balasubramanian P, Gautam T, Csipo T, Nyúl-Tóth Á,
Lipecz A, Szabo C, et al: Nicotinamide mononucleotide (NMN)
supplementation promotes anti-aging miRNA expression profile in the
aorta of aged mice, predicting epigenetic rejuvenation and
anti-atherogenic effects. Geroscience. 41:419–439. 2019.PubMed/NCBI View Article : Google Scholar
|
19
|
Lu TX and Rothenberg ME: MicroRNA. J
Allergy Clin Immunol. 141:1202–1207. 2018.PubMed/NCBI View Article : Google Scholar
|
20
|
Lewis BP, Shih IH, Jones-Rhoades MW,
Bartel DP and Burge CB: Prediction of mammalian microRNA targets.
Cell. 115:787–798. 2003.PubMed/NCBI View Article : Google Scholar
|
21
|
Fischer SE: RNA interference and
microRNA-mediated silencing. Curr Protoc Mol Biol.
112:26.1.1–26.1.5. 2015.PubMed/NCBI View Article : Google Scholar
|
22
|
Wu KL, Tsai YM, Lien CT, Kuo PL and Hung
AJ: The roles of microRNA in lung cancer. Int J Mol Sci.
20(1611)2019.PubMed/NCBI View Article : Google Scholar
|
23
|
Ungvari Z, Tarantini S, Nyúl-Tóth Á, Kiss
T, Yabluchanskiy A, Csipo T, Balasubramanian P, Lipecz A, Benyo Z
and Csiszar A: Nrf2 dysfunction and impaired cellular resilience to
oxidative stressors in the aged vasculature: From increased
cellular senescence to the pathogenesis of age-related vascular
diseases. Geroscience. 41:727–738. 2019.PubMed/NCBI View Article : Google Scholar
|
24
|
Darcy J and Tseng YH: ComBATing aging-does
increased brown adipose tissue activity confer longevity?
Geroscience. 41:285–296. 2019.PubMed/NCBI View Article : Google Scholar
|
25
|
Li H, Yang T, Shang D and Sun Z: miR-1254
promotes lung cancer cell proliferation by targeting SFRP1. Biomed
Pharmacother. 92:913–918. 2017.PubMed/NCBI View Article : Google Scholar
|
26
|
Li W, Zhang B, Jia Y, Shi H, Wang H, Guo Q
and Li H: LncRNA LOXL1-AS1 regulates the tumorigenesis and
development of lung adenocarcinoma through sponging miR-423-5p and
targeting MYBL2. Cancer Med. 9:689–699. 2020.PubMed/NCBI View Article : Google Scholar
|
27
|
Jiang W, Zhao X and Yang W: MiR-647
promotes cisplatin-induced cell apoptosis via downregulating IGF2
in non-small cell lung cancer. Minerva Medica. 112:312–313.
2021.PubMed/NCBI View Article : Google Scholar
|
28
|
Xiao B, Zhang W, Chen L, Hang J, Wang L,
Zhang R, Liao Y, Chen J, Ma Q, Sun Z and Li L: Analysis of the
miRNA-mRNA-lncRNA network in human estrogen receptor-positive and
estrogen receptor-negative breast cancer based on TCGA data. Gene.
658:28–35. 2018.PubMed/NCBI View Article : Google Scholar
|
29
|
Fang X, Shen F, Lechauve C, Xu P, Zhao G,
Itkow J, Wu F, Hou Y, Wu X, Yu L, et al: miR-144/451 represses the
LKB1/AMPK/mTOR pathway to promote red cell precursor survival
during recovery from acute anemia. Haematologica. 103:406–416.
2018.PubMed/NCBI View Article : Google Scholar
|
30
|
Lao G, Liu P, Wu Q, Zhang W, Liu Y, Yang L
and Ma C: Mir-155 promotes cervical cancer cell proliferation
through suppression of its target gene LKB1. Tumour Biol.
35:11933–11938. 2014.PubMed/NCBI View Article : Google Scholar
|
31
|
Ettinger DS, Wood DE, Aisner DL, Akerley
W, Bauman J, Chirieac LR, D'Amico TA, DeCamp MM, Dilling TJ,
Dobelbower M, et al: Non-small cell lung cancer, version 5.2017,
NCCN clinical practice guidelines in oncology. J Natl Compr Canc
Netw. 15:504–535. 2017.PubMed/NCBI View Article : Google Scholar
|
32
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408.
2001.PubMed/NCBI View Article : Google Scholar
|
33
|
Xue X, Liu Y, Wang Y, Meng M, Wang K, Zang
X, Zhao S, Sun X, Cui L, Pan L and Liu S: MiR-21 and MiR-155
promote non-small cell lung cancer progression by downregulating
SOCS1, SOCS6, and PTEN. Oncotarget. 7:84508–84519. 2016.PubMed/NCBI View Article : Google Scholar
|
34
|
Li X, Chen SH and Zeng JW: MiR-421 is
overexpressed and promotes cell proliferation in non-small cell
lung cancer. Med Princ Pract. 29:80–89. 2020.PubMed/NCBI View Article : Google Scholar
|
35
|
Jiang L, Ge W and Geng J: miR-425
regulates cell proliferation, migration and apoptosis by targeting
AMPH-1 in non-small-cell lung cancer. Pathol Res Pract.
215(152705)2019.PubMed/NCBI View Article : Google Scholar
|
36
|
Zhou LY, Zhang FW, Tong J and Liu F:
MiR-191-5p inhibits lung adenocarcinoma by repressing SATB1 to
inhibit Wnt pathway. Mol Genet Genomic Med. 8(e1043)2020.PubMed/NCBI View Article : Google Scholar
|
37
|
Li Q, Huang Q, Cheng S, Wu S, Sang H and
Hou J: Circ_ZNF124 promotes non-small cell lung cancer progression
by abolishing miR-337-3p mediated downregulation of JAK2/STAT3
signaling pathway. Cancer Cell Int. 19(291)2019.PubMed/NCBI View Article : Google Scholar
|
38
|
Chen T, Zhu J, Cai T, Du W, Zhang Y, Zhu
Q, Liu Z and Huang JA: Suppression of non-small cell lung cancer
migration and invasion by hsa-miR-486-5p via the TGF-β/SMAD2
signaling pathway. J Cancer. 10:6014–6024. 2019.PubMed/NCBI View Article : Google Scholar
|
39
|
Luan W, Zhou Z, Ni X, Xia Y, Wang J, Yan Y
and Xu B: Long non-coding RNA H19 promotes glucose metabolism and
cell growth in malignant melanoma via miR-106a-5p/E2F3 axis. J
Cancer Res Clin Oncol. 144:531–542. 2018.PubMed/NCBI View Article : Google Scholar
|
40
|
Zheng YJ, Zhao JY, Liang TS, Wang P, Wang
J, Yang DK and Liu ZS: Long noncoding RNA SMAD5-AS1 acts as a
microRNA-106a-5p sponge to promote epithelial mesenchymal
transition in nasopharyngeal carcinoma. FASEB J. 33:12915–12928.
2019.PubMed/NCBI View Article : Google Scholar
|
41
|
He QY, Wang GC, Zhang H, Tong DK, Ding C,
Liu K, Ji F, Zhu X and Yang S: miR-106a-5p suppresses the
proliferation, migration, and invasion of osteosarcoma cells by
targeting HMGA2. DNA Cell Biol. 35:506–520. 2016.PubMed/NCBI View Article : Google Scholar
|
42
|
Zhi F, Zhou G, Shao N, Xia X, Shi Y, Wang
Q, Zhang Y, Wang R, Xue L, Wang S, et al: miR-106a-5p inhibits the
proliferation and migration of astrocytoma cells and promotes
apoptosis by targeting FASTK. PLoS One. 8(e72390)2013.PubMed/NCBI View Article : Google Scholar
|
43
|
Pan YJ, Wei LL, Wu XJ, Huo FC, Mou J and
Pei DS: MiR-106a-5p inhibits the cell migration and invasion of
renal cell carcinoma through targeting PAK5. Cell Death Dis.
8(e3155)2017.PubMed/NCBI View Article : Google Scholar
|
44
|
Dong S, Zhang X and Liu D: Overexpression
of long noncoding RNA GAS5 suppresses tumorigenesis and development
of gastric cancer by sponging miR-106a-5p through the Akt/mTOR
pathway. Biol Open. 8(bio041343)2019.PubMed/NCBI View Article : Google Scholar
|
45
|
Hu B, Cai H, Zheng R, Yang S, Zhou Z and
Tu J: Long non-coding RNA 657 suppresses hepatocellular carcinoma
cell growth by acting as a molecular sponge of miR-106a-5p to
regulate PTEN expression. Int J Biochem Cell Biol. 92:34–42.
2017.PubMed/NCBI View Article : Google Scholar
|
46
|
Shan X, Zhang H, Zhang L, Zhou X, Wang T,
Zhang J, Shu Y, Zhu W, Wen W and Liu P: Identification of four
plasma microRNAs as potential biomarkers in the diagnosis of male
lung squamous cell carcinoma patients in China. Cancer Med.
7:2370–2381. 2018.PubMed/NCBI View Article : Google Scholar
|
47
|
Zhang L, Shan X, Wang J, Zhu J, Huang Z,
Zhang H, Zhou X, Cheng W, Shu Y, Zhu W and Liu P: A three-microRNA
signature for lung squamous cell carcinoma diagnosis in Chinese
male patients. Oncotarget. 8:86897–86907. 2017.PubMed/NCBI View Article : Google Scholar
|
48
|
Leidinger P, Brefort T, Backes C, Krapp M,
Galata V, Beier M, Kohlhaas J, Huwer H, Meese E and Keller A:
High-throughput qRT-PCR validation of blood microRNAs in non-small
cell lung cancer. Oncotarget. 7:4611–4623. 2016.PubMed/NCBI View Article : Google Scholar
|
49
|
Cui X, Wang X, Zhou X, Jia J, Chen H and
Zhao W: miR-106a regulates cell proliferation and autophagy by
targeting LKB1 in HPV-16-associated cervical cancer. Mol Cancer
Res. 18:1129–1141. 2020.PubMed/NCBI View Article : Google Scholar
|
50
|
Wu B, Chen X, Zhou Y, Hu P, Wu D, Zheng G
and Cai Y: Andrographolide inhibits proliferation and induces
apoptosis of nasopharyngeal carcinoma cell line C666-1 through
LKB1-AMPK-dependent signaling pathways. Die Pharmazie. 73:594–597.
2018.PubMed/NCBI View Article : Google Scholar
|
51
|
Kamarudin MNA, Sarker MMR, Zhou JR and
Parhar I: Metformin in colorectal cancer: Molecular mechanism,
preclinical and clinical aspects. J Exp Clin Cancer Res.
38(491)2019.PubMed/NCBI View Article : Google Scholar
|
52
|
Marcus AI and Zhou W: LKB1 regulated
pathways in lung cancer invasion and metastasis. J Thorac Oncol.
5:1883–1886. 2010.PubMed/NCBI View Article : Google Scholar
|
53
|
Shukuya T, Yamada T, Koenig MJ, Xu J,
Okimoto T, Li F, Amann JM and Carbone DP: The effect of LKB1
activity on the sensitivity to PI3K/mTOR inhibition in non-small
cell lung cancer. J Thorac Oncol. 14:1061–1076. 2019.PubMed/NCBI View Article : Google Scholar
|
54
|
Han Y, Feng H, Sun J, Liang X, Wang Z,
Xing W, Dai Q, Yang Y, Han A, Wei Z, et al: Lkb1 deletion in
periosteal mesenchymal progenitors induces osteogenic tumors
through mTORC1 activation. J Clin Invest. 129:1895–1909.
2019.PubMed/NCBI View Article : Google Scholar
|
55
|
Van Nostrand JL, Hellberg K, Luo EC, Van
Nostrand EL, Dayn A, Yu J, Shokhirev MN, Dayn Y, Yeo GW and Shaw
RJ: AMPK regulation of raptor and TSC2 mediate metformin effects on
transcriptional control of anabolism and inflammation. Genes Dev.
34:1330–1344. 2020.PubMed/NCBI View Article : Google Scholar
|
56
|
Tripathi DN, Chowdhury R, Trudel LJ, Tee
AR, Slack RS, Walker CL and Wogan GN: Reactive nitrogen species
regulate autophagy through ATM-AMPK-TSC2-mediated suppression of
mTORC1. Proc Natl Acad Sci USA. 110:E2950–E2957. 2013.PubMed/NCBI View Article : Google Scholar
|
57
|
Bakula D, Muller AJ, Zuleger T, Takacs Z,
Franz-Wachtel M, Thost AK, Brigger D, Tschan MP, Frickey T, Robenek
H, et al: WIPI3 and WIPI4 β-propellers are scaffolds for
LKB1-AMPK-TSC signalling circuits in the control of autophagy. Nat
Commun. 8(15637)2017.PubMed/NCBI View Article : Google Scholar
|
58
|
Mans LA, Querol Cano L, van Pelt J,
Giardoglou P, Keune WJ and Haramis AG: The tumor suppressor LKB1
regulates starvation-induced autophagy under systemic metabolic
stress. Sci Rep. 7(7327)2017.PubMed/NCBI View Article : Google Scholar
|
59
|
Yan Y, Chen X, Wang X, Zhao Z, Hu W, Zeng
S, Wei J, Yang X, Qian L, Zhou S, et al: The effects and the
mechanisms of autophagy on the cancer-associated fibroblasts in
cancer. J Exp Clin Cancer Res. 38(171)2019.PubMed/NCBI View Article : Google Scholar
|
60
|
Cirone M, Gilardini Montani MS, Granato M,
Garufi A, Faggioni A and D'Orazi G: Autophagy manipulation as a
strategy for efficient anticancer therapies: Possible consequences.
J Exp Clin Cancer Res. 38(262)2019.PubMed/NCBI View Article : Google Scholar
|
61
|
Che D, Zhang S, Jing Z, Shang L, Jin S,
Liu F, Shen J, Li Y, Hu J, Meng Q and Yu Y: Macrophages induce EMT
to promote invasion of lung cancer cells through the IL-6-mediated
COX-2/PGE2/β-catenin signalling pathway. Mol Immunol.
90:197–210. 2017.PubMed/NCBI View Article : Google Scholar
|