1
|
Roth GA, Johnson C, Abajobir A, Abd-Allah
F, Abera SF, Abyu G, Ahmed M, Aksut B, Alam T, Alam K, et al:
Global, Regional, and National Burden of Cardiovascular Diseases
for 10 Causes, 1990 to 2015. J Am Coll Cardiol. 70:1–25.
2017.PubMed/NCBI View Article : Google Scholar
|
2
|
Song P, Zha M, Yang X, Xu Y, Wang H, Fang
Z, Yang X, Xia W and Zeng C: Socioeconomic and geographic
variations in the prevalence, awareness, treatment and control of
dyslipidemia in middle-aged and older Chinese. Atherosclerosis.
282:57–66. 2019.PubMed/NCBI View Article : Google Scholar
|
3
|
Lusis AJ: Atherosclerosis. Nature.
407:233–241. 2000.PubMed/NCBI View
Article : Google Scholar
|
4
|
Bennett MR, Sinha S and Owens GK: Vascular
Smooth Muscle Cells in Atherosclerosis. Circ Res. 118:692–702.
2016.PubMed/NCBI View Article : Google Scholar
|
5
|
Basatemur GL, Jørgensen HF, Clarke MCH,
Bennett MR and Mallat Z: Vascular smooth muscle cells in
atherosclerosis. Nat Rev Cardiol. 16:727–744. 2019.PubMed/NCBI View Article : Google Scholar
|
6
|
Williams KJ and Tabas I: The
response-to-retention hypothesis of early atherogenesis.
Arterioscler Thromb Vasc Biol. 15:551–561. 1995.PubMed/NCBI View Article : Google Scholar
|
7
|
Tabas I, Williams KJ and Borén J:
Subendothelial lipoprotein retention as the initiating process in
atherosclerosis: Update and therapeutic implications. Circulation.
116:1832–1844. 2007.PubMed/NCBI View Article : Google Scholar
|
8
|
Owens GK, Kumar MS and Wamhoff BR:
Molecular regulation of vascular smooth muscle cell differentiation
in development and disease. Physiol Rev. 84:767–801.
2004.PubMed/NCBI View Article : Google Scholar
|
9
|
Ferns GAA and Heikal L: Hypoxia in
Atherogenesis. Angiology. 68:472–493. 2017.PubMed/NCBI View Article : Google Scholar
|
10
|
Jain T, Nikolopoulou EA, Xu Q and Qu A:
Hypoxia inducible factor as a therapeutic target for
atherosclerosis. Pharmacol Ther. 183:22–33. 2018.PubMed/NCBI View Article : Google Scholar
|
11
|
Luque A, Turu M, Juan-Babot O, Cardona P,
Font A, Carvajal A, Slevin M, Iborra E, Rubio F, Badimon L, et al:
Overexpression of hypoxia/inflammatory markers in atherosclerotic
carotid plaques. Front Biosci. 13:6483–6490. 2008.PubMed/NCBI View
Article : Google Scholar
|
12
|
Consortium EP: ENCODE Project Consortium.
An integrated encyclopedia of DNA elements in the human genome.
Nature. 489:57–74. 2012.PubMed/NCBI View Article : Google Scholar
|
13
|
Mishra K and Kanduri C: Understanding Long
Noncoding RNA and Chromatin Interactions: What We Know So Far.
Noncoding RNA. 5(5)2019.PubMed/NCBI View Article : Google Scholar
|
14
|
McDonel P and Guttman M: Approaches for
Understanding the Mechanisms of Long Noncoding RNA Regulation of
Gene Expression. Cold Spring Harb Perspect Biol.
11(11)2019.PubMed/NCBI View Article : Google Scholar
|
15
|
Sauvageau M: Diverging RNPs: Toward
Understanding lncRNA-Protein Interactions and Functions. Adv Exp
Med Biol. 1203:285–312. 2019.PubMed/NCBI View Article : Google Scholar
|
16
|
Leeper NJ and Maegdefessel L: Non-coding
RNAs: Key regulators of smooth muscle cell fate in vascular
disease. Cardiovasc Res. 114:611–621. 2018.PubMed/NCBI View Article : Google Scholar
|
17
|
Kumar S, Williams D, Sur S, Wang JY and Jo
H: Role of flow-sensitive microRNAs and long noncoding RNAs in
vascular dysfunction and atherosclerosis. Vascul Pharmacol.
114:76–92. 2019.PubMed/NCBI View Article : Google Scholar
|
18
|
Holdt LM, Kohlmaier A and Teupser D: Long
Noncoding RNAs of the Arterial Wall as Therapeutic Agents and
Targets in Atherosclerosis. Thromb Haemost. 119:1222–1236.
2019.PubMed/NCBI View Article : Google Scholar
|
19
|
Xu S, Kamato D, Little PJ, Nakagawa S,
Pelisek J and Jin ZG: Targeting epigenetics and non-coding RNAs in
atherosclerosis: From mechanisms to therapeutics. Pharmacol Ther.
196:15–43. 2019.PubMed/NCBI View Article : Google Scholar
|
20
|
Hu YW, Guo FX, Xu YJ, Li P, Lu ZF, McVey
DG, Zheng L, Wang Q, Ye JH, Kang CM, et al: Long noncoding RNA
NEXN-AS1 mitigates atherosclerosis by regulating the actin-binding
protein NEXN. J Clin Invest. 129:1115–1128. 2019.PubMed/NCBI View
Article : Google Scholar
|
21
|
Bai HL, Lu ZF, Zhao JJ, Ma X, Li XH, Xu H,
Wu SG, Kang CM, Lu JB, Xu YJ, et al: Microarray profiling analysis
and validation of novel long noncoding RNAs and mRNAs as potential
biomarkers and their functions in atherosclerosis. Physiol
Genomics. 51:644–656. 2019.PubMed/NCBI View Article : Google Scholar
|
22
|
Kanehisa M, Furumichi M, Sato Y,
Ishiguro-Watanabe M and Tanabe M: KEGG: Integrating viruses and
cellular organisms. Nucleic Acids Res. 49D:D545–D551.
2021.PubMed/NCBI View Article : Google Scholar
|
23
|
Gene Ontology C: Gene Ontology Consortium.
The Gene Ontology resource: Enriching a GOld mine. Nucleic Acids
Res. 49D:D325–D334. 2021.PubMed/NCBI View Article : Google Scholar
|
24
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) Method. Methods. 25:402–408.
2001.PubMed/NCBI View Article : Google Scholar
|
25
|
Nan A, Chen L, Zhang N, Liu Z, Yang T,
Wang Z, Yang C and Jiang Y: A novel regulatory network among
lncRpa, circRar1, miR-671 and apoptotic genes promotes lead-induced
neuronal cell apoptosis. Arch Toxicol. 91:1671–1684.
2017.PubMed/NCBI View Article : Google Scholar
|
26
|
Fukata Y, Amano M and Kaibuchi K:
Rho-Rho-kinase pathway in smooth muscle contraction and
cytoskeletal reorganization of non-muscle cells. Trends Pharmacol
Sci. 22:32–39. 2001.PubMed/NCBI View Article : Google Scholar
|
27
|
Webb RC: Smooth muscle contraction and
relaxation. Adv Physiol Educ. 27:201–206. 2003.PubMed/NCBI View Article : Google Scholar
|
28
|
Lokman NA, Ween MP, Oehler MK and
Ricciardelli C: The role of annexin A2 in tumorigenesis and cancer
progression. Cancer Microenviron. 4:199–208. 2011.PubMed/NCBI View Article : Google Scholar
|
29
|
Mayer G, Poirier S and Seidah NG: Annexin
A2 is a C-terminal PCSK9-binding protein that regulates endogenous
low density lipoprotein receptor levels. J Biol Chem.
283:31791–31801. 2008.PubMed/NCBI View Article : Google Scholar
|
30
|
Ma S, Lu CC, Yang LY, Wang JJ, Wang BS,
Cai HQ, Hao JJ, Xu X, Cai Y, Zhang Y, et al: ANXA2 promotes
esophageal cancer progression by activating MYC-HIF1A-VEGF axis. J
Exp Clin Cancer Res. 37(183)2018.PubMed/NCBI View Article : Google Scholar
|
31
|
Hussain S, Saxena S, Shrivastava S,
Mohanty AK, Kumar S, Singh RJ, Kumar A, Wani SA, Gandham RK, Kumar
N, et al: Gene expression profiling of spontaneously occurring
canine mammary tumours: Insight into gene networks and pathways
linked to cancer pathogenesis. PLoS One.
13(e0208656)2018.PubMed/NCBI View Article : Google Scholar
|
32
|
Tang Y, He Y, Zhang P, Wang J, Fan C, Yang
L, Xiong F, Zhang S, Gong Z, Nie S, et al: lncRNAs regulate the
cytoskeleton and related Rho/ROCK signaling in cancer metastasis.
Mol Cancer. 17(77)2018.PubMed/NCBI View Article : Google Scholar
|
33
|
Saiki Y and Horii A: Multiple functions of
S100A10, an important cancer promoter. Pathol Int. 69:629–636.
2019.PubMed/NCBI View Article : Google Scholar
|
34
|
Wang Z, Wei Q, Han L, Cao K, Lan T, Xu Z,
Wang Y, Gao Y, Xue J, Shan F, et al: Tenascin-c renders a
proangiogenic phenotype in macrophage via annexin II. J Cell Mol
Med. 22:429–438. 2018.PubMed/NCBI View Article : Google Scholar
|
35
|
Ding P, Ding Y, Tian Y and Lei X: Circular
RNA circ_0010283 regulates the viability and migration of oxidized
low density lipoprotein induced vascular smooth muscle cells via an
miR 370 3p/HMGB1 axis in atherosclerosis. Int J Mol Med.
46:1399–1408. 2020.PubMed/NCBI View Article : Google Scholar
|
36
|
Yan Z, Wang H, Liang J, Li Y and Li X:
MicroRNA-503-5p improves carotid artery stenosis by inhibiting the
proliferation of vascular smooth muscle cells. Exp Ther Med.
20(85)2020.PubMed/NCBI View Article : Google Scholar
|
37
|
Deryugina EI and Quigley JP: Cell surface
remodeling by plasmin: A new function for an old enzyme. J Biomed
Biotechnol. 2012(564259)2012.PubMed/NCBI View Article : Google Scholar
|
38
|
Li L, Li X, The E, Wang LJ, Yuan TY, Wang
SY, Feng J, Wang J, Liu Y, Wu YH, et al: Low expression of
lncRNA-GAS5 is implicated in human primary varicose great saphenous
veins. PLoS One. 10(e0120550)2015.PubMed/NCBI View Article : Google Scholar
|
39
|
Zhu B, Gong Y, Yan G, Wang D, Qiao Y, Wang
Q, Liu B, Hou J, Li R and Tang C: Down-regulation of lncRNA MEG3
promotes hypoxia-induced human pulmonary artery smooth muscle cell
proliferation and migration via repressing PTEN by sponging miR-21.
Biochem Biophys Res Commun. 495:2125–2132. 2018.PubMed/NCBI View Article : Google Scholar
|