1
|
Hendry GA and Jones OT: Haems and
chlorophylls: Comparison of function and formation. J Med Genet.
17:1–14. 1980.PubMed/NCBI View Article : Google Scholar
|
2
|
Castro CE: Mechanisms of reaction of
hemeproteins with oxygen and hydrogen peroxide in the oxidation of
organic substrates. Pharmacol Ther. 10:171–189. 1980.PubMed/NCBI View Article : Google Scholar
|
3
|
Ishizuka M, Abe F, Sano Y, Takahashi K,
Inoue K, Nakajima M, Kohda T, Komatsu N, Ogura S and Tanaka T:
Novel development of 5-aminolevurinic acid (ALA) in cancer
diagnoses and therapy. Int Immunopharmacol. 11:358–365.
2011.PubMed/NCBI View Article : Google Scholar
|
4
|
Stummer W, Pichlmeier U, Meinel T,
Wiestler OD, Zanella F and Reulen HJ: ALA-Glioma Study Group.
Fluorescence-guided surgery with 5-aminolevulinic acid for
resection of malignant glioma: A randomised controlled multicentre
phase III trial. Lancet Oncol. 7:392–401. 2006.PubMed/NCBI View Article : Google Scholar
|
5
|
Inoue K, Fukuhara H, Shimamoto T, Kamada
M, Iiyama T, Miyamura M, Kurabayashi A, Furihata M, Tanimura M,
Watanabe H, et al: Comparison between intravesical and oral
administration of 5-aminolevulinic acid in the clinical benefit of
photodynamic diagnosis for nonmuscle invasive bladder cancer.
Cancer. 118:1062–1074. 2012.PubMed/NCBI View Article : Google Scholar
|
6
|
Antonini E and Brunori M: Hemoglobin and
myoglobin in their reactions with ligands. In: Frontiers of
biology. North-Holland Publication Co., Amsterdam, p436, 1971.
|
7
|
Sono M, Roach MP, Coulter ED and Dawson
JH: Heme-Containing Oxygenases. Chem Rev. 96:2841–2888.
1996.PubMed/NCBI View Article : Google Scholar
|
8
|
Paterniti JR Jr, Lin CI and Beattie DS:
delta-Aminolevulinic acid synthetase: Regulation of activity in
various tissues of the aging rat. Arch Biochem Biophys.
191:792–797. 1978.PubMed/NCBI View Article : Google Scholar
|
9
|
Ogura S, Maruyama K, Hagiya Y, Sugiyama Y,
Tsuchiya K, Takahashi K, Abe F, Tabata K, Okura I, Nakajima M, et
al: The effect of 5-aminolevulinic acid on cytochrome c oxidase
activity in mouse liver. BMC Res Notes. 4(66)2011.PubMed/NCBI View Article : Google Scholar
|
10
|
Masuki S, Morita A, Kamijo Y, Ikegawa S,
Kataoka Y, Ogawa Y, Sumiyoshi E, Takahashi K, Tanaka T, Nakajima M,
et al: Impact of 5-aminolevulinic acid with iron supplementation on
exercise efficiency and home-based walking training achievement in
older women. J Appl Physiol (1985). 120:87–96. 2016.PubMed/NCBI View Article : Google Scholar
|
11
|
Hara T, Koda A, Nozawa N, Ota U, Kondo H,
Nakagawa H, Kamiya A, Miyashita K, Itoh H, Nakajima M, et al:
Combination of 5-aminolevulinic acid and ferrous ion reduces plasma
glucose and hemoglobin A1c levels in Zucker diabetic fatty rats.
FEBS Open Bio. 6:515–528. 2016.PubMed/NCBI View Article : Google Scholar
|
12
|
Higashikawa F, Noda M, Awaya T, Tanaka T
and Sugiyama M: 5-aminolevulinic acid, a precursor of heme, reduces
both fasting and postprandial glucose levels in mildly
hyperglycemic subjects. Nutrition. 29:1030–1036. 2013.PubMed/NCBI View Article : Google Scholar
|
13
|
Ota U, Hara T, Nakagawa H, Tsuru E, Tsuda
M, Kamiya A, Kuroda Y, Kitajima Y, Koda A, Ishizuka M, et al:
5-aminolevulinic acid combined with ferrous ion reduces adiposity
and improves glucose tolerance in diet-induced obese mice via
enhancing mitochondrial function. BMC Pharmacol Toxicol.
18(7)2017.PubMed/NCBI View Article : Google Scholar
|
14
|
Klip A, McGraw TE and James DE: Thirty
sweet years of GLUT4. J Biol Chem. 294:11369–11381. 2019.PubMed/NCBI View Article : Google Scholar
|
15
|
Gallagher D, Belmonte D, Deurenberg P,
Wang Z, Krasnow N, Pi-Sunyer FX and Heymsfield SB: Organ-tissue
mass measurement allows modeling of REE and metabolically active
tissue mass. Am J Physiol. 275:E249–E258. 1998.PubMed/NCBI View Article : Google Scholar
|
16
|
Wood IS and Trayhurn P: Glucose
transporters (GLUT and SGLT): Expanded families of sugar transport
proteins. Br J Nutr. 89:3–9. 2003.PubMed/NCBI View Article : Google Scholar
|
17
|
Chibazakura T, Toriyabe Y, Fujii H,
Takahashi K, Kawakami M, Kuwamura H, Haga H, Ogura S, Abe F,
Nakajima M, et al: 5-Aminolevulinic acid enhances cell death under
thermal stress in certain cancer cell lines. Biosci Biotechnol
Biochem. 79:422–431. 2015.PubMed/NCBI View Article : Google Scholar
|
18
|
Allison DB, Paultre F, Maggio C, Mezzitis
N and Pi-Sunyer FX: The use of areas under curves in diabetes
research. Diabetes Care. 18:245–250. 1995.PubMed/NCBI View Article : Google Scholar
|
19
|
Saito K, Lee S, Shiuchi T, Toda C, Kamijo
M, Inagaki-Ohara K, Okamoto S and Minokoshi Y: An enzymatic
photometric assay for 2-deoxyglucose uptake in insulin-responsive
tissues and 3T3-L1 adipocytes. Anal Biochem. 412:9–17.
2011.PubMed/NCBI View Article : Google Scholar
|
20
|
Suzuki K and Kono T: Evidence that insulin
causes translocation of glucose transport activity to the plasma
membrane from an intracellular storage site. Proc Natl Acad Sci
USA. 77:2542–2545. 1980.PubMed/NCBI View Article : Google Scholar
|
21
|
Jiang H, Yamashita Y, Nakamura A, Croft K
and Ashida H: Quercetin and its metabolite isorhamnetin promote
glucose uptake through different signalling pathways in myotubes.
Sci Rep. 9(2690)2019.PubMed/NCBI View Article : Google Scholar
|
22
|
Kinney JM and Tucker HN: Energy
Metabolism. Tissue Determinants and Cellular Corollaries. Ravan
Press, New York, NY, p562, 1992.
|
23
|
Zurlo F, Larson K, Bogardus C and Ravussin
E: Skeletal muscle metabolism is a major determinant of resting
energy expenditure. J Clin Invest. 86:1423–1427. 1990.PubMed/NCBI View Article : Google Scholar
|
24
|
Durnin JV: Basal metabolic rate in man.
In: Joint FAO/-WHO/UNU Expert Consultation on Energy and Protein
Requirements, 1981.
|
25
|
Fujii C, Miyashita K, Mitsuishi M, Sato M,
Fujii K, Inoue H, Hagiwara A, Endo S, Uto A, Ryuzaki M, et al:
Treatment of sarcopenia and glucose intolerance through
mitochondrial activation by 5-aminolevulinic acid. Sci Rep.
7(4013)2017.PubMed/NCBI View Article : Google Scholar
|
26
|
Mueckler M: Family of glucose-transporter
genes. Implications for glucose homeostasis and diabetes. Diabetes.
39:6–11. 1990.PubMed/NCBI View Article : Google Scholar
|
27
|
Douen AG, Ramlal T, Rastogi S, Bilan PJ,
Cartee GD, Vranic M, Holloszy JO and Klip A: Exercise induces
recruitment of the ‘insulin-responsive glucose transporter’.
Evidence for distinct intracellular insulin- and
exercise-recruitable transporter pools in skeletal muscle. J Biol
Chem. 265:13427–13430. 1990.PubMed/NCBI
|
28
|
Kraegen EW, Sowden JA, Halstead MB, Clark
PW, Rodnick KJ, Chisholm DJ and James DE: Glucose transporters and
in vivo glucose uptake in skeletal and cardiac muscle: Fasting,
insulin stimulation and immunoisolation studies of GLUT1 and GLUT4.
Biochem J. 295:287–293. 1993.PubMed/NCBI View Article : Google Scholar
|
29
|
Yamashita Y, Okabe M, Natsume M and Ashida
H: Cacao liquor procyanidin extract improves glucose tolerance by
enhancing GLUT4 translocation and glucose uptake in skeletal
muscle. J Nutr Sci. 1(e2)2012.PubMed/NCBI View Article : Google Scholar
|
30
|
Gould GW and Holman GD: The glucose
transporter family: Structure, function and tissue-specific
expression. Biochem J. 295:329–341. 1993.PubMed/NCBI View Article : Google Scholar
|
31
|
Montel-Hagen A, Sitbon M and Taylor N:
Erythroid glucose transporters. Curr Opin Hematol. 16:165–172.
2009.PubMed/NCBI View Article : Google Scholar
|
32
|
Wong CY, Al-Salami H and Dass CR: C2C12
cell model: Its role in understanding of insulin resistance at the
molecular level and pharmaceutical development at the preclinical
stage. J Pharm Pharmacol. 72:1667–1693. 2020.PubMed/NCBI View Article : Google Scholar
|
33
|
Chan DA, Sutphin PD, Nguyen P, Turcotte S,
Lai EW, Banh A, Reynolds GE, Chi JT, Wu J, Solow-Cordero DE, et al:
Targeting GLUT1 and the Warburg effect in renal cell carcinoma by
chemical synthetic lethality. Sci Transl Med.
3(94ra70)2011.PubMed/NCBI View Article : Google Scholar
|
34
|
Adams DJ, Ito D, Rees MG, Seashore-Ludlow
B, Puyang X, Ramos AH, Cheah JH, Clemons PA, Warmuth M, Zhu P, et
al: NAMPT is the cellular target of STF-31-like small-molecule
probes. ACS Chem Biol. 9:2247–2254. 2014.PubMed/NCBI View Article : Google Scholar
|
35
|
Garten A, Petzold S, Körner A, Imai S and
Kiess W: Nampt: Linking NAD biology, metabolism and cancer. Trends
Endocrinol Metab. 20:130–138. 2009.PubMed/NCBI View Article : Google Scholar
|