1
|
Huang M, Cai SL and Su JQ: The
pathogenesis of sepsis and potential therapeutic targets. Int J Mol
Sci. 20(5376)2019.PubMed/NCBI View Article : Google Scholar
|
2
|
Sprung CL, Peduzzi PN, Shatney CH, Schein
RM, Wilson MF, Sheagren JN and Hinshaw LB: Impact of encephalopathy
on mortality in the sepsis syndrome. The veterans administration
systemic sepsis cooperative study group. Crit Care Med. 18:801–806.
1990.PubMed/NCBI View Article : Google Scholar
|
3
|
Iwashyna TJ, Ely EW, Smith DM and Langa
KM: Long-term cognitive impairment and functional disability among
survivors of severe sepsis. JAMA. 304:1787–1794. 2010.PubMed/NCBI View Article : Google Scholar
|
4
|
Ren C, Yao RQ, Zhang H, Feng YW and Yao
YM: Sepsis-associated encephalopathy: A vicious cycle of
immunosuppression. J Neuroinflammation. 17(14)2020.PubMed/NCBI View Article : Google Scholar
|
5
|
Block ML, Zecca L and Hong JS:
Microglia-mediated neurotoxicity: Uncovering the molecular
mechanisms. Nat Rev Neurosci. 8:57–69. 2007.PubMed/NCBI View
Article : Google Scholar
|
6
|
Lee E, Eo JC, Lee C and Yu JW: Distinct
features of brain-resident macrophages: Microglia and
non-parenchymal brain macrophages. Mol Cells. 44:281–291.
2021.PubMed/NCBI View Article : Google Scholar
|
7
|
Li Y, Yin L, Fan Z, Su B, Chen Y, Ma Y,
Zhong Y, Hou W, Fang Z and Zhang X: Microglia: A potential
therapeutic target for sepsis-associated encephalopathy and
sepsis-associated chronic pain. Front Pharmacol.
11(600421)2020.PubMed/NCBI View Article : Google Scholar
|
8
|
Shulyatnikova T and Verkhratsky A:
Astroglia in sepsis associated encephalopathy. Neurochem Res.
45:83–99. 2020.PubMed/NCBI View Article : Google Scholar
|
9
|
Catarina AV, Branchini G, Bettoni L, De
Oliveira JR and Nunes FB: Sepsis-associated encephalopathy: From
pathophysiology to progress in experimental studies. Mol Neurobiol.
58:2770–2779. 2021.PubMed/NCBI View Article : Google Scholar
|
10
|
Ye B, Tao T, Zhao A, Wen L, He X, Liu Y,
Fu Q, Mi W and Lou J: Blockade of IL-17A/IL-17R pathway protected
mice from sepsis-associated encephalopathy by inhibition of
microglia activation. Mediators Inflamm.
2019(8461725)2019.PubMed/NCBI View Article : Google Scholar
|
11
|
Fatica A and Bozzoni I: Long non-coding
RNAs: New players in cell differentiation and development. Nat Rev
Genet. 15:7–21. 2014.PubMed/NCBI View
Article : Google Scholar
|
12
|
Yao H, Han B, Zhang Y, Shen L and Huang R:
Non-coding RNAs and autophagy. Adv Exp Med Biol. 1206:199–220.
2019.PubMed/NCBI View Article : Google Scholar
|
13
|
Su Z, Yang Z, Xu Y, Chen Y and Yu Q:
MicroRNAs in apoptosis, autophagy and necroptosis. Oncotarget.
6:8474–8490. 2015.PubMed/NCBI View Article : Google Scholar
|
14
|
Wang J, Yan S, Yang J, Lu H, Xu D and Wang
Z: Non-coding RNAs in rheumatoid arthritis: From bench to bedside.
Front Immunol. 10(3129)2020.PubMed/NCBI View Article : Google Scholar
|
15
|
Ghafouri-Fard S, Shoorei H and Taheri M:
Non-coding RNAs participate in the ischemia-reperfusion injury.
Biomed Pharmacother. 129(110419)2020.PubMed/NCBI View Article : Google Scholar
|
16
|
Kondo Y, Shinjo K and Katsushima K: Long
non-coding RNAs as an epigenetic regulator in human cancers. Cancer
Sci. 108:1927–1933. 2017.PubMed/NCBI View Article : Google Scholar
|
17
|
Li Y, Li Q, Wang C, Li S and Yu L: Long
noncoding RNA expression profile in BV2 microglial cells exposed to
lipopolysaccharide. Biomed Res Int. 2019(5387407)2019.PubMed/NCBI View Article : Google Scholar
|
18
|
Xiaoying G, Guo M, Jie L, Yanmei Z, Ying
C, Shengjie S, Haiyan G, Feixiang S, Sihua Q and Jiahang S:
CircHivep2 contributes to microglia activation and inflammation via
miR-181a-5p/SOCS2 signalling in mice with kainic acid-induced
epileptic seizures. J Cell Mol Med. 24:12980–12993. 2020.PubMed/NCBI View Article : Google Scholar
|
19
|
Wu T, Li Y, Liang X, Liu X and Tang M:
Identification of potential circRNA-miRNA-mRNA regulatory networks
in response to graphene quantum dots in microglia by microarray
analysis. Ecotoxicol Environ Saf. 208(111672)2021.PubMed/NCBI View Article : Google Scholar
|
20
|
R Development Core Team. R: A language and
environment for statistical computing. R Foundation for Statistical
Computing. Vienna, Austria, 2018. URL https://www.R-project.org/.
|
21
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408.
2001.PubMed/NCBI View Article : Google Scholar
|
22
|
Widmann CN and Heneka MT: Long-term
cerebral consequences of sepsis. Lancet Neurol. 13:630–636.
2014.PubMed/NCBI View Article : Google Scholar
|
23
|
Huang CT, Lue JH, Cheng TH and Tsai YJ:
Glycemic control with insulin attenuates sepsis-associated
encephalopathy by inhibiting glial activation via the suppression
of the nuclear factor kappa B and mitogen-activated protein kinase
signaling pathways in septic rats. Brain Res.
1738(146822)2020.PubMed/NCBI View Article : Google Scholar
|
24
|
Kimura T, Toriuchi K, Kakita H, Tamura T,
Takeshita S, Yamada Y and Aoyama M: Hypothermia attenuates neuronal
damage via inhibition of microglial activation, including
suppression of microglial cytokine production and phagocytosis.
Cell Mol Neurobiol. 41:459–468. 2021.PubMed/NCBI View Article : Google Scholar
|
25
|
Weis GCC, Assmann CE, Mostardeiro VB,
Alves AO, da Rosa JR, Pillat MM, de Andrade CM, Schetinger MRC,
Morsch VMM, da Cruz IBM and Costabeber IH: Chlorpyrifos pesticide
promotes oxidative stress and increases inflammatory states in BV-2
microglial cells: A role in neuroinflammation. Chemosphere.
278(130417)2021.PubMed/NCBI View Article : Google Scholar
|
26
|
Henn A, Lund S, Hedtjärn M, Schrattenholz
A, Pörzgen P and Leist M: The suitability of BV2 cells as
alternative model system for primary microglia cultures or for
animal experiments examining brain inflammation. ALTEX. 26:83–94.
2009.PubMed/NCBI View Article : Google Scholar
|
27
|
Sun W, Pei L and Liang Z: mRNA and long
non-coding RNA expression profiles in rats reveal inflammatory
features in sepsis-associated encephalopathy. Neurochem Res.
42:3199–3219. 2017.PubMed/NCBI View Article : Google Scholar
|
28
|
Gautier EL, Shay T, Miller J, Greter M,
Jakubzick C, Ivanov S, Helft J, Chow A, Elpek KG, Gordonov S, et
al: Gene-expression profiles and transcriptional regulatory
pathways that underlie the identity and diversity of mouse tissue
macrophages. Nat Immunol. 13:1118–1128. 2012.PubMed/NCBI View
Article : Google Scholar
|
29
|
Cuevas VD, Anta L, Samaniego R,
Orta-Zavalza E, Vladimir de la Rosa J, Baujat G, Dominguez-Soto Á,
Sanchez-Mateos P, Escribese MM, Castrillo A, et al: MAFB determines
human macrophage anti-inflammatory polarization: Relevance for the
pathogenic mechanisms operating in multicentric carpotarsal
osteolysis. J Immunol. 198:2070–2081. 2017.PubMed/NCBI View Article : Google Scholar
|
30
|
Remmerie A and Scott CL: Macrophages and
lipid metabolism. Cell Immunol. 330:27–42. 2018.PubMed/NCBI View Article : Google Scholar
|
31
|
Chausse B, Kakimoto PA and Kann O:
Microglia and lipids: How metabolism controls brain innate
immunity. Semin Cell Dev Biol. 112:137–144. 2021.PubMed/NCBI View Article : Google Scholar
|
32
|
Wang X, Zhu L, Hu J, Guo R, Ye S, Liu F,
Wang D, Zhao Y, Hu A, Wang X, et al: FGF21 attenuated LPS-induced
depressive-like behavior via inhibiting the inflammatory pathway.
Front Pharmacol. 11(154)2020.PubMed/NCBI View Article : Google Scholar
|
33
|
Salminen A, Kauppinen A and Kaarniranta K:
FGF21 activates AMPK signaling: Impact on metabolic regulation and
the aging process. J Mol Med (Berl). 95:123–131. 2017.PubMed/NCBI View Article : Google Scholar
|
34
|
Chen CC, Lin JT, Cheng YF, Kuo CY, Huang
CF, Kao SH, Liang YJ, Cheng CY and Chen HM: Amelioration of
LPS-induced inflammation response in microglia by AMPK activation.
Biomed Res Int. 2014(692061)2014.PubMed/NCBI View Article : Google Scholar
|
35
|
Maciuszek M, Cacace A, Brennan E, Godson C
and Chapman TM: Recent advances in the design and development of
formyl peptide receptor 2 (FPR2/ALX) agonists as pro-resolving
agents with diverse therapeutic potential. Eur J Med Chem.
213(113167)2021.PubMed/NCBI View Article : Google Scholar
|
36
|
Liu H, Lin Z and Ma Y: Suppression of Fpr2
expression protects against endotoxin-induced acute lung injury by
interacting with Nrf2-regulated TAK1 activation. Biomed
Pharmacother. 125(109943)2020.PubMed/NCBI View Article : Google Scholar
|
37
|
Zhou Y, Lei J, Xie Q, Wu L, Jin S, Guo B,
Wang X, Yan G, Zhang Q, Zhao H, et al: Fibrinogen-like protein 2
controls sepsis catabasis by interacting with resolvin Dp5. Sci
Adv. 5(eaax0629)2019.PubMed/NCBI View Article : Google Scholar
|
38
|
Gobbetti T, Coldewey SM, Chen J, McArthur
S, le Faouder P, Cenac N, Flower RJ, Thiemermann C and Perretti M:
Nonredundant protective properties of FPR2/ALX in polymicrobial
murine sepsis. Proc Natl Acad Sci USA. 111:18685–18690.
2014.PubMed/NCBI View Article : Google Scholar
|
39
|
Abdul-Sater AA, Edilova MI, Clouthier DL,
Mbanwi A, Kremmer E and Watts TH: The signaling adaptor TRAF1
negatively regulates toll-like receptor signaling and this
underlies its role in rheumatic disease. Nat Immunol. 18:26–35.
2017.PubMed/NCBI View Article : Google Scholar
|
40
|
Edilova MI, Abdul-Sate AA and Watts TH:
TRAF1 signaling in human health and disease. Front Immunol.
9(2969)2018.PubMed/NCBI View Article : Google Scholar
|
41
|
Bin W, Ming X and Wen-Xia C: TRAF1
meditates lipopolysaccharide-induced acute lung injury by up
regulating JNK activation. Biochem Biophys Res Commun. 511:49–56.
2019.PubMed/NCBI View Article : Google Scholar
|
42
|
Salmena L, Poliseno L, Tay Y, Kats L and
Pandolfi PPA: A ceRNA hypothesis: The rosetta stone of a hidden RNA
language? Cell. 146:353–358. 2011.PubMed/NCBI View Article : Google Scholar
|