1
|
Balogh J, Victor D III, Asham EH,
Burroughs SG, Boktour M, Saharia A, Li X, Ghobrial RM and Monsour
HP Jr: Hepatocellular carcinoma: A review. J Hepatocell Carcinoma.
3:41–53. 2016.PubMed/NCBI View Article : Google Scholar
|
2
|
Zhang Y, Li T, Guo P, Kang J, Wei Q, Jia
X, Zhao W, Huai W, Qiu Y, Sun L and Han L: MiR-424-5p reversed
epithelial-mesenchymal transition of anchorage-independent HCC
cells by directly targeting ICAT and suppressed HCC progression.
Sci Rep. 4(6248)2014.PubMed/NCBI View Article : Google Scholar
|
3
|
Chan KM, Kuo CF, Hsu JT, Chiou MJ, Wang
YC, Wu TH, Lee CF, Wu TJ, Chou HS and Lee WC: Metformin confers
risk reduction for developing hepatocellular carcinoma recurrence
after liver resection. Liver Int. 37:434–441. 2017.PubMed/NCBI View Article : Google Scholar
|
4
|
Wu TJ, Chang SS, Li CW, Hsu YH, Chen TC,
Lee WC, Yeh CT and Hung MC: Severe hepatitis promotes
hepatocellular carcinoma recurrence via NF-kB pathway-mediated
epithelial-mesenchymal transition after resection. Clin Cancer Res.
22:1800–1812. 2016.PubMed/NCBI View Article : Google Scholar
|
5
|
Ivanov A, Memczak S, Wyler E, Torti F,
Porath HT, Orejuela MR, Piechotta M, Levanon EY, Landthaler M,
Dieterich C and Rajewsky N: Analysis of intron sequences reveals
hallmarks of circular RNA biogenesis in animals. Cell Rep.
10:170–177. 2015.PubMed/NCBI View Article : Google Scholar
|
6
|
Chen LL: The biogenesis and emerging roles
of circular RNAs. Nat Rev Mol Cell Biol. 17:205–211.
2016.PubMed/NCBI View Article : Google Scholar
|
7
|
Zhang Y, Zhang XO, Chen T, Xiang JF, Yin
QF, Xing YH, Zhu S, Yang L and Chen LL: Circular intronic long
noncoding RNAs. Mol Cell. 51:792–806. 2013.PubMed/NCBI View Article : Google Scholar
|
8
|
Memczak S, Jens M, Elefsinioti A, Torti F,
Krueger J, Rybak A, Maier L, Mackowiak SD, Gregersen LH, Munschauer
M, et al: Circular RNAs are a large class of animal RNAs with
regulatory potency. Nature. 495:333–338. 2013.PubMed/NCBI View Article : Google Scholar
|
9
|
Lasda E and Parker R: Circular RNAs:
Diversity of form and function. RNA. 20:1829–1842. 2014.PubMed/NCBI View Article : Google Scholar
|
10
|
Jeck WR, Sorrentino JA, Wang K, Slevin MK,
Burd CE, Liu J, Marzluff WF and Sharpless NE: Circular RNAs are
abundant, conserved, and associated with ALU repeats. RNA.
19:141–157. 2013.PubMed/NCBI View Article : Google Scholar
|
11
|
Hansen TB, Jensen TI, Clausen BH, Bramsen
JB, Finsen B, Damgaard CK and Kjems J: Natural RNA circles function
as efficient microRNA sponges. Nature. 495:384–388. 2013.PubMed/NCBI View Article : Google Scholar
|
12
|
Guo JU, Agarwal V, Guo H and Bartel DP:
Expanded identification and characterization of mammalian circular
RNAs. Genome Biol. 15(409)2014.PubMed/NCBI View Article : Google Scholar
|
13
|
Ren S, Xin Z, Xu Y, Xu J and Wang G:
Construction and analysis of circular RNA molecular regulatory
networks in liver cancer. Cell Cycle. 16:2204–2211. 2017.PubMed/NCBI View Article : Google Scholar
|
14
|
Wang M, Gu B, Yao G, Li P and Wang K:
Circular RNA expression profiles and the pro-tumorigenic function
of circRNA_10156 in hepatitis B virus-related liver cancer. Int J
Med Sci. 17:1351–1365. 2020.PubMed/NCBI View Article : Google Scholar
|
15
|
Zhang P, Ming Y, Ye Q and Niu Y:
Comprehensive circRNA expression profile during ischemic
postconditioning attenuating hepatic ischemia/reperfusion injury.
Sci Rep. 9(264)2019.PubMed/NCBI View Article : Google Scholar
|
16
|
Jiang L, Wang X, Zhan X, Kang S, Liu H,
Luo Y and Lin L: Advance in circular RNA modulation effects of
heart failure. Gene X. 5(100036)2020.PubMed/NCBI View Article : Google Scholar
|
17
|
Ren S, Lin P, Wang J, Yu H, Lv T, Sun L
and Du G: Circular RNAs: Promising molecular biomarkers of human
aging-related diseases via functioning as an miRNA sponge. Mol Ther
Methods Clin Dev. 18:215–229. 2020.PubMed/NCBI View Article : Google Scholar
|
18
|
Joshi SS and Coffin CS: Hepatitis B virus
lymphotropism: Emerging details and challenges. Biotechnol Genet
Eng Rev. 34:139–151. 2018.PubMed/NCBI View Article : Google Scholar
|
19
|
Szilágyi M, Pös O, Márton É, Buglyó G,
Soltész B, Keserű J, Penyige A, Szemes T and Nagy B: Circulating
cell-free nucleic acids: Main characteristics and clinical
application. Int J Mol Sci. 21(6827)2020.PubMed/NCBI View Article : Google Scholar
|
20
|
Ho-Xuan H, Glažar P, Latini C, Heizler K,
Haase J, Hett R, Anders M, Weichmann F, Bruckmann A, Van den Berg
D, et al: Comprehensive analysis of translation from overexpressed
circular RNAs reveals pervasive translation from linear
transcripts. Nucleic Acids Res. 48:10368–10382. 2020.PubMed/NCBI View Article : Google Scholar
|
21
|
Que F, Wang H, Luo Y, Cui L, Wei L, Xi Z,
Lin Q, Ge Y and Wang W: Comprehensive analysis of differentially
expressed circRNAs reveals a colorectal cancer-related ceRNA
network. Comput Math Methods Med. 2020(7159340)2020.PubMed/NCBI View Article : Google Scholar
|
22
|
Albini A, Magnani E and Noonan DM: The
tumor microenvironment: Biology of a complex cellular and tissue
society. Q J Nucl Med Mol Imaging. 54:244–248. 2010.PubMed/NCBI
|
23
|
Grade M, Ghadimi BM, Varma S, Simon R,
Wangsa D, Barenboim-Stapleton L, Liersch T, Becker H, Ried T and
Difilippantonio MJ: Aneuploidy-dependent massive deregulation of
the cellular transcriptome and apparent divergence of the
Wnt/beta-catenin signaling pathway in human rectal carcinomas.
Cancer Res. 66:267–282. 2006.PubMed/NCBI View Article : Google Scholar
|
24
|
Navin NE: The first five years of
single-cell cancer genomics and beyond. Genome Res. 25:1499–1507.
2015.PubMed/NCBI View Article : Google Scholar
|
25
|
Rugbjerg P and Sommer MOA: Overcoming
genetic heterogeneity in industrial fermentations. Nat Biotechnol.
37:869–876. 2019.PubMed/NCBI View Article : Google Scholar
|
26
|
Hashimoto K, Kouno T, Ikawa T, Hayatsu N,
Miyajima Y, Yabukami H, Terooatea T, Sasaki T, Suzuki T, Valentine
M, et al: Single-cell transcriptomics reveals expansion of
cytotoxic CD4 T cells in supercentenarians. Proc Natl Acad Sci USA.
116:24242–24251. 2019.PubMed/NCBI View Article : Google Scholar
|
27
|
Bureau of Medical Administration National
Health, Family Planning Comission of the People's Republic of
China. Diagnosis, management, and treatment of hepatocellular
carcinoma (V2017). Zhonghua Gan Zang Bing Za Zhi. 25:886–895.
2017.PubMed/NCBI View Article : Google Scholar : (In Chinese).
|
28
|
Marioni JC, Mason CE, Mane SM, Stephens M
and Gilad Y: RNA-seq: An assessment of technical reproducibility
and comparison with gene expression arrays. Genome Res.
18:1509–1517. 2008.PubMed/NCBI View Article : Google Scholar
|
29
|
Jia E, Zhou Y, Liu Z, Wang L, Ouyang T,
Pan M, Bai Y and Ge Q: Transcriptomic profiling of circular RNA in
different brain regions of Parkinson's disease in a mouse model.
Int J Mol Sci. 21(3006)2020.PubMed/NCBI View Article : Google Scholar
|
30
|
Chen Y, Chen Y, Shi C, Huang Z, Zhang Y,
Li S, Li Y, Ye J, Yu C, Li Z, et al: SOAPnuke: A MapReduce
acceleration-supported software for integrated quality control and
preprocessing of high-throughput sequencing data. Gigascience.
7:1–6. 2018.PubMed/NCBI View Article : Google Scholar
|
31
|
Zhang L, Liu C and Dong S: PipeMEM: A
framework to speed Up BWA-MEM in spark with low overhead. Genes
(Basel). 10(886)2019.PubMed/NCBI View Article : Google Scholar
|
32
|
Giannoulatou E, Park SH, Humphreys DT and
Ho JW: Verification and validation of bioinformatics software
without a gold standard: A case study of BWA and Bowtie. BMC
Bioinformatics. 15 (Suppl 16)(S15)2014.PubMed/NCBI View Article : Google Scholar
|
33
|
Gao Y, Wang J and Zhao F: CIRI: An
efficient and unbiased algorithm for de novo circular RNA
identification. Genome Biol. 16(4)2015.PubMed/NCBI View Article : Google Scholar
|
34
|
Anders S and Huber W: Differential
expression analysis for sequence count data. Genome Biol.
11(R106)2010.PubMed/NCBI View Article : Google Scholar
|
35
|
Li S, Chen L, Xu C, Qu X, Qin Z, Gao J, Li
J and Liu J: Expression profile and bioinformatics analysis of
circular RNAs in acute ischemic stroke in a South Chinese Han
population. Sci Rep. 10(10138)2020.PubMed/NCBI View Article : Google Scholar
|
36
|
Young MD, Wakefield MJ, Smyth GK and
Oshlack A: Gene ontology analysis for RNA-seq: Accounting for
selection bias. Genome Biol. 11(R14)2010.PubMed/NCBI View Article : Google Scholar
|
37
|
Mao X, Cai T, Olyarchuk JG and Wei L:
Automated genome annotation and pathway identification using the
KEGG Orthology (KO) as a controlled vocabulary. Bioinformatics.
21:3787–3793. 2005.PubMed/NCBI View Article : Google Scholar
|
38
|
Kanehisa M, Araki M, Goto S, Hattori M,
Hirakawa M, Itoh M, Katayama T, Kawashima S, Okuda S, Tokimatsu T
and Yamanishi Y: KEGG for linking genomes to life and the
environment. Nucleic Acids Res. 36:D480–D484. 2008.PubMed/NCBI View Article : Google Scholar
|
39
|
Shannon P, Markiel A, Ozier O, Baliga NS,
Wang JT, Ramage D, Amin N, Schwikowski B and Ideker T: Cytoscape: A
software environment for integrated models of biomolecular
interaction networks. Genome Res. 13:2498–2504. 2003.PubMed/NCBI View Article : Google Scholar
|
40
|
Enright AJ, John B, Gaul U, Tuschl T,
Sander C and Marks DS: MicroRNA targets in Drosophila. Genome Biol.
5(R1)2003.PubMed/NCBI View Article : Google Scholar
|
41
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408.
2001.PubMed/NCBI View Article : Google Scholar
|
42
|
Zhang Z, Fan Y, Xie F, Zhou H, Jin K, Shao
L, Shi W, Fang P, Yang B, van Dam H, et al: Breast cancer
metastasis suppressor OTUD1 deubiquitinates SMAD7. Nat Commun.
8(2116)2017.PubMed/NCBI View Article : Google Scholar
|
43
|
Li X, Yang L and Chen LL: The biogenesis,
functions, and challenges of circular RNAs. Mol Cell. 71:428–442.
2018.PubMed/NCBI View Article : Google Scholar
|
44
|
Thomson DW and Dinger ME: Endogenous
microRNA sponges: Evidence and controversy. Nat Rev Genet.
17:272–283. 2016.PubMed/NCBI View Article : Google Scholar
|
45
|
Kulcheski FR, Christoff AP and Margis R:
Circular RNAs are miRNA sponges and can be used as a new class of
biomarker. J Biotechnol. 238:42–51. 2016.PubMed/NCBI View Article : Google Scholar
|
46
|
Li F, Zhang L, Li W, Deng J, Zheng J, An
M, Lu J and Zhou Y: Circular RNA ITCH has inhibitory effect on ESCC
by suppressing the Wnt/β-catenin pathway. Oncotarget. 6:6001–6013.
2015.PubMed/NCBI View Article : Google Scholar
|
47
|
Du WW, Yang W, Liu E, Yang Z, Dhaliwal P
and Yang BB: Foxo3 circular RNA retards cell cycle progression via
forming ternary complexes with p21 and CDK2. Nucleic Acids Res.
44:2846–2858. 2016.PubMed/NCBI View Article : Google Scholar
|
48
|
Tang X, Ren H, Guo M, Qian J, Yang Y and
Gu C: Review on circular RNAs and new insights into their roles in
cancer. Comput Struct Biotechnol J. 19:910–928. 2021.PubMed/NCBI View Article : Google Scholar
|
49
|
Xu T, Wu J, Han P, Zhao Z and Song X:
Circular RNA expression profiles and features in human tissues: A
study using RNA-seq data. BMC Genomics. 18 (Suppl
6)(680)2017.PubMed/NCBI View Article : Google Scholar
|
50
|
Meng S, Zhou H, Feng Z, Xu Z, Tang Y, Li P
and Wu M: CircRNA: Functions and properties of a novel potential
biomarker for cancer. Mol Cancer. 16(94)2017.PubMed/NCBI View Article : Google Scholar
|
51
|
Shen Y, Bu L, Li R, Chen Z, Tian F, Lu N,
Ge Q, Bai Y and Lu Z: Screening effective differential expression
genes for hepatic carcinoma with metastasis in the peripheral blood
mononuclear cells by RNA-seq. Oncotarget. 8:27976–27989.
2017.PubMed/NCBI View Article : Google Scholar
|
52
|
Li Z, Yang X, Zhang Y, Yang X, Cui X,
Zhang Y, Gong W, Bai H, Liu N, Tang Z, et al: A human peripheral
blood mononuclear cell (PBMC) engrafted humanized xenograft model
for translational immuno-oncology (I-O) research. J Vis Exp
2019.
|
53
|
Barbon CM, Janec KJ, Kelner RH, Norton JE
and Guinan EC: Alloanergization method for inducing allospecific
hyporesponsiveness in PBMC exposed to allostimulation in vitro in
the context of costimulatory molecule blockade. Methods Mol Biol.
1899:103–118. 2019.PubMed/NCBI View Article : Google Scholar
|
54
|
Cheng WC, Saleh F, Abuaisha Karim B,
Hughes FJ and Taams LS: Comparative analysis of immune cell subsets
in peripheral blood from patients with periodontal disease and
healthy controls. Clin Exp Immunol. 194:380–390. 2018.PubMed/NCBI View Article : Google Scholar
|
55
|
Yuan Y, Zheng S, Li Q, Xiang X, Gao T, Ran
P, Sun L, Huang Q, Xie F, Du J and Xiao C: Overexpression of
miR-30a in lung adenocarcinoma A549 cell line inhibits migration
and invasion via targeting EYA2. Acta Biochim Biophys Sin
(Shanghai). 48:220–228. 2016.PubMed/NCBI View Article : Google Scholar
|
56
|
Fu J, Xu X, Kang L, Zhou L, Wang S, Lu J,
Cheng L, Fan Z, Yuan B, Tian P, et al: miR-30a suppresses breast
cancer cell proliferation and migration by targeting Eya2. Biochem
Biophys Res Commun. 445:314–319. 2014.PubMed/NCBI View Article : Google Scholar
|
57
|
Wang T, Chen G, Ma X, Yang Y, Chen Y, Peng
Y, Bai Z, Zhang Z, Pei H and Guo W: MiR-30a regulates cancer cell
response to chemotherapy through SNAI1/IRS1/AKT pathway. Cell Death
Dis. 10(153)2019.PubMed/NCBI View Article : Google Scholar
|
58
|
Yang C, Zhang JJ, Peng YP, Zhu Y, Yin LD,
Wei JS, Gao WT, Jiang KR and Miao Y: A Yin-Yang 1/miR-30a
regulatory circuit modulates autophagy in pancreatic cancer cells.
J Transl Med. 15(211)2017.PubMed/NCBI View Article : Google Scholar
|
59
|
Chen J, Yu Y, Li S, Liu Y, Zhou S, Cao S,
Yin J and Li G: MicroRNA-30a ameliorates hepatic fibrosis by
inhibiting Beclin1-mediated autophagy. J Cell Mol Med.
21:3679–3692. 2017.PubMed/NCBI View Article : Google Scholar
|
60
|
Ni W, Zhang Y, Zhan Z, Ye F, Liang Y,
Huang J, Chen K, Chen L and Ding Y: A novel lncRNA uc.134 represses
hepatocellular carcinoma progression by inhibiting CUL4A-mediated
ubiquitination of LATS1. J Hematol Oncol. 10(91)2017.PubMed/NCBI View Article : Google Scholar
|
61
|
Wang YS, Du L, Liang X, Meng P, Bi L, Wang
YL, Wang C and Tang B: Sirtuin 4 depletion promotes hepatocellular
carcinoma tumorigenesis through regulating
adenosine-monophosphate-activated protein kinase alpha/mammalian
target of rapamycin axis in mice. Hepatology. 69:1614–1631.
2019.PubMed/NCBI View Article : Google Scholar
|