1
|
Sakalihasan N, Michel JB, Katsargyris A,
Kuivaniemi H, Defraigne JO, Nchimi A, Powell JT, Yoshimura K and
Hultgren R: Abdominal aortic aneurysms. Nat Rev Dis Primers.
4(34)2018.PubMed/NCBI View Article : Google Scholar
|
2
|
Chen S, Yang D, Lei C, Li Y, Sun X, Chen
M, Wu X and Zheng Y: Identification of crucial genes in abdominal
aortic aneurysm by WGCNA. PeerJ. 7(e7873)2019.PubMed/NCBI View Article : Google Scholar
|
3
|
Wu QY, Cheng Z, Zhou YZ, Zhao Y, Li JM,
Zhou XM, Peng HL, Zhang GS, Liao XB and Fu XM: A novel STAT3
inhibitor attenuates angiotensin II-induced abdominal aortic
aneurysm progression in mice through modulating vascular
inflammation and autophagy. Cell Death Dis. 11(131)2020.PubMed/NCBI View Article : Google Scholar
|
4
|
Li W, Xu C, Guo J, Liu K, Hu Y, Wu D, Fang
H, Zou Y, Wei Z, Wang Z, et al: Cis- and Trans-Acting
Expression Quantitative Trait Loci of Long Non-Coding RNA in 2,549
Cancers With Potential Clinical and Therapeutic Implications. Front
Oncol. 10(602104)2020.PubMed/NCBI View Article : Google Scholar
|
5
|
Vishnoi A and Rani S: miRNA Biogenesis and
Regulation of Diseases: An Overview. Methods Mol Biol. 1509:1–10.
2017.PubMed/NCBI View Article : Google Scholar
|
6
|
Zhang S, Shen S, Yang Z, Kong X, Liu F and
Zhen Z: Coding and Non-coding RNAs: Molecular Basis of
Forest-Insect Outbreaks. Front Cell Dev Biol. 8(369)2020.PubMed/NCBI View Article : Google Scholar
|
7
|
Ala U: Competing Endogenous RNAs,
Non-Coding RNAs and Diseases: An Intertwined Story. Cells.
9(9)2020.PubMed/NCBI View Article : Google Scholar
|
8
|
Sun Y, Zhong L, He X, Wang S, Lai Y, Wu W,
Song H, Chen Y, Yang Y, Liao W, et al: lncRNA H19 promotes vascular
inflammation and abdominal aortic aneurysm formation by functioning
as a competing endogenous RNA. J Mol Cell Cardiol. 131:66–81.
2019.PubMed/NCBI View Article : Google Scholar
|
9
|
Lin H, You B, Lin X, Wang X, Zhou D, Chen
Z, Chen Y and Wang R: Silencing of long non-coding RNA Sox2ot
inhibits oxidative stress and inflammation of vascular smooth
muscle cells in abdominal aortic aneurysm via microRNA-145-mediated
Egr1 inhibition. Aging (Albany NY). 12:12684–12702. 2020.PubMed/NCBI View Article : Google Scholar
|
10
|
Tian Z, Sun Y, Sun X, Wang J and Jiang T:
LINC00473 inhibits vascular smooth muscle cell viability to promote
aneurysm formation via miR-212-5p/BASP1 axis. Eur J Pharmacol.
873(172935)2020.PubMed/NCBI View Article : Google Scholar
|
11
|
Xia Q, Zhang L, Yan H, Yu L, Shan W and
Jiang H: LUCAT1 contributes to MYRF-dependent smooth muscle cell
apoptosis and may facilitate aneurysm formation via the
sequestration of miR-199a-5p. Cell Biol Int. 44:755–763.
2020.PubMed/NCBI View Article : Google Scholar
|
12
|
Yang B, Wang X, Ying C, Peng F, Xu M, Chen
F and Cai B: Long Noncoding RNA SNHG16 Facilitates Abdominal Aortic
Aneurysm Progression through the miR-106b-5p/STAT3 Feedback Loop. J
Atheroscler Thromb. 28:66–78. 2021.PubMed/NCBI View Article : Google Scholar
|
13
|
Tian L, Hu X, He Y, Wu Z, Li D and Zhang
H: Construction of lncRNA-miRNA-mRNA networks reveals functional
lncRNAs in abdominal aortic aneurysm. Exp Ther Med. 16:3978–3986.
2018.PubMed/NCBI View Article : Google Scholar
|
14
|
Han Y, Zhang H, Bian C, Chen C, Tu S, Guo
J, Wu Y, Böckler D and Zhang J: Circular RNA Expression: Its
Potential Regulation and Function in Abdominal Aortic Aneurysms.
Oxid Med Cell Longev. 2021(9934951)2021.PubMed/NCBI View Article : Google Scholar
|
15
|
Zhao F, Chen T and Jiang N:
CDR1as/miR-7/CKAP4 axis contributes to the pathogenesis of
abdominal aortic aneurysm by regulating the proliferation and
apoptosis of primary vascular smooth muscle cells. Exp Ther Med.
19:3760–3766. 2020.PubMed/NCBI View Article : Google Scholar
|
16
|
Yue J, Zhu T, Yang J, Si Y, Xu X, Fang Y
and Fu W: circCBFB-mediated miR-28-5p facilitates abdominal aortic
aneurysm via LYPD3 and GRIA4. Life Sci. 253(117533)2020.PubMed/NCBI View Article : Google Scholar
|
17
|
Lenk GM, Tromp G, Weinsheimer S, Gatalica
Z, Berguer R and Kuivaniemi H: Whole genome expression profiling
reveals a significant role for immune function in human abdominal
aortic aneurysms. BMC Genomics. 8(237)2007.PubMed/NCBI View Article : Google Scholar
|
18
|
Biros E, Gäbel G, Moran CS, Schreurs C,
Lindeman JH, Walker PJ, Nataatmadja M, West M, Holdt LM,
Hinterseher I, et al: Differential gene expression in human
abdominal aortic aneurysm and aortic occlusive disease. Oncotarget.
6:12984–12996. 2015.PubMed/NCBI View Article : Google Scholar
|
19
|
Zhou M, Shi Z, Cai L, Li X, Ding Y, Xie T
and Fu W: Circular RNA expression profile and its potential
regulative role in human abdominal aortic aneurysm. BMC Cardiovasc
Disord. 20(70)2020.PubMed/NCBI View Article : Google Scholar
|
20
|
Jolliffe IT and Cadima J: Principal
component analysis: A review and recent developments. Philos Trans
A Math Phys Eng Sci. 374(20150202)2016.PubMed/NCBI View Article : Google Scholar
|
21
|
RStudio Team: RStudio: Integrated
Development for R. RStudio, Inc. Boston, MA, 2015. http://www.rstudio.com/. Accessed June 1, 2021.
|
22
|
Huang W, Sherman BT and Lempicki RA:
Systematic and integrative analysis of large gene lists using DAVID
bioinformatics resources. Nat Protoc. 4:44–57. 2009.PubMed/NCBI View Article : Google Scholar
|
23
|
Dudekula DB, Panda AC, Grammatikakis I, De
S, Abdelmohsen K and Gorospe M: CircInteractome: A web tool for
exploring circular RNAs and their interacting proteins and
microRNAs. RNA Biol. 13:34–42. 2016.PubMed/NCBI View Article : Google Scholar
|
24
|
Sticht C, De La Torre C, Parveen A and
Gretz N: miRWalk: An online resource for prediction of microRNA
binding sites. PLoS One. 13(e0206239)2018.PubMed/NCBI View Article : Google Scholar
|
25
|
Agarwal V, Bell GW, Nam JW and Bartel DP:
Predicting effective microRNA target sites in mammalian mRNAs.
eLife. 4(4)2015.PubMed/NCBI View Article : Google Scholar
|
26
|
Kohl M, Wiese S and Warscheid B:
Cytoscape: Software for visualization and analysis of biological
networks. Methods Mol Biol. 696:291–303. 2011.PubMed/NCBI View Article : Google Scholar
|
27
|
Bader GD and Hogue CW: An automated method
for finding molecular complexes in large protein interaction
networks. BMC Bioinformatics. 4(2)2003.PubMed/NCBI View Article : Google Scholar
|
28
|
World Medical Association Declaration of
Helsinki. Ethical principles for medical research involving human
subjects. JAMA. 310:2191–2194. 2013.PubMed/NCBI View Article : Google Scholar
|
29
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Δ Δ C(T)) Method. Methods. 25:402–408. 2001.PubMed/NCBI View Article : Google Scholar
|
30
|
Walter W, Sánchez-Cabo F and Ricote M:
GOplot: An R package for visually combining expression data with
functional analysis. Bioinformatics. 31:2912–2914. 2015.PubMed/NCBI View Article : Google Scholar
|
31
|
Liu Y, Wang X, Wang H and Hu T:
Identification of key genes and pathways in abdominal aortic
aneurysm by integrated bioinformatics analysis. J Int Med Res.
48(300060519894437)2020.PubMed/NCBI View Article : Google Scholar
|
32
|
Oh CK, Ko Y, Park JJ, Heo HJ, Kang J, Kwon
EJ, Kang JW, Lee Y, Myung K, Kang JM, et al: FRZB as a key molecule
in abdominal aortic aneurysm progression affecting vascular
integrity. Biosci Rep. 41(41)2021.PubMed/NCBI View Article : Google Scholar
|
33
|
Luo Y and Huang C: CircSFMBT2 facilitates
vascular smooth muscle cell proliferation by targeting
miR-331-3p/HDAC5. Life Sci. 264(118691)2021.PubMed/NCBI View Article : Google Scholar
|
34
|
Guo X, Li D, Chen M, Chen L, Zhang B, Wu T
and Guo R: miRNA-145 inhibits VSMC proliferation by targeting CD40.
Sci Rep. 6(35302)2016.PubMed/NCBI View Article : Google Scholar
|
35
|
Liu R and Jin JP: Calponin isoforms CNN1,
CNN2 and CNN3: Regulators for actin cytoskeleton functions in
smooth muscle and non-muscle cells. Gene. 585:143–153.
2016.PubMed/NCBI View Article : Google Scholar
|
36
|
Gong J, Zhou D, Jiang L, Qiu P, Milewicz
DM, Chen YE and Yang B: In Vitro Lineage-Specific Differentiation
of Vascular Smooth Muscle Cells in Response to SMAD3 Deficiency:
Implications for SMAD3-Related Thoracic Aortic Aneurysm.
Arterioscler Thromb Vasc Biol. 40:1651–1663. 2020.PubMed/NCBI View Article : Google Scholar
|
37
|
Cheng Q, Li Z, Wang R, Zhang H, Cao H,
Chen F, Li H, Xia Z, Feng S, Zhang H, et al: Genetic Profiles
Related to Pathogenesis in Sporadic Intracranial Aneurysm Patients.
World Neurosurg. 131:e23–e31. 2019.PubMed/NCBI View Article : Google Scholar
|
38
|
Feng HZ, Wang H, Takahashi K and Jin JP:
Double deletion of calponin 1 and calponin 2 in mice decreases
systemic blood pressure with blunted length-tension response of
aortic smooth muscle. J Mol Cell Cardiol. 129:49–57.
2019.PubMed/NCBI View Article : Google Scholar
|
39
|
Lesiak M, Augusciak-Duma A, Stepien KL,
Fus-Kujawa A, Botor M and Sieron AL: Searching for new molecular
markers for cells obtained from abdominal aortic aneurysm. J Appl
Genet. 62:487–497. 2021.PubMed/NCBI View Article : Google Scholar
|
40
|
Ma K, Qiao Y, Wang H and Wang S:
Comparative expression analysis of PD-1, PD-L1, and CD8A in lung
adenocarcinoma. Ann Transl Med. 8(1478)2020.PubMed/NCBI View Article : Google Scholar
|
41
|
Sagan A, Mikolajczyk TP, Mrowiecki W,
MacRitchie N, Daly K, Meldrum A, Migliarino S, Delles C, Urbanski
K, Filip G, et al: T Cells Are Dominant Population in Human
Abdominal Aortic Aneurysms and Their Infiltration in the
Perivascular Tissue Correlates With Disease Severity. Front
Immunol. 10(1979)2019.PubMed/NCBI View Article : Google Scholar
|
42
|
Li G, Zhou H, He Y, Sun S, Wu X and Yuan
H: Ulinastatin Inhibits the Formation and Progression of
Experimental Abdominal Aortic Aneurysms. J Vasc Res. 57:58–64.
2020.PubMed/NCBI View Article : Google Scholar
|
43
|
Chen J, Lin M and Zhang S: Identification
of key miRNA mRNA pairs in septic mice by bioinformatics analysis.
Mol Med Rep. 20:3858–3866. 2019.PubMed/NCBI View Article : Google Scholar
|
44
|
Xue Q, Wang X, Deng X, Huang Y and Tian W:
CEMIP regulates the proliferation and migration of vascular smooth
muscle cells in atherosclerosis through the WNT-beta-catenin
signaling pathway. Biochem Cell Biol. 98:249–257. 2020.PubMed/NCBI View Article : Google Scholar
|
45
|
Chen Y, Li L and Zhang J: Cell migration
inducing hyaluronidase 1 (CEMIP) activates STAT3 pathway to
facilitate cell proliferation and migration in breast cancer. J
Recept Signal Transduct Res. 41:145–152. 2021.PubMed/NCBI View Article : Google Scholar
|
46
|
Cui S and Zhang L: circ_001653 Silencing
Promotes the Proliferation and ECM Synthesis of NPCs in IDD by
Downregulating miR-486-3p-Mediated CEMIP. Mol Ther Nucleic Acids.
20:385–399. 2020.PubMed/NCBI View Article : Google Scholar
|
47
|
Ito D and Kumanogoh A: The role of Sema4A
in angiogenesis, immune responses, carcinogenesis, and retinal
systems. Cell Adhes Migr. 10:692–699. 2016.PubMed/NCBI View Article : Google Scholar
|
48
|
Duijvis NW, Moerland PD, Kunne C, Slaman
MMW, van Dooren FH, Vogels EW, de Jonge WJ, Meijer SL, Fluiter K
and Te Velde AA: Inhibition of miR-142-5P ameliorates disease in
mouse models of experimental colitis. PLoS One.
12(e0185097)2017.PubMed/NCBI View Article : Google Scholar
|
49
|
Krishna SM, Seto SW, Jose RJ, Li J, Morton
SK, Biros E, Wang Y, Nsengiyumva V, Lindeman JH, Loots GG, et al:
Wnt Signaling Pathway Inhibitor Sclerostin Inhibits Angiotensin
II-Induced Aortic Aneurysm and Atherosclerosis. Arterioscler Thromb
Vasc Biol. 37:553–566. 2017.PubMed/NCBI View Article : Google Scholar
|
50
|
Ma S, Wang DD, Ma CY and Zhang YD:
MicroRNA-96 promotes osteoblast differentiation and bone formation
in ankylosing spondylitis mice through activating the Wnt signaling
pathway by binding to SOST. J Cell Biochem. 120:15429–15442.
2019.PubMed/NCBI View Article : Google Scholar
|
51
|
Wei S, Zhang M, Zheng Y and Yan P: ZBTB16
Overexpression Enhances White Adipogenesis and Induces Brown-Like
Adipocyte Formation of Bovine White Intramuscular Preadipocytes.
Cell Physiol Biochem. 48:2528–2538. 2018.PubMed/NCBI View Article : Google Scholar
|
52
|
Gerlinger-Romero F, Yonamine CY, Junior
DC, Esteves JV and Machado UF: Dysregulation between TRIM63/FBXO32
expression and soleus muscle wasting in diabetic rats: Potential
role of miR-1-3p, -29a/b-3p, and -133a/b-3p. Mol Cell Biochem.
427:187–199. 2017.PubMed/NCBI View Article : Google Scholar
|
53
|
Dong Y and Simske JS: Vertebrate
Claudin/PMP22/EMP22/MP20 family protein TMEM47 regulates epithelial
cell junction maturation and morphogenesis. Dev Dyn. 245:653–666.
2016.PubMed/NCBI View Article : Google Scholar
|