1
|
Cheung N, Mitchell P and Wong TY: Diabetic
retinopathy. Lancet. 376:124–136. 2010.PubMed/NCBI View Article : Google Scholar
|
2
|
Pan WW, Gardner TW and Harder JL:
Integrative biology of diabetic retinal disease: Lessons from
diabetic kidney disease. J Clin Med. 10(1254)2021.PubMed/NCBI View Article : Google Scholar
|
3
|
Sosna T: History of diagnosis and therapy
of diabetic retinopathy. Vnitr Lek. 62 (11 Suppl 4):S136–S141.
2016.PubMed/NCBI(In Czech).
|
4
|
Liu Y and Wu N: Progress of nanotechnology
in diabetic retinopathy treatment. Int J Nanomedicine.
16:1391–1403. 2021.PubMed/NCBI View Article : Google Scholar
|
5
|
Inanc M, Tekin K, Kiziltoprak H, Ozalkak
S, Doguizi S and Aycan Z: Changes in retinal microcirculation
precede the clinical onset of diabetic retinopathy in children with
type 1 diabetes mellitus. Am J Ophthalmol. 207:37–44.
2019.PubMed/NCBI View Article : Google Scholar
|
6
|
Forst T, Weber MM, Mitry M, Müller L,
Forst S, Tanis M, Pfützner A and Michelson G: Retinal
microcirculation in type 1 diabetic patients with and without
peripheral sensory neuropathy. J Diabetes Sci Technol. 8:356–361.
2014.PubMed/NCBI View Article : Google Scholar
|
7
|
Vujosevic S, Toma C, Villani E, Gatti V,
Brambilla M, Muraca A, Ponziani MC, Aimaretti G, Nuzzo A, Nucci P
and De Cilla' S: Early detection of microvascular changes in
patients with diabetes mellitus without and with diabetic
retinopathy: Comparison between different swept-source OCT-A
instruments. J Diabetes Res. 2019(2547216)2019.PubMed/NCBI View Article : Google Scholar
|
8
|
Heng LZ, Comyn O, Peto T, Tadros C, Ng E,
Sivaprasad S and Hykin PG: Diabetic retinopathy: Pathogenesis,
clinical grading, management and future developments. Diabet Med.
30:640–650. 2013.PubMed/NCBI View Article : Google Scholar
|
9
|
Zheng Y, He M and Congdon N: The worldwide
epidemic of diabetic retinopathy. Indian J Ophthalmol. 60:428–431.
2012.PubMed/NCBI View Article : Google Scholar
|
10
|
Bromberg-White JL, Glazer L, Downer R,
Furge K, Boguslawski E and Duesbery NS: Identification of
VEGF-independent cytokines in proliferative diabetic retinopathy
vitreous. Invest Ophthalmol Vis Sci. 54:6472–6480. 2013.PubMed/NCBI View Article : Google Scholar
|
11
|
Koleva-Georgieva DN, Sivkova NP and
Terzieva D: Serum inflammatory cytokines IL-1beta, IL-6, TNF-alpha
and VEGF have influence on the development of diabetic retinopathy.
Folia Med (Plovdiv). 53:44–50. 2011.PubMed/NCBI View Article : Google Scholar
|
12
|
Amadio M, Bucolo C, Leggio GM, Drago F,
Govoni S and Pascale A: The PKCbeta/HuR/VEGF pathway in diabetic
retinopathy. Biochem Pharmacol. 80:1230–1237. 2010.PubMed/NCBI View Article : Google Scholar
|
13
|
The American Association of Neurological
Surgeons (AANS), American Society of Neuroradiology (ASNR),
Cardiovascular and Interventional Radiology Society of Europe
(CIRSE), Canadian Interventional Radiology Association (CIRA),
Congress of Neurological Surgeons (CNS), European Society of
Minimally Invasive Neurological Therapy (ESMINT), European Society
of Neuroradiology (ESNR), European Stroke Organization (ESO),
Society for Cardiovascular Angiography and Interventions (SCAI),
Society of Interventional Radiology (SIR)et al. Multisociety
consensus quality improvement revised consensus statement for
endovascular therapy of acute ischemic stroke. Int J Stroke.
13:612–632. 2018.PubMed/NCBI View Article : Google Scholar
|
14
|
Platania CBM, Leggio GM, Drago F, Salomone
S and Bucolo C: Computational systems biology approach to identify
novel pharmacological targets for diabetic retinopathy. Biochem
Pharmacol. 158:13–26. 2018.PubMed/NCBI View Article : Google Scholar
|
15
|
Jain A, Saxena S, Khanna VK, Shukla RK and
Meyer CH: Status of serum VEGF and ICAM-1 and its association with
external limiting membrane and inner segment-outer segment junction
disruption in type 2 diabetes mellitus. Mol Vis. 19:1760–1768.
2013.PubMed/NCBI
|
16
|
Lu ES, Cui Y, Le R, Zhu Y, Wang JC, Laíns
I, Katz R, Lu Y, Zeng R, Garg I, et al: Detection of
neovascularisation in the vitreoretinal interface slab using
Widefield swept-source optical coherence tomography angiography in
diabetic retinopathy. Br J Ophthalmol. 2020(317983)2020.PubMed/NCBI(Epub ahead of print). doi:
10.1136/bjophthalmol-2020-317983.
|
17
|
Song S, Yu X, Zhang P and Dai H: Increased
levels of cytokines in the aqueous humor correlate with the
severity of diabetic retinopathy. J Diabetes Complications.
34(107641)2020.PubMed/NCBI View Article : Google Scholar
|
18
|
Behl T and Kotwani A: Exploring the
various aspects of the pathological role of vascular endothelial
growth factor (VEGF) in diabetic retinopathy. Pharmacol Res.
99:137–148. 2015.PubMed/NCBI View Article : Google Scholar
|
19
|
Inoue K and Ogura A: Cloning mice: From
aspects of donor cells. Tanpakushitsu Kakusan Koso. 52 (Suppl
16):S2189–S2196. 2007.PubMed/NCBI(In Japanese).
|
20
|
Williams AE, Moschos SA, Perry MM, Barnes
PJ and Lindsay MA: Maternally imprinted microRNAs are
differentially expressed during mouse and human lung development.
Dev Dyn. 236:572–580. 2007.PubMed/NCBI View Article : Google Scholar
|
21
|
Gomaa AR, Elsayed ET and Moftah RF:
MicroRNA-200b expression in the vitreous humor of patients with
proliferative diabetic retinopathy. Ophthalmic Res. 58:168–175.
2017.PubMed/NCBI View Article : Google Scholar
|
22
|
Chen Q, Qiu F, Zhou K, Matlock HG,
Takahashi Y, Rajala RVS, Yang Y, Moran E and Ma JX: Pathogenic role
of microRNA-21 in diabetic retinopathy through downregulation of
PPARα. Diabetes. 66:1671–1682. 2017.PubMed/NCBI View Article : Google Scholar
|
23
|
Bao L, You B, Shi S, Shan Y, Zhang Q, Yue
H, Zhang J, Zhang W, Shi Y, Liu Y, et al: Metastasis-associated
miR-23a from nasopharyngeal carcinoma-derived exosomes mediates
angiogenesis by repressing a novel target gene TSGA10. Oncogene.
37:2873–2889. 2018.PubMed/NCBI View Article : Google Scholar
|
24
|
Hsu YL, Hung JY, Chang WA, Lin YS, Pan YC,
Tsai PH, Wu CY and Kuo PL: Hypoxic lung cancer-secreted exosomal
miR-23a increased angiogenesis and vascular permeability by
targeting prolyl hydroxylase and tight junction protein ZO-1.
Oncogene. 36:4929–4942. 2017.PubMed/NCBI View Article : Google Scholar
|
25
|
Di Y, Zhang D, Hu T and Li D: miR-23
Regulate the pathogenesis of patients with coronary artery disease.
Int J Clin Exp Med. 8:11759–11769. 2015.PubMed/NCBI
|
26
|
Zhang L, Lv Z, Xu J, Chen C, Ge Q, Li P,
Wei D, Wu Z and Sun X: MicroRNA-134 inhibits osteosarcoma
angiogenesis and proliferation by targeting the VEGFA/VEGFR1
pathway. FEBS J. 285:1359–1371. 2018.PubMed/NCBI View Article : Google Scholar
|
27
|
Chen HX, Xu XX, Tan BZ, Zhang Z and Zhou
XD: MicroRNA-29b inhibits angiogenesis by targeting VEGFA through
the MAPK/ERK and PI3K/Akt signaling pathways in endometrial
carcinoma. Cell Physiol Biochem. 41:933–946. 2017.PubMed/NCBI View Article : Google Scholar
|
28
|
Vijan S: In the clinic. Type 2 diabetes.
Ann Intern Med. 162:ITC1–16. 2015.PubMed/NCBI View Article : Google Scholar
|
29
|
Xu X: Ocular fundus disease in China: The
current situation, progression, and issues to be resolved. Zhonghua
Yan Ke Za Zhi. 50:801–803. 2014.PubMed/NCBI(In Chinese).
|
30
|
Wellenberg A, Weides L, Kurzke J, Hennecke
T, Bornhorst J, Crone B, Karst U, Brinkmann V, Fritz G and Honnen
S: Use of C. elegans as a 3R-compliant in vivo model for the
chemoprevention of cisplatin-induced neurotoxicity. Exp Neurol.
341(113705)2021.PubMed/NCBI View Article : Google Scholar
|
31
|
Ighodaro OM and Akinloye OA: Anti-diabetic
potential of Sapium ellipticum (Hochst) Pax leaf extract in
Streptozotocin(STZ)-induced diabetic Wistar rats. BMC Complement
Altern Med. 17(525)2017.PubMed/NCBI View Article : Google Scholar
|
32
|
Czescik A, Trzcinska A, Dunal-Szczepaniak
M and Siennicka J: The use of real-time RT-PCR method for the
determination of Toll-like genes expression at mRNA level. Med Dosw
Mikrobiol. 66:17–22. 2014.PubMed/NCBI(In Polish).
|
33
|
Betel D, Wilson M, Gabow A, Marks DS and
Sander C: The microRNA.org resource: Targets and expression.
Nucleic Acids Res. 36:D149–D153. 2008.PubMed/NCBI View Article : Google Scholar
|
34
|
Tang H, Zhang S, Huang C, Li K, Zhao Q and
Li X: MiR-448-5p/VEGFA axis protects cardiomyocytes from hypoxia
through regulating the FAS/FAS-L signaling pathway. Int Heart J.
62:647–657. 2021.PubMed/NCBI View Article : Google Scholar
|
35
|
Yan Z, Hong S, Song Y and Bi M:
microR-4449 Promotes colorectal cancer cell proliferation via
regulation of SOCS3 and activation of STAT3 signaling. Cancer Manag
Res. 13:3029–3039. 2021.PubMed/NCBI View Article : Google Scholar
|
36
|
Wu X, Lei J, Zhou B, Sun Q, Gao Y, Shi F
and Yang W: MiR-628-5p inhibits cervical carcinoma proliferation
and promotes apoptosis by targeting VEGF. Am J Med Sci.
361:499–508. 2021.PubMed/NCBI View Article : Google Scholar
|
37
|
Nishinaka A, Nakamura S, Tanaka M, Masuda
T, Inoue Y, Yamamoto T, Imai T, Hidaka Y, Shimazawa M and Hara H:
Excess adiponectin in eyes with progressive ocular vascular
diseases. FASEB J. 35(e21313)2021.PubMed/NCBI View Article : Google Scholar
|
38
|
Zhang W, Liu H, Al-Shabrawey M, Caldwell
RW and Caldwell RB: Inflammation and diabetic retinal microvascular
complications. J Cardiovasc Dis Res. 2:96–103. 2011.PubMed/NCBI View Article : Google Scholar
|
39
|
Kovacs K, Marra KV, Yu G, Wagley S, Ma J,
Teague GC, Nandakumar N, Lashkari K and Arroyo JG: Angiogenic and
inflammatory vitreous biomarkers associated with increasing levels
of retinal ischemia. Invest Ophthalmol Vis Sci. 56:6523–6530.
2015.PubMed/NCBI View Article : Google Scholar
|
40
|
Umeda N, Ozaki H, Hayashi H, Kondo H,
Uchida H and Oshima K: Non-paralleled increase of hepatocyte growth
factor and vascular endothelial growth factor in the eyes with
angiogenic and nonangiogenic fibroproliferation. Ophthalmic Res.
34:43–47. 2002.PubMed/NCBI View Article : Google Scholar
|
41
|
Calvo PM, de la Cruz RR and Pastor AM:
Synaptic loss and firing alterations in Axotomized Motoneurons are
restored by vascular endothelial growth factor (VEGF) and VEGF-B.
Exp Neurol. 304:67–81. 2018.PubMed/NCBI View Article : Google Scholar
|
42
|
Chernykh VV, Varvarinsky EV, Smirnov EV,
Chernykh DV and Trunov AN: Proliferative and inflammatory factors
in the vitreous of patients with proliferative diabetic
retinopathy. Indian J Ophthalmol. 63:33–36. 2015.PubMed/NCBI View Article : Google Scholar
|
43
|
Kianersi F, Ghanbari H, Naderi Beni Z and
Naderi Beni A: Intravitreal vascular endothelial growth factor
(VEGF) inhibitor injection in patient during pregnancy. J Drug
Assessment. 10:7–9. 2021.PubMed/NCBI View Article : Google Scholar
|
44
|
Ang WJ, Zunaina E, Norfadzillah AJ,
Raja-Norliza RO, Julieana M, Ab-Hamid SA and Mahaneem M: Evaluation
of vascular endothelial growth factor levels in tears and serum
among diabetic patients. PLoS One. 14(e0221481)2019.PubMed/NCBI View Article : Google Scholar
|
45
|
Wu F, Wang F, Yang Q, Zhang Y, Cai K, Liu
L, Li S, Zheng Y, Zhang J, Gui Y, et al: Upregulation of
miRNA-23a-3p rescues high glucose-induced cell apoptosis and
proliferation inhibition in cardiomyocytes. In Vitro Cell Dev Biol
Anim. 56:866–877. 2020.PubMed/NCBI View Article : Google Scholar
|
46
|
Huang Y, Huang J, Qi R, Wang Q, Wu Y and
Wang J: Effects of MicroRNA-23a on differentiation and gene
expression profiles in 3T3-L1 adipocytes. Genes (Basel).
7(92)2016.PubMed/NCBI View Article : Google Scholar
|
47
|
Shen L, Chen L, Zhang S, Zhang Y, Wang J
and Zhu L: MicroRNA-23a reduces slow myosin heavy chain isoforms
composition through myocyte enhancer factor 2C (MEF2C) and
potentially influences meat quality. Meat Sci. 116:201–206.
2016.PubMed/NCBI View Article : Google Scholar
|
48
|
Xu Y, Jiang Y, Jia B, Wang Y and Li T:
Icariin stimulates osteogenesis and suppresses adipogenesis of
human bone mesenchymal stem cells via miR-23a-mediated activation
of the Wnt/β-catenin signaling pathway. Phytomedicine.
85(153485)2021.PubMed/NCBI View Article : Google Scholar
|
49
|
Hernandez-Torres F, Aranega AE and Franco
D: Identification of regulatory elements directing
miR-23a-miR-27a-miR-24-2 transcriptional regulation in response to
muscle hypertrophic stimuli. Biochim Biophys Acta. 1839:885–897.
2014.PubMed/NCBI View Article : Google Scholar
|
50
|
Ma Y, Wang B, Jiang F, Wang D, Liu H, Yan
Y, Dong H, Wang F, Gong B, Zhu Y, et al: A feedback loop consisting
of microRNA 23a/27a and the β-like globin suppressors KLF3 and SP1
regulates globin gene expression. Mol Cell Biol. 33:3994–4007.
2013.PubMed/NCBI View Article : Google Scholar
|
51
|
Zhang Y, Xie RL, Croce CM, Stein JL, Lian
JB, van Wijnen AJ and Stein GS: A program of microRNAs controls
osteogenic lineage progression by targeting transcription factor
Runx2. Proc Natl Acad Sci USA. 108:9863–9868. 2011.PubMed/NCBI View Article : Google Scholar
|
52
|
Han H, Qu G, Han C, Wang Y, Sun T, Li F,
Wang J and Luo S: MiR-34a, miR-21 and miR-23a as potential
biomarkers for coronary artery disease: A pilot microarray study
and confirmation in a 32 patient cohort. Exp Mol Med.
47(e138)2015.PubMed/NCBI View Article : Google Scholar
|
53
|
Platania CBM, Maisto R, Trotta MC, D'Amico
M, Rossi S, Gesualdo C, D'Amico G, Balta C, Herman H, Hermenean A,
et al: Retinal and circulating miRNA expression patterns in
diabetic retinopathy: An in silico and in vivo approach. Br J
Pharmacol. 176:2179–2194. 2019.PubMed/NCBI View Article : Google Scholar
|