1
|
Rynkeviciene R, Simiene J, Strainiene E,
Stankevicius V, Usinskiene J, Kaubriene EM, Meskinyte I, Cicenas J
and Suziedelis K: Non-coding RNAs in glioma. Cancers (Basel).
11(17)2018.PubMed/NCBI View Article : Google Scholar
|
2
|
Chen Y, Bao C, Zhang X, Lin X, Huang H and
Wang Z: Long non-coding RNA HCG11 modulates glioma progression
through cooperating with miR-496/CPEB3 axis. Cell Prolif.
52(e12615)2019.PubMed/NCBI View Article : Google Scholar
|
3
|
Zheng Y, Lu S, Xu Y and Zheng J: Long
non-coding RNA AGAP2-AS1 promotes the proliferation of glioma cells
by sponging miR-15a/b-5p to upregulate the expression of HDGF and
activating wnt/beta-catenin signaling pathway. Int J Biol Macromol.
128:521–530. 2019.PubMed/NCBI View Article : Google Scholar
|
4
|
Zhou Z, Huang R, Chai R, Zhou X, Hu Z,
Wang W, Chen B, Deng L, Liu Y and Wu F: Identification of an energy
metabolism-related signature associated with clinical prognosis in
diffuse glioma. Aging (Albany NY). 10:3185–3209. 2018.PubMed/NCBI View Article : Google Scholar
|
5
|
Cheng M, Zhang ZW, Ji XH, Xu Y, Bian E and
Zhao B: Super-enhancers: A new frontier for glioma treatment.
Biochim Biophys Acta Rev Cancer. 1873(188353)2020.PubMed/NCBI View Article : Google Scholar
|
6
|
Kundu M, Das S, Dhara D and Mandal M:
Prospect of natural products in glioma: A novel avenue in glioma
management. Phytother Res. 33:2571–2584. 2019.PubMed/NCBI View
Article : Google Scholar
|
7
|
Yan C, Wang J, Yang Y, Ma W and Chen X:
Molecular biomarker-guided anti-angiogenic targeted therapy for
malignant glioma. J Cell Mol Med. 23:4876–4882. 2019.PubMed/NCBI View Article : Google Scholar
|
8
|
Cao H, Li X, Wang F, Zhang Y, Xiong Y and
Yang Q: Phytochemical-mediated glioma targeted treatment: Drug
resistance and novel delivery systems. Curr Med Chem. 27:599–629.
2020.PubMed/NCBI View Article : Google Scholar
|
9
|
Orellana EA, Li C, Lisevick A and Kasinski
AL: Identification and validation of microRNAs that synergize with
miR-34a-a basis for combinatorial microRNA therapeutics. Cell
Cycle. 18:1798–1811. 2019.PubMed/NCBI View Article : Google Scholar
|
10
|
Pereira TD, Brito JAR, Guimarães ALS,
Gomes CC, de Lacerda JC, de Castro WH, Coimbra RS, Diniz MG and
Gomez RS: MicroRNA profiling reveals dysregulated microRNAs and
their target gene regulatory networks in cemento-ossifying fibroma.
J Oral Pathol Med. 47:78–85. 2018.PubMed/NCBI View Article : Google Scholar
|
11
|
Witwer KW and Halushka MK: Toward the
promise of microRNAs-enhancing reproducibility and rigor in
microRNA research. RNA Biol. 13:1103–1116. 2016.PubMed/NCBI View Article : Google Scholar
|
12
|
Seo HA, Moeng S, Sim S, Kuh HJ, Choi SY
and Park JK: MicroRNA-based combinatorial cancer therapy: Effects
of microRNAs on the efficacy of anti-cancer therapies. Cells.
9(29)2019.PubMed/NCBI View Article : Google Scholar
|
13
|
Koufaris C: Human and primate-specific
microRNAs in cancer: Evolution, and significance in comparison with
more distantly-related research models: The great potential of
evolutionary young microRNA in cancer research. Bioessays.
38:286–294. 2016.PubMed/NCBI View Article : Google Scholar
|
14
|
Sakaue S, Hirata J, Maeda Y, Kawakami E,
Nii T, Kishikawa T, Ishigaki K, Terao C, Suzuki K, Akiyama M, et
al: Integration of genetics and miRNA-target gene network
identified disease biology implicated in tissue specificity.
Nucleic Acids Res. 46:11898–11909. 2018.PubMed/NCBI View Article : Google Scholar
|
15
|
Yan D, Hao C, Xiao-Feng L, Yu-Chen L,
Yu-Bin F and Lei Z: Molecular mechanism of notch signaling with
special emphasis on microRNAs: Implications for glioma. J Cell
Physiol. 234:158–170. 2018.PubMed/NCBI View Article : Google Scholar
|
16
|
Peng Y, Wang X, Guo Y, Peng F, Zheng N, He
B, Ge H, Tao L and Wang Q: Pattern of cell-to-cell transfer of
microRNA by gap junction and its effect on the proliferation of
glioma cells. Cancer Sci. 110:1947–1958. 2019.PubMed/NCBI View Article : Google Scholar
|
17
|
Xu H, Zhao G, Zhang Y, Jiang H, Wang W,
Zhao D, Hong J, Yu H and Qi L: Mesenchymal stem cell-derived
exosomal microRNA-133b suppresses glioma progression via
wnt/β-catenin signaling pathway by targeting EZH2. Stem Cell Res
Ther. 10(381)2019.PubMed/NCBI View Article : Google Scholar
|
18
|
Wang H and Xie Y: BRD7-mediated miR-3148
inhibits progression of cervical cancer by targeting
wnt3a/β-catenin pathway. Reprod Sci. 27:877–887. 2020.PubMed/NCBI View Article : Google Scholar
|
19
|
Liu S, Yin F, Zhang J, Wicha MS, Chang AE,
Fan W, Chen L, Fan M and Li Q: Regulatory roles of miRNA in the
human neural stem cell transformation to glioma stem cells. J Cell
Biochem. 115:1368–1380. 2014.PubMed/NCBI View Article : Google Scholar
|
20
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408.
2004.PubMed/NCBI View Article : Google Scholar
|
21
|
Broderick SR, Golas BJ, Pham D, Towe CW,
Talbot SG, Kaufman A, Bains S, Huryn LA, Yonekawa Y, Carlson D, et
al: SCCRO promotes glioma formation and malignant progression in
mice. Neoplasia. 12:476–484. 2010.PubMed/NCBI View Article : Google Scholar
|
22
|
Tan C, Liu L, Liu X, Qi L, Wang W, Zhao G,
Wang L and Dai Y: Activation of PTGS2/NF-κB signaling pathway
enhances radiation resistance of glioma. Cancer Med. 8:1175–1185.
2019.PubMed/NCBI View Article : Google Scholar
|
23
|
Geeviman K, Babu D and Babu PP:
Pantoprazole induces mitochondrial apoptosis and attenuates NF-κB
signaling in glioma cells. Cell Mol Neurobiol. 38:1491–1504.
2018.PubMed/NCBI View Article : Google Scholar
|
24
|
Ius T, Ciani Y, Ruaro ME, Isola M,
Sorrentino M, Bulfoni M, Candotti V, Correcig C, Bourkoula E,
Manini I, et al: An NF-κB signature predicts low-grade glioma
prognosis: A precision medicine approach based on patient-derived
stem cells. Neuro Oncol. 20:776–787. 2018.PubMed/NCBI View Article : Google Scholar
|
25
|
Hou G, Xu W, Jin Y, Wu J, Pan Y and Zhou
F: MiRNA-217 accelerates the proliferation and migration of bladder
cancer via inhibiting KMT2D. Biochem Biophys Res Commun.
519:747–753. 2019.PubMed/NCBI View Article : Google Scholar
|
26
|
Wang R, Sun Y, Yu W, Qiao M, Jiang R, Guan
W and Wang L: Downregulation of miRNA-214 in cancer-associated
fibroblasts contributes to migration and invasion of gastric cancer
cells through targeting FGF9 and inducing EMT. J Exp Clin Cancer
Res. 38(20)2019.PubMed/NCBI View Article : Google Scholar
|
27
|
Hetta HF, Zahran AM, Shafik EA, El-Mahdy
RI, Mohamed NA, Nabil EE, Esmaeel HM, Alkady OA, Elkady A, Mohareb
DA, et al: Circulating miRNA-21 and miRNA-23a expression signature
as potential biomarkers for early detection of non-small-cell lung
cancer. Microrna. 8:206–215. 2019.PubMed/NCBI View Article : Google Scholar
|
28
|
Zhou Q, Liu J, Quan J, Liu W, Tan H and Li
W: MicroRNAs as potential biomarkers for the diagnosis of glioma: A
systematic review and meta-analysis. Cancer Sci. 109:2651–2659.
2018.PubMed/NCBI View Article : Google Scholar
|
29
|
Cheng W, Ren X, Zhang C, Han S and Wu A:
Expression and prognostic value of microRNAs in lower-grade glioma
depends on IDH1/2 status. J Neurooncol. 132:207–218.
2017.PubMed/NCBI View Article : Google Scholar
|
30
|
Xiong W, Ran J, Jiang R, Guo P, Shi X, Li
H, Lv X, Li J and Chen D: miRNA-320a inhibits glioma cell invasion
and migration by directly targeting aquaporin 4. Oncol Rep.
39:1939–1947. 2018.PubMed/NCBI View Article : Google Scholar
|
31
|
Huntzinger E and Izaurralde E: Gene
silencing by microRNAs: Contributions of translational repression
and mRNA decay. Nat Rev Genet. 12:99–110. 2011.PubMed/NCBI View
Article : Google Scholar
|
32
|
Kim AY, Bommeljé CC, Lee BE, Yonekawa Y,
Choi L, Morris LG, Huang G, Kaufman A, Ryan RJ, Hao B, et al: SCCRO
(DCUN1D1) is an essential component of the E3 complex for
neddylation. J Biol Chem. 283:33211–33220. 2008.PubMed/NCBI View Article : Google Scholar
|
33
|
Huang G, Kaufman AJ, Ramanathan Y and
Singh B: SCCRO (DCUN1D1) promotes nuclear translocation and
assembly of the neddylation E3 complex. J Biol Chem.
286:10297–10304. 2011.PubMed/NCBI View Article : Google Scholar
|
34
|
Sarkaria I, O-charoenrat P, Talbot SG,
Reddy PG, Ngai I, Maghami E, Patel KN, Lee B, Yonekawa Y, Dudas M,
et al: Squamous cell carcinoma related oncogene/DCUN1D1 is highly
conserved and activated by amplification in squamous cell
carcinomas. Cancer Res. 66:9437–9444. 2006.PubMed/NCBI View Article : Google Scholar
|
35
|
O-charoenrat P, Sarkaria I, Talbot SG,
Reddy P, Dao S, Ngai I, Shaha A, Kraus D, Shah J, Rusch V, et al:
SCCRO (DCUN1D1) induces extracellular matrix invasion by activating
matrix metalloproteinase 2. Clin Cancer Res. 14:6780–6789.
2008.PubMed/NCBI View Article : Google Scholar
|
36
|
Williams LM and Gilmore TD: Looking down
on NF-κB. Mol Cell Biol. 40:e00104–e00120. 2020.PubMed/NCBI View Article : Google Scholar
|
37
|
Zhou L, Deng ZZ, Li HY, Jiang N, Wei ZS,
Hong MF, Chen XD, Wang JH, Zhang MX, Sh YH, et al: TRIM31 promotes
glioma proliferation and invasion through activating NF-κB pathway.
Onco Targets Ther. 12:2289–2297. 2019.PubMed/NCBI View Article : Google Scholar
|
38
|
Zhou Y, Tan Z, Chen K, Wu W, Zhu J, Wu G,
Cao L, Zhang X, Zeng X, Li J and Zhang W: Overexpression of SHCBP1
promotes migration and invasion in gliomas by activating the NF-κB
signaling pathway. Mol Carcinog. 57:1181–1190. 2018.PubMed/NCBI View Article : Google Scholar
|
39
|
Hai L, Liu P, Yu S, Yi L, Tao Z, Zhang C,
Abeysekera IR, Li T, Tong L, Ma H, et al: Jagged1 is clinically
prognostic and promotes invasion of glioma-initiating cells by
activating NF-κB(p65) signaling. Cell Physiol Biochem.
51:2925–2937. 2018.PubMed/NCBI View Article : Google Scholar
|