Targeting angiogenesis in myocardial infarction: Novel therapeutics (Review)
- Authors:
- Jiejie Li
- Yuanyuan Zhao
- Wei Zhu
-
Affiliations: Jiangsu Key Laboratory of Medical Science and Laboratory of Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China - Published online on: November 22, 2021 https://doi.org/10.3892/etm.2021.10986
- Article Number: 64
This article is mentioned in:
Abstract
Mehta LS, Beckie TM, DeVon HA, Grines CL, Krumholz HM, Johnson MN, Lindley KJ, Vaccarino V, Wang TY, Watson KE, et al: American Heart Association Cardiovascular Disease in Women and Special Populations Committee of the Council on Clinical Cardiology, Council on Epidemiology and Prevention, Council on Cardiovascular and Stroke Nursing, and Council on Quality of Care and Outcomes Research: Acute Myocardial Infarction in Women: A Scientific Statement From the American Heart Association. Circulation. 133:916–947. 2016.PubMed/NCBI View Article : Google Scholar | |
Reed GW, Rossi JE and Cannon CP: Acute myocardial infarction. Lancet. 389:197–210. 2017.PubMed/NCBI View Article : Google Scholar | |
Frangogiannis NG: Cardiac fibrosis: Cell biological mechanisms, molecular pathways and therapeutic opportunities. Mol Aspects Med. 65:70–99. 2019.PubMed/NCBI View Article : Google Scholar | |
Mitsos S, Katsanos K, Koletsis E, Kagadis GC, Anastasiou N, Diamantopoulos A, Karnabatidis D and Dougenis D: Therapeutic angiogenesis for myocardial ischemia revisited: Basic biological concepts and focus on latest clinical trials. Angiogenesis. 15:1–22. 2012.PubMed/NCBI View Article : Google Scholar | |
Lorier G, Touriño C and Kalil RA: Coronary angiogenesis as an endogenous response to myocardial ischemia in adults. Arq Bras Cardiol. 97:e140–e148. 2011.PubMed/NCBI View Article : Google Scholar | |
Vandekeere S, Dewerchin M and Carmeliet P: Angiogenesis Revisited: An Overlooked Role of Endothelial Cell Metabolism in Vessel Sprouting. Microcirculation. 22:509–517. 2015.PubMed/NCBI View Article : Google Scholar | |
Weinstein N, Mendoza L, Gitler I and Klapp J: A network model to explore the effect of the micro-environment on endothelial cell behavior during angiogenesis. Front Physiol. 8(960)2017.PubMed/NCBI View Article : Google Scholar | |
Frangogiannis NG: The extracellular matrix in myocardial injury, repair, and remodeling. J Clin Invest. 127:1600–1612. 2017.PubMed/NCBI View Article : Google Scholar | |
Frangogiannis NG: Pathophysiology of myocardial infarction. Compr Physiol. 5:1841–1875. 2015.PubMed/NCBI View Article : Google Scholar | |
Ferraro B, Leoni G, Hinkel R, Ormanns S, Paulin N, Ortega-Gomez A, Viola JR, de Jong R, Bongiovanni D, Bozoglu T, et al: Pro-angiogenic macrophage phenotype to promote myocardial repair. J Am Coll Cardiol. 73:2990–3002. 2019.PubMed/NCBI View Article : Google Scholar | |
Wang N, Liu C, Wang X, He T, Li L, Liang X, Wang L, Song L, Wei Y, Wu Q, et al: Hyaluronic acid oligosaccharides improve myocardial function reconstruction and angiogenesis against myocardial infarction by regulation of macrophages. Theranostics. 9:1980–1992. 2019.PubMed/NCBI View Article : Google Scholar | |
Saraswati S, Marrow SMW, Watch LA and Young PP: Identification of a pro-angiogenic functional role for FSP1-positive fibroblast subtype in wound healing. Nat Commun. 10(3027)2019.PubMed/NCBI View Article : Google Scholar | |
Mouton AJ, Ma Y, Rivera Gonzalez OJ, Daseke MJ II, Flynn ER, Freeman TC, Garrett MR, DeLeon-Pennell KY and Lindsey ML: Fibroblast polarization over the myocardial infarction time continuum shifts roles from inflammation to angiogenesis. Basic Res Cardiol. 114(6)2019.PubMed/NCBI View Article : Google Scholar | |
Befani C and Liakos P: Hypoxia upregulates integrin gene expression in microvascular endothelial cells and promotes their migration and capillary-like tube formation. Cell Biol Int. 41:769–778. 2017.PubMed/NCBI View Article : Google Scholar | |
Bartoszewski R, Moszyńska A, Serocki M, Cabaj A, Polten A, Ochocka R, Dell'Italia L, Bartoszewska S, Króliczewski J, Dąbrowski M, et al: Primary endothelial cell-specific regulation of hypoxia-inducible factor (HIF)-1 and HIF-2 and their target gene expression profiles during hypoxia. FASEB J. 33:7929–7941. 2019.PubMed/NCBI View Article : Google Scholar | |
Zhang B, Niu W, Dong HY, Liu ML, Luo Y and Li ZC: Hypoxia induces endothelial mesenchymal transition in pulmonary vascular remodeling. Int J Mol Med. 42:270–278. 2018.PubMed/NCBI View Article : Google Scholar | |
Ribatti D, Tamma R and Vacca A: Mast cells and angiogenesis in human plasma cell malignancies. Int J Mol Sci. 20(20)2019.PubMed/NCBI View Article : Google Scholar | |
Fetz AE, Radic MZ and Bowlin GL: Neutrophils in biomaterial-guided tissue regeneration: Matrix reprogramming for angiogenesis. Tissue Eng Part B Rev. 27:95–106. 2021.PubMed/NCBI View Article : Google Scholar | |
Aldabbous L, Abdul-Salam V, McKinnon T, Duluc L, Pepke-Zaba J, Southwood M, Ainscough AJ, Hadinnapola C, Wilkins MR, Toshner M, et al: Neutrophil extracellular traps promote angiogenesis: Evidence from vascular pathology in pulmonary hypertension. Arterioscler Thromb Vasc Biol. 36:2078–2087. 2016.PubMed/NCBI View Article : Google Scholar | |
Mukai K, Tsai M, Saito H and Galli SJ: Mast cells as sources of cytokines, chemokines, and growth factors. Immunol Rev. 282:121–150. 2018.PubMed/NCBI View Article : Google Scholar | |
Nishida Y, Yamada Y, Kanemaru H, Ohazama A, Maeda T and Seo K: Vascularization via activation of VEGF-VEGFR signaling is essential for peripheral nerve regeneration. Biomed Res. 39:287–294. 2018.PubMed/NCBI View Article : Google Scholar | |
Chen Y, Zhao B, Zhu Y, Zhao H and Ma C: HIF-1-VEGF-Notch mediates angiogenesis in temporomandibular joint osteoarthritis. Am J Transl Res. 11:2969–2982. 2019.PubMed/NCBI | |
Pitulescu ME, Schmidt I, Giaimo BD, Antoine T, Berkenfeld F, Ferrante F, Park H, Ehling M, Biljes D, Rocha SF, et al: Dll4 and Notch signalling couples sprouting angiogenesis and artery formation. Nat Cell Biol. 19:915–927. 2017.PubMed/NCBI View Article : Google Scholar | |
Kume T: Ligand-dependent Notch signaling in vascular formation. Adv Exp Med Biol. 727:210–222. 2012.PubMed/NCBI View Article : Google Scholar | |
Gallo S, Sala V, Gatti S and Crepaldi T: Cellular and molecular mechanisms of HGF/Met in the cardiovascular system. Clin Sci (Lond). 129:1173–1193. 2015.PubMed/NCBI View Article : Google Scholar | |
Thavapalachandran S, Grieve SM, Hume RD, Le TY, Raguram K, Hudson JE, Pouliopoulos J, Figtree GA, Dye RP, Barry AM, et al: Platelet-derived growth factor-AB improves scar mechanics and vascularity after myocardial infarction. Sci Transl Med. 12(12)2020.PubMed/NCBI View Article : Google Scholar | |
Liu S, Chen J, Shi J, Zhou W, Wang L, Fang W, Zhong Y, Chen X, Chen Y, Sabri A, et al: M1-like macrophage-derived exosomes suppress angiogenesis and exacerbate cardiac dysfunction in a myocardial infarction microenvironment. Basic Res Cardiol. 115(22)2020.PubMed/NCBI View Article : Google Scholar | |
Zhang Z, Coutinho AE, Man TY, Kipari TM, Hadoke PW, Salter DM, Seckl JR and Chapman KE: Macrophage 11β-HSD-1 deficiency promotes inflammatory angiogenesis. J Endocrinol. 234:291–299. 2017.PubMed/NCBI View Article : Google Scholar | |
Hueso L, Rios-Navarro C, Ruiz-Sauri A, Chorro FJ, Nunez J, Sanz MJ, Bodi V and Piqueras L: Dynamics and implications of circulating anti-angiogenic VEGF-A165b isoform in patients with ST-elevation myocardial infarction. Sci Rep. 7(9962)2017.PubMed/NCBI View Article : Google Scholar | |
Rychli K, Kaun C, Hohensinner PJ, Dorfner AJ, Pfaffenberger S, Niessner A, Bauer M, Dietl W, Podesser BK, Maurer G, et al: The anti-angiogenic factor PEDF is present in the human heart and is regulated by anoxia in cardiac myocytes and fibroblasts. J Cell Mol Med. 14:198–205. 2010.PubMed/NCBI View Article : Google Scholar | |
Sakamoto S, Matsuura K, Masuda S, Hagiwara N and Shimizu T: Heart-derived fibroblasts express LYPD-1 and negatively regulate angiogenesis in rat. Regen Ther. 15:27–33. 2020.PubMed/NCBI View Article : Google Scholar | |
Jiang L, Jia M, Wei X, Guo J, Hao S, Mei A, Zhi X, Wang X, Li Q, Jin J, et al: Bach1-induced suppression of angiogenesis is dependent on the BTB domain. EBioMedicine. 51(102617)2020.PubMed/NCBI View Article : Google Scholar | |
Xie Y, Sheng W, Xiang J, Ye Z, Zhu Y, Chen X and Yang J: Recombinant human IL-24 suppresses lung carcinoma cell growth via induction of cell apoptosis and inhibition of tumor angiogenesis. Cancer Biother Radiopharm. 23:310–320. 2008.PubMed/NCBI View Article : Google Scholar | |
Wang Z, Lv J and Zhang T: Combination of IL-24 and cisplatin inhibits angiogenesis and lymphangiogenesis of cervical cancer xenografts in a nude mouse model by inhibiting VEGF, VEGF-C and PDGF-B. Oncol Rep. 33:2468–2476. 2015.PubMed/NCBI View Article : Google Scholar | |
Nisari M, Ulger H, Unur E, Karaca O and Ertekin T: Effect of interleukin 12 (IL-12) on embryonic development and yolk sac vascularisation. Bratisl Lek Listy. 115:532–537. 2014.PubMed/NCBI View Article : Google Scholar | |
Ding DC, Shyu WC and Lin SZ: Mesenchymal stem cells. Cell Transplant. 20:5–14. 2011.PubMed/NCBI View Article : Google Scholar | |
Uccelli A, Moretta L and Pistoia V: Mesenchymal stem cells in health and disease. Nat Rev Immunol. 8:726–736. 2008.PubMed/NCBI View Article : Google Scholar | |
Konoplyannikov M, Kotova S, Baklaushev V, Konoplyannikov A, Kalsin V, Timashev P and Troitskiy A: Mesenchymal stem cell therapy for ischemic heart disease: Advances and challenges. Curr Pharm Des. 24:3132–3142. 2018.PubMed/NCBI View Article : Google Scholar | |
Mathew SA, Naik C, Cahill PA and Bhonde RR: Placental mesenchymal stromal cells as an alternative tool for therapeutic angiogenesis. Cell Mol Life Sci. 77:253–265. 2020.PubMed/NCBI View Article : Google Scholar | |
Kachgal S and Putnam AJ: Mesenchymal stem cells from adipose and bone marrow promote angiogenesis via distinct cytokine and protease expression mechanisms. Angiogenesis. 14:47–59. 2011.PubMed/NCBI View Article : Google Scholar | |
Assis-Ribas T, Forni MF, Winnischofer SM, Sogayar MC and Trombetta-Lima M: Extracellular matrix dynamics during mesenchymal stem cells differentiation. Dev Biol. 437:63–74. 2018.PubMed/NCBI View Article : Google Scholar | |
Huang W, Wang T, Zhang D, Zhao T, Dai B, Ashraf A, Wang X, Xu M, Millard RW, Fan GC, et al: Mesenchymal stem cells overexpressing CX7CR4 attenuate remodeling of postmyocardial infarction by releasing matrix metalloproteinase-9. Stem Cells Dev. 21:778–789. 2012.PubMed/NCBI View Article : Google Scholar | |
Gnecchi M, Danieli P, Malpasso G and Ciuffreda MC: Paracrine mechanisms of mesenchymal stem cells in tissue repair. Methods Mol Biol. 1416:123–146. 2016.PubMed/NCBI View Article : Google Scholar | |
Gunawardena TNA, Rahman MT, Abdullah BJJ and Abu Kasim NH: Conditioned media derived from mesenchymal stem cell cultures: The next generation for regenerative medicine. J Tissue Eng Regen Med. 13:569–586. 2019.PubMed/NCBI View Article : Google Scholar | |
Wang Z, Zheng L, Lian C, Qi Y, Li W and Wang S: Human umbilical cord-derived mesenchymal stem cells relieve hind limb ischemia by promoting angiogenesis in mice. Stem Cells Dev. 28:1384–1397. 2019.PubMed/NCBI View Article : Google Scholar | |
Ryu S, Lee SH, Kim SU and Yoon BW: Human neural stem cells promote proliferation of endogenous neural stem cells and enhance angiogenesis in ischemic rat brain. Neural Regen Res. 11:298–304. 2016.PubMed/NCBI View Article : Google Scholar | |
Davidson SM and Yellon DM: Exosomes and cardioprotection - A critical analysis. Mol Aspects Med. 60:104–114. 2018.PubMed/NCBI View Article : Google Scholar | |
Zhang Y, Bi J, Huang J, Tang Y, Du S and Li P: Exosome: A review of its classification, isolation techniques, storage, diagnostic and targeted Therapy applications. Int J Nanomedicine. 15:6917–6934. 2020.PubMed/NCBI View Article : Google Scholar | |
Koritzinsky EH, Street JM, Star RA and Yuen PS: Quantification of exosomes. J Cell Physiol. 232:1587–1590. 2017.PubMed/NCBI View Article : Google Scholar | |
Witwer KW, Soekmadji C, Hill AF, Wauben MH, Buzás EI, Di Vizio D, Falcon-Perez JM, Gardiner C, Hochberg F, Kurochkin IV, et al: Updating the MISEV minimal requirements for extracellular vesicle studies: Building bridges to reproducibility. J Extracell Vesicles. 6(1396823)2017.PubMed/NCBI View Article : Google Scholar | |
Kawamoto A and Losordo DW: Endothelial progenitor cells for cardiovascular regeneration. Trends Cardiovasc Med. 18:33–37. 2008.PubMed/NCBI View Article : Google Scholar | |
Zeng CY, Xu J, Liu X and Lu YQ: Cardioprotective roles of endothelial progenitor cell-derived exosomes. Front Cardiovasc Med. 8(717536)2021.PubMed/NCBI View Article : Google Scholar | |
Pan MC, Lin XY, Wang H, Chen YF and Leng M: Research advances on the roles of exosomes derived from vascular endothelial progenitor cells in wound repair. Zhonghua Shao Shang Za Zhi Zhonghua Shao Shang Za Zhi. 36:883–886. 2020.PubMed/NCBI View Article : Google Scholar : (In Chinese). | |
Xing Z, Zhao C, Liu H and Fan Y: Endothelial progenitor cell-derived extracellular vesicles: A novel candidate for regenerative medicine and disease treatment. Adv Healthc Mater. 9(e2000255)2020.PubMed/NCBI View Article : Google Scholar | |
Ke X, Yang D, Liang J, Wang X, Wu S, Wang X and Hu C: Human endothelial progenitor cell-derived exosomes increase proliferation and angiogenesis in cardiac fibroblasts by promoting the mesenchymal-endothelial transition and reducing high mobility group box 1 protein B1 expression. DNA Cell Biol. 36:1018–1028. 2017.PubMed/NCBI View Article : Google Scholar | |
Wang J, Liu H, Chen S, Zhang W, Chen Y and Yang Y: Moderate exercise has beneficial effects on mouse ischemic stroke by enhancing the functions of circulating endothelial progenitor cell-derived exosomes. Exp Neurol. 330(113325)2020.PubMed/NCBI View Article : Google Scholar | |
Wang Y, Zhao R, Shen C, Liu W, Yuan J, Li C, Deng W, Wang Z, Zhang W, Ge J, et al: Exosomal CircHIPK3 released from hypoxia-induced cardiomyocytes regulates cardiac angiogenesis after myocardial infarction. Oxid Med Cell Longev. 2020(8418407)2020.PubMed/NCBI View Article : Google Scholar | |
Wang Y, Zhao R, Liu W, Wang Z, Rong J, Long X, Liu Z, Ge J and Shi B: Exosomal circHIPK3 released from hypoxia-pretreated cardiomyocytes regulates oxidative damage in cardiac microvascular endothelial cells via the miR-29a/IGF-1 pathway. Oxid Med Cell Longev. 2019(7954657)2019.PubMed/NCBI View Article : Google Scholar | |
Yan B, Zhang Y, Liang C, Liu B, Ding F, Wang Y, Zhu B, Zhao R, Yu XY and Li Y: Stem cell-derived exosomes prevent pyroptosis and repair ischemic muscle injury through a novel exosome/circHIPK3/ FOXO3a pathway. Theranostics. 10:6728–6742. 2020.PubMed/NCBI View Article : Google Scholar | |
Li H, Liao Y, Gao L, Zhuang T, Huang Z, Zhu H and Ge J: Coronary serum exosomes derived from patients with myocardial ischemia regulate angiogenesis through the miR-939-mediated nitric oxide signaling pathway. Theranostics. 8:2079–2093. 2018.PubMed/NCBI View Article : Google Scholar | |
Xu J, Bai S, Cao Y, Liu L, Fang Y, Du J, Luo L, Chen M, Shen B and Zhang Q: miRNA-221-3p in endothelial progenitor cell-derived exosomes accelerates skin wound healing in diabetic mice. Diabetes Metab Syndr Obes. 13:1259–1270. 2020.PubMed/NCBI View Article : Google Scholar | |
Chen K, Yu T and Wang X: Inhibition of circulating exosomal miRNA-20b-5p accelerates diabetic wound repair. Int J Nanomedicine. 16:371–381. 2021.PubMed/NCBI View Article : Google Scholar | |
Ren S, Chen J, Duscher D, Liu Y, Guo G, Kang Y, Xiong H, Zhan P, Wang Y, Wang C, et al: Microvesicles from human adipose stem cells promote wound healing by optimizing cellular functions via AKT and ERK signaling pathways. Stem Cell Res Ther. 10(47)2019.PubMed/NCBI View Article : Google Scholar | |
Xiong Y, Chen L, Yan C, Zhou W, Endo Y, Liu J, Hu L, Hu Y, Mi B and Liu G: Circulating Exosomal miR-20b-5p inhibition restores Wnt9b signaling and reverses diabetes-associated impaired wound healing. Small. 16(e1904044)2020.PubMed/NCBI View Article : Google Scholar | |
Ni J, Liu X, Yin Y, Zhang P, Xu YW and Liu Z: Exosomes derived from TIMP2-modified human umbilical cord mesenchymal stem cells enhance the repair effect in rat model with myocardial infarction possibly by the Akt/Sfrp2 pathway. Oxid Med Cell Longev. 2019(1958941)2019.PubMed/NCBI View Article : Google Scholar | |
Sun J, Shen H, Shao L, Teng X, Chen Y, Liu X, Yang Z and Shen Z: HIF-1α overexpression in mesenchymal stem cell-derived exosomes mediates cardioprotection in myocardial infarction by enhanced angiogenesis. Stem Cell Res Ther. 11(373)2020.PubMed/NCBI View Article : Google Scholar | |
Gong XH, Liu H, Wang SJ, Liang SW and Wang GG: Exosomes derived from SDF1-overexpressing mesenchymal stem cells inhibit ischemic myocardial cell apoptosis and promote cardiac endothelial microvascular regeneration in mice with myocardial infarction. J Cell Physiol. 234:13878–13893. 2019.PubMed/NCBI View Article : Google Scholar | |
Wang X, Chen Y, Zhao Z, Meng Q, Yu Y, Sun J, Yang Z, Chen Y, Li J, Ma T, et al: Engineered exosomes with ischemic myocardium-targeting peptide for targeted therapy in myocardial infarction. J Am Heart Assoc. 7(e008737)2018.PubMed/NCBI View Article : Google Scholar | |
Youn SW, Li Y, Kim YM, Sudhahar V, Abdelsaid K, Kim HW, Liu Y, Fulton DJ, Ashraf M, Tang Y, et al: Modification of cardiac progenitor cell-derived exosomes by miR-322 provides protection against myocardial infarction through Nox2-dependent angiogenesis. Antioxidants (Basel). 8(18)2019.PubMed/NCBI View Article : Google Scholar | |
Pan J, Alimujiang M, Chen Q, Shi H and Luo X: Exosomes derived from miR-146a-modified adipose-derived stem cells attenuate acute myocardial infarction-induced myocardial damage via downregulation of early growth response factor 1. J Cell Biochem. 120:4433–4443. 2019.PubMed/NCBI View Article : Google Scholar | |
Fan C, Joshi J, Li F, Xu B, Khan M, Yang J and Zhu W: Nanoparticle-mediated drug delivery for treatment of ischemic heart disease. Front Bioeng Biotechnol. 8(687)2020.PubMed/NCBI View Article : Google Scholar | |
Zhang N, Song Y, Huang Z, Chen J, Tan H, Yang H, Fan M, Li Q, Wang Q, Gao J, et al: Monocyte mimics improve mesenchymal stem cell-derived extracellular vesicle homing in a mouse MI/RI model. Biomaterials. 255(120168)2020.PubMed/NCBI View Article : Google Scholar | |
Ho YT, Poinard B and Kah JC: Nanoparticle drug delivery systems and their use in cardiac tissue therapy. Nanomedicine (Lond). 11:693–714. 2016.PubMed/NCBI View Article : Google Scholar | |
Li Z, Zhou X, Wei M, Gao X, Zhao L, Shi R, Sun W, Duan Y, Yang G and Yuan L: In vitro and in vivo RNA inhibition by CD9-HuR functionalized exosomes encapsulated with miRNA or CRISPR/dCas9. Nano Lett. 19:19–28. 2019.PubMed/NCBI View Article : Google Scholar | |
Kojima R, Bojar D, Rizzi G, Hamri GC, El-Baba MD, Saxena P, Ausländer S, Tan KR and Fussenegger M: Designer exosomes produced by implanted cells intracerebrally deliver therapeutic cargo for Parkinson's disease treatment. Nat Commun. 9(1305)2018.PubMed/NCBI View Article : Google Scholar | |
Xiang Gu G, Su I, Sharma S, Voros JL, Qin Z and Buehler MJ: Three-dimensional-printing of bio-inspired composites. J Biomech Eng. 138(021006)2016.PubMed/NCBI View Article : Google Scholar | |
Chattopadhyay S and Raines RT: Review collagen-based biomaterials for wound healing. Biopolymers. 101:821–833. 2014.PubMed/NCBI View Article : Google Scholar | |
Smagul S, Kim Y, Smagulova A, Raziyeva K, Nurkesh A and Saparov A: Biomaterials loaded with growth factors/cytokines and stem cells for cardiac tissue regeneration. Int J Mol Sci. 21(21)2020.PubMed/NCBI View Article : Google Scholar | |
Oduk Y, Zhu W, Kannappan R, Zhao M, Borovjagin AV, Oparil S and Zhang JJ: VEGF nanoparticles repair the heart after myocardial infarction. Am J Physiol Heart Circ Physiol. 314:H278–H284. 2018.PubMed/NCBI View Article : Google Scholar | |
Liu Y, Li P, Qiao C, Wu T, Sun X, Wen M and Zhang W: Chitosan hydrogel enhances the therapeutic efficacy of bone marrow-derived mesenchymal stem cells for myocardial infarction by alleviating vascular endothelial cell pyroptosis. J Cardiovasc Pharmacol. 75:75–83. 2020.PubMed/NCBI View Article : Google Scholar | |
Yuan Z, Tsou YH, Zhang XQ, Huang S, Yang Y, Gao M, Ho W, Zhao Q, Ye X and Xu X: Injectable citrate-based hydrogel as an angiogenic biomaterial improves cardiac repair after myocardial infarction. ACS Appl Mater Interfaces. 11:38429–38439. 2019.PubMed/NCBI View Article : Google Scholar | |
Song C, Zhang X, Wang L, Wen F, Xu K, Xiong W, Li C, Li B, Wang Q, Xing MM, et al: An injectable conductive three-dimensional elastic network by tangled surgical-suture spring for heart repair. ACS Nano. 13:14122–14137. 2019.PubMed/NCBI View Article : Google Scholar | |
Chachques JC, Lila N, Soler-Botija C, Martinez-Ramos C, Valles A, Autret G, Perier MC, Mirochnik N, Monleon-Pradas M, Bayes-Genis A, et al: Elastomeric cardiopatch scaffold for myocardial repair and ventricular support. Eur J Cardiothorac Surg. 57:545–555. 2020.PubMed/NCBI View Article : Google Scholar | |
Wang X, Wang L, Wu Q, Bao F, Yang H, Qiu X and Chang J: Chitosan/calcium silicate cardiac patch stimulates cardiomyocyte activity and myocardial performance after infarction by synergistic effect of bioactive ions and aligned nanostructure. ACS Appl Mater Interfaces. 11:1449–1468. 2019.PubMed/NCBI View Article : Google Scholar | |
Sondermeijer HP, Witkowski P, Seki T, van der Laarse A, Itescu S and Hardy MA: RGDfK-peptide modified alginate scaffold for cell transplantation and cardiac neovascularization. Tissue Eng Part A. 24:740–751. 2018.PubMed/NCBI View Article : Google Scholar | |
Nasser M, Wu Y, Danaoui Y and Ghosh G: Engineering microenvironments towards harnessing pro-angiogenic potential of mesenchymal stem cells. Mater Sci Eng C. 102:75–84. 2019.PubMed/NCBI View Article : Google Scholar | |
Dastagir K, Dastagir N, Limbourg A, Reimers K, Strauss S and Vogt PM: In vitro construction of artificial blood vessels using spider silk as a supporting matrix. J Mech Behav Biomed Mater. 101(103436)2020.PubMed/NCBI View Article : Google Scholar | |
Guo HF, Dai WW, Qian DH, Qin ZX, Lei Y, Hou XY and Wen C: A simply prepared small-diameter artificial blood vessel that promotes in situ endothelialization. Acta Biomater. 54:107–116. 2017.PubMed/NCBI View Article : Google Scholar | |
Yifa O, Weisinger K, Bassat E, Li H, Kain D, Barr H, Kozer N, Genzelinakh A, Rajchman D, Eigler T, et al: The small molecule Chicago Sky Blue promotes heart repair following myocardial infarction in mice. JCI Insight. 4(4)2019.PubMed/NCBI View Article : Google Scholar | |
Huang FY, Xia TL, Li JL, Li CM, Zhao ZG, Lei WH, Chen L, Liao YB, Xiao D, Peng Y, et al: The bifunctional SDF-1-AnxA5 fusion protein protects cardiac function after myocardial infarction. J Cell Mol Med. 23:7673–7684. 2019.PubMed/NCBI View Article : Google Scholar | |
Yuan Z, Kang L, Wang Z, Chen A, Zhao Q and Li H: 17β-estradiol promotes recovery after myocardial infarction by enhancing homing and angiogenic capacity of bone marrow-derived endothelial progenitor cells through ERα-SDF-1/CXCR4 crosstalking. Acta Biochim Biophys Sin (Shanghai). 50:1247–1256. 2018.PubMed/NCBI View Article : Google Scholar | |
Popa MA, Mihai MC, Constantin A, Şuică V, Ţucureanu C, Costache R, Antohe F, Dubey RK and Simionescu M: Dihydrotestosterone induces pro-angiogenic factors and assists homing of MSC into the cardiac tissue. J Mol Endocrinol. 60:1–15. 2018.PubMed/NCBI View Article : Google Scholar | |
Liao Q, Qu S, Tang LX, Li LP, He DF, Zeng CY and Wang WE: Irisin exerts a therapeutic effect against myocardial infarction via promoting angiogenesis. Acta Pharmacol Sin. 40:1314–1321. 2019.PubMed/NCBI View Article : Google Scholar | |
Lindsey ML, Iyer RP, Zamilpa R, Yabluchanskiy A, DeLeon-Pennell KY, Hall ME, Kaplan A, Zouein FA, Bratton D, Flynn ER, et al: A novel collagen matricryptin reduces left ventricular dilation post-myocardial infarction by promoting scar formation and angiogenesis. J Am Coll Cardiol. 66:1364–1374. 2015.PubMed/NCBI View Article : Google Scholar | |
Korf-Klingebiel M, Reboll MR, Grote K, Schleiner H, Wang Y, Wu X, Klede S, Mikhed Y, Bauersachs J, Klintschar M, et al: Heparan sulfate-editing extracellular sulfatases enhance vegf bioavailability for ischemic heart repair. Circ Res. 125:787–801. 2019.PubMed/NCBI View Article : Google Scholar | |
Garikipati VNS, Verma SK, Cheng Z, Liang D, Truongcao MM, Cimini M, Yue Y, Huang G, Wang C, Benedict C, et al: Circular RNA CircFndc3b modulates cardiac repair after myocardial infarction via FUS/VEGF-A axis. Nat Commun. 10(4317)2019.PubMed/NCBI View Article : Google Scholar | |
Ju X, Xue D, Wang T, Ge B, Zhang Y and Li Z: Catalpol promotes the survival and VEGF secretion of bone marrow-derived stem cells and their role in myocardial repair after myocardial infarction in rats. Cardiovasc Toxicol. 18:471–481. 2018.PubMed/NCBI View Article : Google Scholar | |
Zhai S, Zhang XF, Lu F, Chen WG, He X, Zhang CF, Wang CZ and Yuan CS: Chinese medicine GeGen-DanShen extract protects from myocardial ischemic injury through promoting angiogenesis via up-regulation of VEGF/VEGFR2 signaling pathway. J Ethnopharmacol. 267(113475)2021.PubMed/NCBI View Article : Google Scholar | |
Li Y, Zhang Y, Wen M, Zhang J, Zhao X, Zhao Y and Deng J: Ginkgo biloba extract prevents acute myocardial infarction and suppresses the inflammation and apoptosis regulating p38 mitogen activated protein kinases, nuclear factor-κB and B cell lymphoma 2 signaling pathways. Mol Med Rep. 16:3657–3663. 2017.PubMed/NCBI View Article : Google Scholar | |
Ho L, van Dijk M, Chye STJ, Messerschmidt DM, Chng SC, Ong S, Yi LK, Boussata S, Goh GH, Afink GB, et al: ELABELA deficiency promotes preeclampsia and cardiovascular malformations in mice. Science. 357:707–713. 2017.PubMed/NCBI View Article : Google Scholar | |
Jin L, Pan Y, Li Q, Li J and Wang Z: Elabela gene therapy promotes angiogenesis after myocardial infarction. J Cell Mol Med. 25:8537–8545. 2021.PubMed/NCBI View Article : Google Scholar | |
Chen HK, Hung HF, Shyu KG, Wang BW, Sheu JR, Liang YJ, Chang CC and Kuan P: Combined cord blood stem cells and gene therapy enhances angiogenesis and improves cardiac performance in mouse after acute myocardial infarction. Eur J Clin Invest. 35:677–686. 2005.PubMed/NCBI View Article : Google Scholar | |
Czymai T, Viemann D, Sticht C, Molema G, Goebeler M and Schmidt M: FOXO3 modulates endothelial gene expression and function by classical and alternative mechanisms. J Biol Chem. 285:10163–10178. 2010.PubMed/NCBI View Article : Google Scholar | |
Yan P, Li Q, Wang L, Lu P, Suzuki K, Liu Z, Lei J, Li W, He X, Wang S, et al: FOXO3-engineered human ESC-derived vascular cells promote vascular protection and regeneration. Cell Stem Cell. 24:447–461.e8. 2019.PubMed/NCBI View Article : Google Scholar | |
Wu D, Liu Y, Liu X, Liu W, Shi H, Zhang Y, Zou L and Zhao Y: Heme oxygenase-1 gene modified human placental mesenchymal stem cells promote placental angiogenesis and spiral artery remodeling by improving the balance of angiogenic factors in vitro. Placenta. 99:70–77. 2020.PubMed/NCBI View Article : Google Scholar | |
Shevchenko EK, Makarevich PI, Tsokolaeva ZI, Boldyreva MA, Sysoeva VY, Tkachuk VA and Parfyonova YV: Transplantation of modified human adipose derived stromal cells expressing VEGF165 results in more efficient angiogenic response in ischemic skeletal muscle. J Transl Med. 11(138)2013.PubMed/NCBI View Article : Google Scholar | |
Mushimiyimana I, Tomas Bosch V, Niskanen H, Downes NL, Moreau PR, Hartigan K, Ylä-Herttuala S, Laham-Karam N and Kaikkonen MU: Genomic landscapes of noncoding RNAs regulating VEGFA and VEGFC expression in endothelial cells. Mol Cell Biol. 41(e0059420)2021.PubMed/NCBI View Article : Google Scholar | |
Zhen S, Qiang R, Lu J, Tuo X, Yang X and Li X: TGF-β1-based CRISPR/Cas9 gene therapy attenuate radiation-induced lung injury. Curr Gene Ther: Dec 29, 2020 (Epub ahead of print). doi: 10.2174/1566523220666201230100523. | |
van der Laan AM, Piek JJ and van Royen N: Targeting angiogenesis to restore the microcirculation after reperfused MI. Nat Rev Cardiol. 6:515–523. 2009.PubMed/NCBI View Article : Google Scholar | |
Tarantini G, Ramondo A, Napodano M, Favaretto E, Gardin A, Bilato C, Nesseris G, Tarzia V, Cademartiri F, Gerosa G, et al: PCI versus CABG for multivessel coronary disease in diabetics. Catheter Cardiovasc Interv. 73:50–58. 2009.PubMed/NCBI View Article : Google Scholar | |
Montrief T, Koyfman A and Long B: Coronary artery bypass graft surgery complications: A review for emergency clinicians. Am J Emerg Med. 36:2289–2297. 2018.PubMed/NCBI View Article : Google Scholar | |
Wang L, Huang S, Li S, Li M, Shi J, Bai W, Wang Q, Zheng L and Liu Y: Efficacy and safety of umbilical cord mesenchymal stem cell therapy for rheumatoid arthritis patients: A prospective phase I/II study. Drug Des Devel Ther. 13:4331–4340. 2019.PubMed/NCBI View Article : Google Scholar | |
Watanabe Y, Tsuchiya A and Terai S: The development of mesenchymal stem cell therapy in the present, and the perspective of cell-free therapy in the future. Clin Mol Hepatol. 27:70–80. 2021.PubMed/NCBI View Article : Google Scholar | |
Yu B, Zhang X and Li X: Exosomes derived from mesenchymal stem cells. Int J Mol Sci. 15:4142–4157. 2014.PubMed/NCBI View Article : Google Scholar | |
Yamashita T, Takahashi Y and Takakura Y: Possibility of exosome-based therapeutics and challenges in production of exosomes eligible for therapeutic application. Biol Pharm Bull. 41:835–842. 2018.PubMed/NCBI View Article : Google Scholar | |
He X, Wang Q, Zhao Y, Zhang H, Wang B, Pan J, Li J, Yu H, Wang L, Dai J, et al: Effect of intramyocardial grafting collagen scaffold with mesenchymal stromal cells in patients with chronic ischemic heart disease: A randomized clinical trial. JAMA Netw Open. 3(e2016236)2020.PubMed/NCBI View Article : Google Scholar | |
Topaloğlu Demir F, Özkök Akbulut T, Kıvanç Altunay İ, Aytekin S, Oğuz Topal İ, Kara Polat A, Özkur E and Karadağ AS: Evaluation of the adverse effects of biological agents used in the treatment of psoriasis: A multicenter retrospective cohort study. Dermatol Ther. 33(e14216)2020.PubMed/NCBI View Article : Google Scholar |