Novel immunological and genetic factors associated with vitiligo: A review
- Authors:
- Salvador Luis Said‑Fernandez
- Celia Nohemi Sanchez‑Domínguez
- Mauricio Andres Salinas‑Santander
- Herminia Guadalupe Martinez‑Rodriguez
- David Emmanuel Kubelis‑Lopez
- Natalia Aranza Zapata‑Salazar
- Osvaldo Tomas Vazquez‑Martinez
- Uwe Wollina
- Torello Lotti
- Jorge Ocampo‑Candiani
-
Affiliations: Department of Biochemistry and Molecular Medicine, Jose Eleuterio Gonzalez Medicine School and University Hospital, Autonomous University of Nuevo León, Monterrey, Nuevo León 64460, Mexico, Research Department, Autonomous University of Coahuila, Faculty of Medicine Saltillo Unit, Saltillo, Coahuila 25000, Mexico, Dermatology Service, Jose Eleuterio Gonzalez Medicine School and University Hospital, Autonomous University of Nuevo León, Monterrey, Nuevo León 64460, Mexico, Department of Dermatology and Allergology, Skin Cancer Center, Städtisches Klinikum, D‑01067 Dresden, Germany, Department of Dermatology and Venereology, University Guglielmo Marconi of Rome, I‑00193 Rome, Italy - Published online on: February 1, 2021 https://doi.org/10.3892/etm.2021.9743
- Article Number: 312
-
Copyright: © Said‑Fernandez et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Le Poole IC, van den Wijngaard RM, Westerhof W, Dutrieux RP and Das PK: Presence or absence of melanocytes in vitiligo lesions: An immunohistochemical investigation. J Invest Dermatol. 100:816–822. 1993.PubMed/NCBI View Article : Google Scholar | |
Salinas-Santander M, Díaz-García D, Rojas-Martínez A, Cantú-Salinas C, Sánchez-Domínguez C, Reyes-López M, Cerda-Flores RM, Ocampo-Candiani J and Ortiz-López R: Tumor necrosis factor-α-308G/A polymorphism is associated with active vitiligo vulgaris in a northeastern Mexican population. Exp Ther Med. 3:893–897. 2012.PubMed/NCBI View Article : Google Scholar | |
Le Poole IC, Das PK, van den Wijngaard RM, Bos JD and Westerhof W: Review of the etiopathomechanism of vitiligo: A convergence theory. Exp Dermatol. 2:145–153. 1993.PubMed/NCBI View Article : Google Scholar | |
Rodrigues M, Ezzedine K, Hamzavi I, Pandya AG and Harris JE: Vitiligo Working Group. New discoveries in the pathogenesis and classification of vitiligo. J Am Acad Dermatol. 77:1–13. 2017.PubMed/NCBI View Article : Google Scholar | |
Matin R: Vitiligo. BMJ Clin Evid. 2008(1717)2008.PubMed/NCBI | |
Costin GE and Hearing VJ: Human skin pigmentation: Melanocytes modulate skin color in response to stress. FASEB J. 21:976–994. 2007.PubMed/NCBI View Article : Google Scholar | |
Hara M, Toyoda M, Yaar M, Bhawan J, Avila EM, Penner IR and Gilchrest BA: Innervation of melanocytes in human skin. J Exp Med. 184:1385–1395. 1996.PubMed/NCBI View Article : Google Scholar | |
Reemann P, Reimann E, Ilmjärv S, Porosaar O, Silm H, Jaks V, Vasar E, Kingo K and Kõks S: Melanocytes in the skin-comparative whole transcriptome analysis of main skin cell types. PLoS One. 9(e115717)2014.PubMed/NCBI View Article : Google Scholar | |
Slominski A, Zmijewski MA and Pawelek J: L-tyrosine and L-dihydroxyphenylalanine as hormone-like regulators of melanocyte functions. Pigment Cell Melanoma Res. 25:14–27. 2012.PubMed/NCBI View Article : Google Scholar | |
Solano F: On the metal cofactor in the tyrosinase family. Int J Mol Sci. 19(633)2018.PubMed/NCBI View Article : Google Scholar | |
Sturm RA, Teasdale RD and Box NF: Human pigmentation genes: Identification, structure and consequences of polymorphic variation. Gene. 277:49–62. 2001.PubMed/NCBI View Article : Google Scholar | |
D'Mello SA, Finlay GJ, Baguley BC and Askarian-Amiri ME: Signaling pathways in melanogenesis. Int J Mol Sci. 17(1144)2016.PubMed/NCBI View Article : Google Scholar | |
Ortonne JP: Normal and abnormal skin color. Ann Dermatol Venereol. 139 (Suppl 4):S125–S129. 2012.PubMed/NCBI View Article : Google Scholar | |
Brenner M and Hearing VJ: The protective role of melanin against UV damage in human skin. Photochem Photobiol. 84:539–549. 2008.PubMed/NCBI View Article : Google Scholar | |
Hong Y, Song B, Chen HD and Gao XH: Melanocytes and skin immunity. J Investig Dermatol Symp Proc. 17:37–39. 2015.PubMed/NCBI View Article : Google Scholar | |
Elgendi A, Eslam A, Eman A, Nancy W, Karem K, Osama A and Ahmed E: Association of HLA Class I and II Antigens with Vitiligo in Egyptian Population. Molecular Enzymology and Drug Targets, 2016 Vol 02. DOI: 10.21767/2572-5475.10011. | |
Kirnbauer R, Charvat B, Schauer E, Köck A, Urbanski A, Förster E, Neuner P, Assmann I, Luger TA and Schwarz T: Modulation of intercellular adhesion molecule-1 expression on human melanocytes and melanoma cells: Evidence for a regulatory role of IL-6, IL-7, TNF beta, and UVB light. J Invest Dermatol. 98:320–326. 1992.PubMed/NCBI View Article : Google Scholar | |
Gasque P and Jaffar-Bandjee MC: The immunology and inflammatory responses of human melanocytes in infectious diseases. J Infect. 71:413–421. 2015.PubMed/NCBI View Article : Google Scholar | |
Plonka PM, Passeron T, Brenner M, Tobin DJ, Shibahara S, Thomas A, Slominski A, Kadekaro AL, Hershkovitz D, Peters E, et al: What are melanocytes really doing all day long...? Exp Dermatol. 18:799–819. 2009.PubMed/NCBI View Article : Google Scholar | |
Fisher GJ, Kang S, Varani J, Bata-Csorgo Z, Wan Y, Datta S and Voorhees JJ: Mechanisms of photoaging and chronological skin aging. Arch Dermatol. 138:1462–1470. 2002.PubMed/NCBI View Article : Google Scholar | |
Kvam E and Tyrrell RM: Induction of oxidative DNA base damage in human skin cells by UV and near visible radiation. Carcinogenesis. 18:2379–2384. 1997.PubMed/NCBI View Article : Google Scholar | |
Sander CS, Chang H, Hamm F, Elsner P and Thiele JJ: Role of oxidative stress and the antioxidant network in cutaneous carcinogenesis. Int J Dermatol. 43:326–335. 2004.PubMed/NCBI View Article : Google Scholar | |
Tornaletti S and Pfeifer GP: UV damage and repair mechanisms in mammalian cells. Bioessays. 18:221–228. 1996.PubMed/NCBI View Article : Google Scholar | |
Linge C: Relevance of in vitro melanocytic cell studies to the understanding of melanoma. Cancer Surv. 26:71–87. 1996.PubMed/NCBI | |
Vink AA and Roza L: Biological consequences of cyclobutane pyrimidine dimers. J Photochem Photobiol B. 65:101–104. 2001.PubMed/NCBI View Article : Google Scholar | |
Ezzedine K, Lim HW, Suzuki T, Katayama I, Hamzavi I, Lan CC, Goh BK, Anbar T, Silva de Castro C, Lee AY, et al: Revised classification/nomenclature of vitiligo and related issues: The vitiligo global issues consensus conference. Pigment Cell Melanoma Res. 25:E1–E13. 2012.PubMed/NCBI View Article : Google Scholar | |
van Geel N, Speeckaert R, Taieb A, Picardo M, Böhm M, Gawkrodger DJ, Schallreuter K, Bennett DC, van der Veen W, Whitton M, et al: Koebner's phenomenon in vitiligo: European position paper. Pigment Cell Melanoma Res. 24:564–573. 2011.PubMed/NCBI View Article : Google Scholar | |
Taïeb A and Picardo M: Clinical practice. Vitiligo. N Engl J Med. 360:160–169. 2009.PubMed/NCBI View Article : Google Scholar | |
Moellmann G, Klein-Angerer S, Scollay DA, Nordlund JJ and Lerner AB: Extracellular granular material and degeneration of keratinocytes in the normally pigmented epidermis of patients with vitiligo. J Invest Dermatol. 79:321–330. 1982.PubMed/NCBI View Article : Google Scholar | |
Falabella R, Arrunategui A, Barona MI and Alzate A: The minigrafting test for vitiligo: Detection of stable lesions for melanocyte transplantation. J Am Acad Dermatol. 32 (2 Pt 1):228–232. 1995.PubMed/NCBI View Article : Google Scholar | |
Krüger C and Schallreuter KU: A review of the worldwide prevalence of vitiligo in children/adolescents and adults. Int J Dermatol. 51:1206–1212. 2012.PubMed/NCBI View Article : Google Scholar | |
Sehgal VN and Srivastava G: Vitiligo: Compendium of clinico-epidemiological features. Indian J Dermatol Venereol Leprol. 73:149–156. 2007.PubMed/NCBI View Article : Google Scholar | |
Martis J, Bhat R, Nandakishore B and Shetty JN: A clinical study of vitiligo. Indian J Dermatol Venereol Leprol. 68:92–93. 2002.PubMed/NCBI | |
Cesar Silva de Castro C and Miot HA: Prevalence of vitiligo in Brazil-A population survey. Pigment Cell Melanoma Res. 31:448–450. 2018.PubMed/NCBI View Article : Google Scholar | |
Zhang Y, Cai Y, Shi M, Jiang S, Cui S, Wu Y, Gao XH and Chen HD: The prevalence of vitiligo: A meta-analysis. PLoS One. 11(e0163806)2016.PubMed/NCBI View Article : Google Scholar | |
Wang X, Du J, Wang T, Zhou C, Shen Y, Ding X, Tian S, Liu Y, Peng G, Xue S, et al: Prevalence and clinical profile of vitiligo in China: A community-based study in six cities. Acta Derm Venereol. 93:62–65. 2013.PubMed/NCBI View Article : Google Scholar | |
Habib A and Raza N: Clinical pattern of vitiligo. J Coll Physicians Surg Pak. 22:61–62. 2012.PubMed/NCBI | |
Salinas-Santander M, Sanchez-Dominguez C, Cantú-Salinas C, Ocampo-Garza J, Cerda-Flores R, Ortiz-López R and Ocampo-Candiani J: Vitiligo: Factores asociados con su aparición en pacientes del Noreste de México. Dermatol Rev Mex. 232–238. 2014.(In Spanish). | |
Yaghoobi R, Omidian M and Bagherani N: Vitiligo: A review of the published work. J Dermatol. 38:419–431. 2011.PubMed/NCBI View Article : Google Scholar | |
Huggins RH, Janusz CA and Schwartz RA: Vitiligo: A sign of systemic disease. Indian J Dermatol Venereol Leprol. 72:68–71. 2006.PubMed/NCBI View Article : Google Scholar | |
Jin Y, Mailloux CM, Gowan K, Riccardi SL, LaBerge G, Bennett DC, Fain PR and Spritz RA: NALP1 in vitiligo-associated multiple autoimmune disease. N Engl J Med. 356:1216–1225. 2007.PubMed/NCBI View Article : Google Scholar | |
Vázquez-Martínez OT, Velásquez-Arenas L, Méndez-Olvera N and Ocampo-Candiani J: Vitiligo. Overview and current therapeutics. Dermatología CMQ. 4:187–192. 2006. | |
Chen YT, Chen YJ, Hwang CY, Lin MW, Chen TJ, Chen CC, Chu SY, Lee DD, Chang YT and Liu HN: Comorbidity profiles in association with vitiligo: A nationwide population-based study in Taiwan. J Eur Acad Dermatol Venereol. 29:1362–1369. 2015.PubMed/NCBI View Article : Google Scholar | |
Dahir AM and Thomsen SF: Comorbidities in vitiligo: Comprehensive review. Int J Dermatol. 57:1157–1164. 2018.PubMed/NCBI View Article : Google Scholar | |
Bae JM, Lee JH, Yun JS, Han B and Han TY: Vitiligo and overt thyroid diseases: A nationwide population-based study in Korea. J Am Acad Dermatol. 76:871–878. 2017.PubMed/NCBI View Article : Google Scholar | |
Sedighe M and Gholamhossein G: Thyroid dysfunction and thyroid antibodies in Iranian patients with vitiligo. Indian J Dermatol. 53:9–11. 2008.PubMed/NCBI View Article : Google Scholar | |
Gopal KV, Rao GR and Kumar YH: Increased prevalence of thyroid dysfunction and diabetes mellitus in Indian vitiligo patients: A case-control study. Indian Dermatol Online J. 5:456–460. 2014.PubMed/NCBI View Article : Google Scholar | |
El-Gayyar MA, Helmy ME, Amer ER, Elsaied MA and Gaballah MA: Antimelanocyte antibodies: A possible role in patients with vitiligo. Indian J Dermatol. 65:33–37. 2020.PubMed/NCBI View Article : Google Scholar | |
Liu CW and Huang YC: Vitiligo and autoantibodies: A systematic review and meta-analysis. J Dtsch Dermatol Ges. 16:845–851. 2018.PubMed/NCBI View Article : Google Scholar | |
Genetics Home Reference. Vitiligo. Inheritance Pattern. Available at: https://ghr.nlm.nih.gov/condition/vitiligo#inheritance (last accessed 8 July 2019). | |
Alenizi DA: Consanguinity pattern and heritability of Vitiligo in Arar, Saudi Arabia. J Family Community Med. 21:13–16. 2014.PubMed/NCBI View Article : Google Scholar | |
Allam M and Riad H: Concise review of recent studies in vitiligo. Qatar Med J. 2013:1–19. 2013.PubMed/NCBI View Article : Google Scholar | |
Franks AL and Slansky JE: Multiple associations between a broad spectrum of autoimmune diseases, chronic inflammatory diseases and cancer. Anticancer Res. 32:1119–1136. 2012.PubMed/NCBI | |
Asilian A, Momeni I and Khosravani P: Vitiligo associated with esophageal adenocarcinoma. Int J Prev Med. 4:489–490. 2013.PubMed/NCBI | |
Balasubramanian A: Vitiligo associated with breast cancer-a report of two cases. Int J Cur Res Rev. 7:56–58. 2015. | |
Manga P, Elbuluk N and Orlow SJ: Recent advances in understanding vitiligo. F1000Res 5: F1000 Faculty Rev-2234, 2016. | |
Patel S, Rauf A, Khan H, Meher BR and Hassan SSU: A holistic review on the autoimmune disease vitiligo with emphasis on the causal factors. Biomed Pharmacother. 92:501–508. 2017.PubMed/NCBI View Article : Google Scholar | |
Giang J, Seelen MAJ, van Doorn MBA, Rissmann R, Prens EP and Damman J: Complement activation in inflammatory skin diseases. Front Immunol. 9(639)2018.PubMed/NCBI View Article : Google Scholar | |
Ricklin D, Reis ES, Mastellos DC, Gros P and Lambris JD: Complement component C3-The ‘Swiss Army Knife’ of innate immunity and host defense. Immunol Rev. 274:33–58. 2016.PubMed/NCBI View Article : Google Scholar | |
Sandoval-Cruz M, García-Carrasco M, Sánchez-Porras R, Mendoza-Pinto C, Jiménez-Hernández M, Munguía-Realpozo P and Ruiz-Argüelles A: Immunopathogenesis of vitiligo. Autoimmun Rev. 10:762–765. 2011.PubMed/NCBI View Article : Google Scholar | |
Basak PY, Adiloglu AK, Ceyhan AM, Tas T and Akkaya VB: The role of helper and regulatory T cells in the pathogenesis of vitiligo. J Am Acad Dermatol. 60:256–260. 2009.PubMed/NCBI View Article : Google Scholar | |
Kotobuki Y, Tanemura A, Yang L, Itoi S, Wataya-Kaneda M, Murota H, Fujimoto M, Serada S, Naka T and Katayama I: Dysregulation of melanocyte function by Th17-related cytokines: Significance of Th17 cell infiltration in autoimmune vitiligo vulgaris. Pigment Cell Melanoma Res. 25:219–230. 2012.PubMed/NCBI View Article : Google Scholar | |
Bassiouny DA and Shaker O: Role of interleukin-17 in the pathogenesis of vitiligo. Clin Exp Dermatol. 36:292–297. 2011.PubMed/NCBI View Article : Google Scholar | |
Wang CQF, Akalu YT, Suarez-Farinas M, Gonzalez J, Mitsui H, Lowes MA, Orlow SJ, Manga P and Krueger JG: IL-17 and TNF synergistically modulate cytokine expression while suppressing melanogenesis: Potential relevance to psoriasis. J Invest Dermatol. 133:2741–2752. 2013.PubMed/NCBI View Article : Google Scholar | |
Moretti S, Fabbri P, Baroni G, Berti S, Bani D, Berti E, Nassini R, Lotti T and Massi D: Keratinocyte dysfunction in vitiligo epidermis: Cytokine microenvironment and correlation to keratinocyte apoptosis. Histol Histopathol. 24:849–857. 2009.PubMed/NCBI View Article : Google Scholar | |
Webb KC, Tung R, Winterfield LS, Gottlieb AB, Eby JM, Henning SW and Le Poole IC: Tumour necrosis factor-α inhibition can stabilize disease in progressive vitiligo. Br J Dermatol. 173:641–650. 2015.PubMed/NCBI View Article : Google Scholar | |
Alghamdi K and Khurrum H: Methotrexate for the treatment of generalized vitiligo. Saudi Pharm J. 21:423–424. 2013.PubMed/NCBI View Article : Google Scholar | |
Sandra A, Pai S and Shenoi SD: Unstable vitiligo responding to methotrexate. Indian J Dermatol Venereol Leprol. 64(309)1998.PubMed/NCBI | |
Garza-Mayers AC and Kroshinsky D: Low-dose methotrexate for vitiligo. J Drugs Dermatol. 16:705–706. 2017.PubMed/NCBI | |
Singh H, Kumaran MS, Bains A and Parsad D: A randomized comparative study of oral corticosteroid minipulse and low-dose oral methotrexate in the treatment of unstable vitiligo. Dermatology. 231:286–290. 2015.PubMed/NCBI View Article : Google Scholar | |
Abdelmaksoud A, Dave DD, Lotti T and Vestita M: Topical methotrexate 1% gel for treatment of vitiligo: A case report and review of the literature. Dermatol Ther. 32(e13013)2019.PubMed/NCBI View Article : Google Scholar | |
Haller O and Kochs G: Human MxA protein: An interferon-induced dynamin-like GTPase with broad antiviral activity. J Interferon Cytokine Res. 31:79–87. 2011.PubMed/NCBI View Article : Google Scholar | |
Boniface K, Seneschal J, Picardo M and Taïeb A: Vitiligo: Focus on clinical aspects, immunopathogenesis, and therapy. Clin Rev Allergy Immunol. 54:52–67. 2018.PubMed/NCBI View Article : Google Scholar | |
Rezk AF, Kemp DM, El-Domyati M, El-Din WH, Lee JB, Uitto J, Igoucheva O and Alexeev V: Misbalanced CXCL12 and CCL5 chemotactic signals in vitiligo onset and progression. J Invest Dermatol. 137:1126–1134. 2017.PubMed/NCBI View Article : Google Scholar | |
Harris JE: Cellular stress and innate inflammation in organ-specific autoimmunity: Lessons learned from vitiligo. Immunol Rev. 269:11–25. 2016.PubMed/NCBI View Article : Google Scholar | |
Li S, Zhu G, Yang Y, Jian Z, Guo S, Dai W, Shi Q, Ge R, Ma J, Liu L, et al: Oxidative stress drives CD8+ T-cell skin trafficking in patients with vitiligo through CXCL16 upregulation by activating the unfolded protein response in keratinocytes. J Allergy Clin Immunol. 140:177–189.e9. 2017.PubMed/NCBI View Article : Google Scholar | |
Wańkowicz-Kalińska A, van den Wijngaard RM, Tigges BJ, Westerhof W, Ogg GS, Cerundolo V, Storkus WJ and Das PK: Immunopolarization of CD4+ and CD8+ T cells to type-1-like is associated with melanocyte loss in human vitiligo. Lab Invest. 83:683–695. 2003.PubMed/NCBI View Article : Google Scholar | |
Xie H, Zhou F, Liu L, Zhu Li Q, Li C and Gao T: Vitiligo: How do oxidative stress-induced autoantigens trigger autoimmunity? J Dermatol Sci. 81:3–9. 2016.PubMed/NCBI View Article : Google Scholar | |
Le Poole IC, Wañkowicz-Kaliñska A, van den Wijngaard RM, Nickoloff BJ and Das PK: Autoimmune aspects of depigmentation in vitiligo. J Investig Dermatol Symp Proc. 9:68–72. 2004.PubMed/NCBI View Article : Google Scholar | |
Le Poole IC, van den Wijngaard RM, Westerhof W and Das PK: Presence of T cells and macrophages in inflammatory vitiligo skin parallels melanocyte disappearance. Am J Pathol. 148:1219–1228. 1996.PubMed/NCBI | |
Palermo B, Campanelli R, Garbelli S, Mantovani S, Lantelme E, Brazzelli V, Ardigó M, Borroni G, Martinetti M, Badulli C, et al: Specific cytotoxic T lymphocyte responses against Melan-A/MART1, tyrosinase and gp100 in vitiligo by the use of major histocompatibility complex/peptide tetramers: The role of cellular immunity in the etiopathogenesis of vitiligo. J Invest Dermatol. 117:326–332. 2001.PubMed/NCBI View Article : Google Scholar | |
Relke N and Gooderham M: The use of janus kinase inhibitors in vitiligo: A review of the literature. J Cutan Med Surg. 23:298–306. 2019.PubMed/NCBI View Article : Google Scholar | |
Rashighi M, Agarwal P, Richmond JM, Harris TH, Dresser K, Su MW, Zhou Y, Deng A, Hunter CA, Luster AD and Harris JE: CXCL10 is critical for the progression and maintenance of depigmentation in a mouse model of vitiligo. Sci Transl Med. 6(223ra23)2014.PubMed/NCBI View Article : Google Scholar | |
Ciechanowicz P, Rakowska A, Sikora M and Rudnicka L: JAK-inhibitors in dermatology: Current evidence and future applications. J Dermatolog Treat. 30:648–658. 2019.PubMed/NCBI View Article : Google Scholar | |
Craiglow BG and King BA: Tofacitinib citrate for the treatment of vitiligo: A pathogenesis-directed therapy. JAMA Dermatol. 151:1110–1112. 2015.PubMed/NCBI View Article : Google Scholar | |
Speeckaert R, Dugardin J, Lambert J, Lapeere H, Verhaeghe E, Speeckaert MM and van Geel N: Critical appraisal of the oxidative stress pathway in vitiligo: A systematic review and meta-analysis. J Eur Acad Dermatol Venereol. 32:1089–1098. 2018.PubMed/NCBI View Article : Google Scholar | |
Laddha NC, Dwivedi M, Mansuri MS, Gani AR, Ansarullah M, Ramachandran AV, Dalai S and Begum R: Vitiligo: Interplay between oxidative stress and immune system. Exp Dermatol. 22:245–250. 2013.PubMed/NCBI View Article : Google Scholar | |
Dell'Anna ML, Urbanelli S, Mastrofrancesco A, Camera E, Iacovelli P, Leone G, Manini P, D'Ischia M and Picardo M: Alterations of mitochondria in peripheral blood mononuclear cells of vitiligo patients. Pigment Cell Res. 16:553–559. 2003.PubMed/NCBI View Article : Google Scholar | |
Schallreuter KU, Salem MA, Holtz S and Panske A: Basic evidence for epidermal H2O2/ONOO(-)-mediated oxidation/nitration in segmental vitiligo is supported by repigmentation of skin and eyelashes after reduction of epidermal H2O2 with topical NB-UVB-activated pseudocatalase PC-KUS. FASEB J. 27:3113–3122. 2013.PubMed/NCBI View Article : Google Scholar | |
Xu P, Xue YN, Ji HH, Tan C and Guo S: H2 O2 -induced oxidative stress disrupts mitochondrial functions and impairs migratory potential of human epidermal melanocytes. Exp Dermatol. 29:733–741. 2020.PubMed/NCBI View Article : Google Scholar | |
Alshiyab DM, Al-Qarqaz FA, Muhaidat JM, Alkhader YS, Al-Sheyab RF and Jafaar SI: Comparison of the efficacy of Tacrolimus 0.1% ointment and Tacrolimus 0.1% plus topical pseudocatalase/superoxide dismutase gel in children with limited vitiligo: A randomized controlled trial. J Dermatolog Treat. 1–4. 2020.PubMed/NCBI View Article : Google Scholar : (Epub ahead of print). | |
Mathachan SR, Khurana A, Gautam RK, Kulhari A, Sharma L and Sardana K: Does oxidative stress correlate with disease activity and severity in vitiligo? An analytical study. J Cosmet Dermatol, 2020 (Epub ahead of print). | |
Spritz RA: The genetics of generalized vitiligo and associated autoimmune diseases. J Dermatol Sci. 41:3–10. 2006.PubMed/NCBI View Article : Google Scholar | |
Zhang XJ, Chen JJ and Liu JB: The genetic concept of vitiligo. J Dermatol Sci. 39:137–146. 2005.PubMed/NCBI View Article : Google Scholar | |
Genetics Home Reference. MITF gene. Available at: https://ghr.nlm.nih.gov/gene/MITF. (last accessed 8 July 2019). | |
Genetics Home Reference. POMC gene. Available at: https://ghr.nlm.nih.gov/gene/POMC. (last accessed 8 July 2019). | |
UniProtKB. UniProtKB-P40126 (TYRP2_HUMAN). Available at: https://www.uniprot.org/uniprot/P40126. (last accessed 8 July 2019). | |
UniProtKB. UniProtKB-P17643 (TYRP1_HUMAN). Available at: https://www.uniprot.org/uniprot/P17643. (last accessed 8 July 2019). | |
UniProtKB. UniProtKB-Q16655 (MAR1_HUMSN). Available at: https://www.uniprot.org/uniprot/Q16655. (last accessed 8 July 2019). | |
Genetics Home Reference. CAPN3 gene. Available at: https://ghr.nlm.nih.gov/gene/CAPN3. (last accessed 8 July 2019). | |
Al-Shobaili HA: Update on the genetics characterization of vitiligo. Int J Health Sci (Qassim). 5:167–179. 2011.PubMed/NCBI | |
Le Poole IC, Sarangarajan R, Zhao Y, Stennett LS, Brown TL, Sheth P, Miki T and Boissy RE: ‘VIT1’, a novel gene associated with vitiligo. Pigment Cell Res. 14:475–484. 2001.PubMed/NCBI View Article : Google Scholar | |
Genetics Home Reference. CAT gene. Available at: https://ghr.nlm.nih.gov/gene/CAT. (last accessed 8 July 2019). | |
Casp CB, She JX and McCormack WT: Genetic association of the catalase gene (CAT) with vitiligo susceptibility. Pigment Cell Res. 15:62–66. 2002.PubMed/NCBI View Article : Google Scholar | |
Mosaad YM, Sallam M, Elsaied MA, Fathy H, Fawzy Z, Elzehery R, Shaat RM and El-Gilany AH: Association of CAT 389 T/C and -89 T/A gene polymorphisms with vitiligo: Relation with oxidative stress. J Egypt Women Dermatol Soc. 14:121–127. 2017. | |
UniProtKB. UniProtKD-P24821 (TENA_HUMAN). Available at: https://www.uniprot.org/uniprot/P24821. (last accessed 8 July 2019). | |
Le Poole IC, van den Wijngaard RM, Westerhof W and Das PK: Tenascin is overexpressed in vitiligo lesional skin and inhibits melanocyte adhesion. Br J Dermatol. 137:171–178. 1997.PubMed/NCBI View Article : Google Scholar | |
Murphy-Ullrich JE: The de-adhesive activity of matricellular proteins: Is intermediate cell adhesion an adaptive state? J Clin Invest. 107:785–790. 2001.PubMed/NCBI View Article : Google Scholar | |
Esmat SM, Hadidi HHE, Hegazy RA, Gawdat HI, Tawdy AM, Fawzy MM, AbdelHalim DM, Sultan OS and Shaker OG: Increased tenascin C and DKK1 in vitiligo: Possible role of fibroblasts in acral and non-acral disease. Arch Dermatol Res. 310:425–430. 2018.PubMed/NCBI View Article : Google Scholar | |
Schunter JA, Löffler D, Wiesner T, Kovacs P, Badenhoop K, Aust G, Tönjes A, Müller P, Baber R, Simon JC, et al: A novel FoxD3 variant is associated with vitiligo and elevated thyroid auto-antibodies. J Clin Endocrinol Metab. 100:E1335–E1342. 2015.PubMed/NCBI View Article : Google Scholar | |
National Center for Biothechnology Information. Genes and Expression. Gene. FOXD3 forkhead box D3 [Homo sapiens (human)]. Available at: https://www.ncbi.nlm.nih.gov/gene/27022?report=full_report%202017%20Caption:%201588786844. (last accesed 8 July 2019). | |
Alghamdi KM, Khurrum H, Taieb A and Ezzedine K: Treatment of generalized vitiligo with anti-TNF-α Agents. J Drugs Dermatol. 11:534–539. 2012.PubMed/NCBI | |
Wilson AG, de Vries N, Pociot F, di Giovine FS, van der Putte LB and Duff GW: An allelic polymorphism within the human tumor necrosis factor alpha promoter region is strongly associated with HLA A1, B8, and DR3 alleles. J Exp Med. 177:557–560. 1993.PubMed/NCBI View Article : Google Scholar | |
Wilson AG, Symons JA, McDowell TL, McDevitt HO and Duff GW: Effects of a polymorphism in the human tumor necrosis factor alpha promoter on transcriptional activation. Proc Natl Acad Sci USA. 94:3195–3199. 1997.PubMed/NCBI View Article : Google Scholar | |
Mitra S, De Sarkar S, Pradhan A, Pati AK, Pradhan R, Mondal D, Sen S, Ghosh A, Chatterjee S and Chatterjee M: Levels of oxidative damage and proinflammatory cytokines are enhanced in patients with active vitiligo. Free Radic Res. 51:986–994. 2017.PubMed/NCBI View Article : Google Scholar | |
Garcia-Melendez ME, Salinas-Santander M, Sanchez-Dominguez C, Gonzalez-Cardenas H, Cerda-Flores RM, Ocampo-Candiani J and Ortiz-López R: Protein tyrosine phosphatase PTPN22 +1858C/T polymorphism is associated with active vitiligo. Exp Ther Med. 8:1433–1437. 2014.PubMed/NCBI View Article : Google Scholar | |
Vang T, Miletic AV, Bottini N and Mustelin T: Protein tyrosine phosphatase PTPN22 in human autoimmunity. Autoimmunity. 40:453–461. 2007.PubMed/NCBI View Article : Google Scholar | |
Arora A and Kumaran M: Pathogenesis of vitiligo: An update. Pigment Int. 4:65–77. 2017.PubMed/NCBI View Article : Google Scholar | |
Kingo K, Aunin E, Karelson M, Philips MA, Ratsep R, Silm H, Vasar E, Soomets U and Koks S: Gene expression analysis of melanocortin system in vitiligo. J Dermatol Sci. 48:113–122. 2007.PubMed/NCBI View Article : Google Scholar | |
Kingo K, Aunin E, Karelson M, Ratsep R, Silm H, Vasar E and Koks S: Expressional changes in the intracellular melanogenesis pathways and their possible role in the pathogenesis of vitiligo. J Dermatol Sci. 52:39–46. 2008.PubMed/NCBI View Article : Google Scholar | |
Strömberg S, Bjorklund MG, Asplund A, Rimini R, Lundeberg J, Nilsson P, Ponten F and Olsson MJ: Transcriptional profiling of melanocytes from patients with vitiligo vulgaris. Pigment Cell Melanoma Res. 21:162–171. 2008.PubMed/NCBI View Article : Google Scholar | |
Salinas Santander MA: Análisis del perfil de expresión de pacientes con vitiligo. Universidad Autónoma de Nuevo Leon, Repositorio Académico Digital, p 143, 2012. http://eprints.uanl.mx/3248/. | |
Salinas-Santander M, Trevino V, De la Rosa-Moreno E, Verduzco-Garza B, Sánchez-Domínguez CN, Cantú-Salinas C, Ocampo-Garza J, Lagos-Rodríguez A, Ocampo-Candiani J and Ortiz-López R: CAPN3, DCT, MLANA and TYRP1 are overexpressed in skin of vitiligo vulgaris Mexican patients. Exp Ther Med. 15:2804–2811. 2018.PubMed/NCBI View Article : Google Scholar | |
Shi F, Kong BW, Song JJ, Lee JY, Dienglewicz RL and Erf GF: Understanding mechanisms of vitiligo development in Smyth line of chickens by transcriptomic microarray analysis of evolving autoimmune lesions. BMC Immunol. 13(18)2012.PubMed/NCBI View Article : Google Scholar | |
Mansuri MS, Singh M and Begum R: MiRNA signatures and transcriptional regulation of their target genes in vitiligo. J Dermatol Sci. 84:50–58. 2016.PubMed/NCBI View Article : Google Scholar | |
Dey-Rao R and Sinha AA: Vitiligo blood transcriptomics provides new insights into disease mechanisms and identifies potential novel therapeutic targets. BMC Genomics. 18(109)2017.PubMed/NCBI View Article : Google Scholar | |
Regazzetti C, Joly F, Marty C, Rivier M, Mehul B, Reiniche P, Mounier C, Rival Y, Piwnica D, Cavalié M, et al: Transcriptional analysis of vitiligo skin reveals the alteration of WNT pathway: A promising target for repigmenting vitiligo patients. J Invest Dermatol. 135:3105–3114. 2015.PubMed/NCBI View Article : Google Scholar | |
Segalés J, Perdiguero E and Muñoz-Cánoves P: Regulation of muscle stem cell functions: A focus on the p38 MAPK signaling pathway. Front Cell Dev Biol. 4(91)2016.PubMed/NCBI View Article : Google Scholar | |
Wei S and Siegal GP: Mechanisms modulating inflammatory osteolysis: A review with insights into therapeutic targets. Pathol Res Pract. 204:695–706. 2008.PubMed/NCBI View Article : Google Scholar | |
National Center of Biotechnology Information. Genes and Expression. Gene. PIK3CB phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit beta [Homo sapiens (human)]. Available at: https://www.ncbi.nlm.nih.gov/gene?Db=gene&Cmd=ShowDetailView&TermToSearch=5291. (last accessed 8 July 2019). | |
UniProtKB. UniProtKB-P23443 (KS6B1_HUMAN). Available at: https://www.uniprot.org/uniprot/P23443. (last accessed 8 July 2019). | |
UniProtKB. UniProtKB-Q07812 (BAX_HUMAN). Available at: https://www.uniprot.org/uniprot/Q07812. (last accessed 8 July 2019). | |
National Center of Biotechnology Information. Genes and Expression. Gene. USF1 upstream transcription factor 1 [Homo sapiens (human)] Available at: https://www.ncbi.nlm.nih.gov/gene?Db=gene&Cmd=ShowDetailView&TermToSearch=7391. (last accessed 8 July 2019). | |
Manning G, Whyte DB, Martinez R, Hunter T and Sudarsanam S: The protein kinase complement of the human genome. Science. 298:1912–1934. 2002.PubMed/NCBI View Article : Google Scholar |