1
|
Chan JYK, Zhen G and Agrawal N: The role
of tumor DNA as a diagnostic tool for head and neck squamous cell
carcinoma. Semin Cancer Biol. 55:1–7. 2019.PubMed/NCBI View Article : Google Scholar
|
2
|
Torre LA, Bray F, Siegel RL, Ferlay J,
Lortet-Tieulent J and Jemal A: Global cancer statistics, 2012. CA
Cancer J Clin. 65:87–108. 2015.PubMed/NCBI View Article : Google Scholar
|
3
|
Solomon B, Young RJ and Rischin D: Head
and neck squamous cell carcinoma: Genomics and emerging biomarkers
for immunomodulatory cancer treatments. Semin Cancer Biol.
52:228–240. 2018.PubMed/NCBI View Article : Google Scholar
|
4
|
Grégoire V, Lefebvre JL, Licitra L and
Felip E: EHNS-ESMO-ESTRO Guidelines Working Group. Squamous cell
carcinoma of the head and neck: EHNS-ESMO-ESTRO Clinical Practice
Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 21
(Suppl 5):v184–v186. 2010.PubMed/NCBI View Article : Google Scholar
|
5
|
Ferlay J, Soerjomataram I, Dikshit R, Eser
S, Mathers C, Rebelo M, Parkin DM, Forman D and Bray F: Cancer
incidence and mortality worldwide: Sources, methods and major
patterns in GLOBOCAN 2012. Int J Cancer. 136:E359–E386.
2015.PubMed/NCBI View Article : Google Scholar
|
6
|
Ferlay J, Shin HR, Bray F, Forman D,
Mathers C and Parkin DM: Estimates of worldwide burden of cancer in
2008: GLOBOCAN 2008. Int J Cancer. 127:2893–2917. 2010.PubMed/NCBI View Article : Google Scholar
|
7
|
Fong PY, Tan SH, Lim DWT, Tan EH, Ng QS,
Sommat K, Tan DSW and Ang MK: Association of clinical factors with
survival outcomes in laryngeal squamous cell carcinoma (LSCC). PLoS
One. 14(e0224665)2019.PubMed/NCBI View Article : Google Scholar
|
8
|
Cristina V, Herrera-Gómez RG, Szturz P,
Espeli V and Siano M: Immunotherapies and future combination
strategies for head and neck squamous cell carcinoma. Int J Mol
Sci. 20(20)2019.PubMed/NCBI View Article : Google Scholar
|
9
|
Nowicka Z, Stawiski K, Tomasik B and
Fendler W: Extracellular miRNAs as Biomarkers of Head and Neck
Cancer Progression and Metastasis. Int J Mol Sci.
20(20)2019.PubMed/NCBI View Article : Google Scholar
|
10
|
Bushati N and Cohen SM: microRNA
functions. Annu Rev Cell Dev Biol. 23:175–205. 2007.PubMed/NCBI View Article : Google Scholar
|
11
|
Lee YS and Dutta A: MicroRNAs in cancer.
Annu Rev Pathol. 4:199–227. 2009.PubMed/NCBI View Article : Google Scholar
|
12
|
Libbus BL and Johnson LA: The creeping
vole, Microtus oregoni: Karyotype and sex-chromosome differences
between two geographical populations. Cytogenet Cell Genet.
47:181–184. 1988.PubMed/NCBI View Article : Google Scholar
|
13
|
Zhang Y, Li Y, Han L, Zhang P and Sun S:
SUMO1P3 is associated clinical progression and facilitates cell
migration and invasion through regulating miR-136 in non-small cell
lung cancer. Biomed Pharmacother. 113(108686)2019.PubMed/NCBI View Article : Google Scholar
|
14
|
Zhao H, Liu S, Wang G, Wu X, Ding Y, Guo
G, Jiang J and Cui S: Expression of miR-136 is associated with the
primary cisplatin resistance of human epithelial ovarian cancer.
Oncol Rep. 33:591–598. 2015.PubMed/NCBI View Article : Google Scholar
|
15
|
Yu L, Zhou GQ and Li DC: miR-136 triggers
apoptosis in human gastric cancer cells by targeting AEG-1 and
BCL2. Eur Rev Med Pharmacol Sci. 22:7251–7256. 2018.PubMed/NCBI View Article : Google Scholar
|
16
|
Zhong Y, Yu C and Qin W: lncRNA SNHG14
promotes inflammatory response induced by cerebral
ischemia/reperfusion injury through regulating miR-136-5p /ROCK1.
Cancer Gene Ther. 26:234–247. 2019.PubMed/NCBI View Article : Google Scholar
|
17
|
Zhang W, Shi J, Cheng C and Wang H:
CircTIMELESS regulates the proliferation and invasion of lung
squamous cell carcinoma cells via the miR-136-5p/ROCK1 axis. J Cell
Physiol. 235:5962–5971. 2020.PubMed/NCBI View Article : Google Scholar
|
18
|
Riento K and Ridley AJ: Rocks:
Multifunctional kinases in cell behaviour. Nat Rev Mol Cell Biol.
4:446–456. 2003.PubMed/NCBI View
Article : Google Scholar
|
19
|
Ishizaki T, Maekawa M, Fujisawa K, Okawa
K, Iwamatsu A, Fujita A, Watanabe N, Saito Y, Kakizuka A, Morii N,
et al: The small GTP-binding protein Rho binds to and activates a
160 kDa Ser/Thr protein kinase homologous to myotonic dystrophy
kinase. EMBO J. 15:1885–1893. 1996.PubMed/NCBI
|
20
|
Ishizaki T, Naito M, Fujisawa K, Maekawa
M, Watanabe N, Saito Y and Narumiya S: p160ROCK, a Rho-associated
coiled-coil forming protein kinase, works downstream of Rho and
induces focal adhesions. FEBS Lett. 404:118–124. 1997.PubMed/NCBI View Article : Google Scholar
|
21
|
del Peso L, Hernández-Alcoceba R, Embade
N, Carnero A, Esteve P, Paje C and Lacal JC: Rho proteins induce
metastatic properties in vivo. Oncogene. 15:3047–3057.
1997.PubMed/NCBI View Article : Google Scholar
|
22
|
Narumiya S, Tanji M and Ishizaki T: Rho
signaling, ROCK and mDia1, in transformation, metastasis and
invasion. Cancer Metastasis Rev. 28:65–76. 2009.PubMed/NCBI View Article : Google Scholar
|
23
|
Wong CC, Wong CM, Tung EK, Man K and Ng
IO: Rho-kinase 2 is frequently overexpressed in hepatocellular
carcinoma and involved in tumor invasion. Hepatology. 49:1583–1594.
2009.PubMed/NCBI View Article : Google Scholar
|
24
|
Morgan-Fisher M, Wewer UM and Yoneda A:
Regulation of ROCK activity in cancer. J Histochem Cytochem.
61:185–198. 2013.PubMed/NCBI View Article : Google Scholar
|
25
|
Bishop AL and Hall A: Rho GTPases and
their effector proteins. Biochem J. 348:241–255. 2000.PubMed/NCBI
|
26
|
Imamura F, Mukai M, Ayaki M and Akedo H:
Y-27632, an inhibitor of rho-associated protein kinase, suppresses
tumor cell invasion via regulation of focal adhesion and focal
adhesion kinase. Jpn J Cancer Res. 91:811–816. 2000.PubMed/NCBI View Article : Google Scholar
|
27
|
Ohta T, Takahashi T, Shibuya T, Amita M,
Henmi N, Takahashi K and Kurachi H: Inhibition of the Rho/ROCK
pathway enhances the efficacy of cisplatin through the blockage of
hypoxia-inducible factor-1α in human ovarian cancer cells. Cancer
Biol Ther. 13:25–33. 2012.PubMed/NCBI View Article : Google Scholar
|
28
|
Thiery JP: Epithelial-mesenchymal
transitions in tumour progression. Nat Rev Cancer. 2:442–454.
2002.PubMed/NCBI View
Article : Google Scholar
|
29
|
Bhowmick NA, Ghiassi M, Bakin A, Aakre M,
Lundquist CA, Engel ME, Arteaga CL and Moses HL: Transforming
growth factor-beta1 mediates epithelial to mesenchymal
transdifferentiation through a RhoA-dependent mechanism. Mol Biol
Cell. 12:27–36. 2001.PubMed/NCBI View Article : Google Scholar
|
30
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) Method. Methods. 25:402–408.
2001.PubMed/NCBI View Article : Google Scholar
|
31
|
Cohen GM: Caspases: The executioners of
apoptosis. Biochem J. 326:1–16. 1997.PubMed/NCBI View Article : Google Scholar
|
32
|
Chipuk JE, Moldoveanu T, Llambi F, Parsons
MJ and Green DR: The BCL-2 family reunion. Mol Cell. 37:299–310.
2010.PubMed/NCBI View Article : Google Scholar
|
33
|
Zheng J, Ge P, Liu X, Wei J, Wu G and Li
X: miR-136 inhibits gastric cancer-specific peritoneal metastasis
by targeting HOXC10. Tumour Biol.
39(1010428317706207)2017.PubMed/NCBI View Article : Google Scholar
|
34
|
Ren H, Qi Y, Yin X and Gao J: miR-136
targets MIEN1 and involves the metastasis of colon cancer by
suppressing epithelial-to-mesenchymal transition. OncoTargets Ther.
11:67–74. 2017.PubMed/NCBI View Article : Google Scholar
|
35
|
Yan M, Li X, Tong D, Han C, Zhao R, He Y
and Jin X: miR-136 suppresses tumor invasion and metastasis by
targeting RASAL2 in triple-negative breast cancer. Oncol Rep.
36:65–71. 2016.PubMed/NCBI View Article : Google Scholar
|
36
|
Yuan Q, Cao G, Li J, Zhang Y and Yang W:
MicroRNA-136 inhibits colon cancer cell proliferation and invasion
through targeting liver receptor homolog-1/Wnt signaling. Gene.
628:48–55. 2017.PubMed/NCBI View Article : Google Scholar
|
37
|
Wang Z, Huang C, Zhang A, Lu C and Liu L:
Overexpression of circRNA_100290 promotes the progression of
laryngeal squamous cell carcinoma through the miR-136-5p/RAP2C
axis. Biomed Pharmacother. 125(109874)2020.PubMed/NCBI View Article : Google Scholar
|
38
|
Chaffer CL and Weinberg RA: A perspective
on cancer cell metastasis. Science. 331:1559–1564. 2011.PubMed/NCBI View Article : Google Scholar
|
39
|
Cho ES, Kang HE, Kim NH and Yook JI:
Therapeutic implications of cancer epithelial-mesenchymal
transition (EMT). Arch Pharm Res. 42:14–24. 2019.PubMed/NCBI View Article : Google Scholar
|
40
|
Chaffer CL, San Juan BP, Lim E and
Weinberg RA: EMT, cell plasticity and metastasis. Cancer Metastasis
Rev. 35:645–654. 2016.PubMed/NCBI View Article : Google Scholar
|
41
|
Kang W, Wang Q, Dai Y, Wang H, Wang M,
Wang J, Zhang D, Sun P, Qi T, Jin X, et al: Hypomethylation of
PlncRNA-1 promoter enhances bladder cancer progression through the
miR-136-5p/Smad3 axis. Cell Death Dis. 11(1038)2020.PubMed/NCBI View Article : Google Scholar
|
42
|
Young FE: Efficacy of new tests and the
safety of the blood supply. Transfusion. 30:4–5. 1990.PubMed/NCBI View Article : Google Scholar
|
43
|
Liu S, Goldstein RH, Scepansky EM and
Rosenblatt M: Inhibition of rho-associated kinase signaling
prevents breast cancer metastasis to human bone. Cancer Res.
69:8742–8751. 2009.PubMed/NCBI View Article : Google Scholar
|
44
|
Liang H, Zhang C, Guan H, Liu J and Cui Y:
lncRNA DANCR promotes cervical cancer progression by upregulating
ROCK1 via sponging miR-335-5p. J Cell Physiol. 234:7266–7278.
2019.PubMed/NCBI View Article : Google Scholar
|
45
|
Du W, Tang H, Lei Z, Zhu J, Zeng Y, Liu Z
and Huang JA: miR-335-5p inhibits TGF-β1-induced
epithelial-mesenchymal transition in non-small cell lung cancer via
ROCK1. Respir Res. 20(225)2019.PubMed/NCBI View Article : Google Scholar
|
46
|
Hu C, Zhou H, Liu Y, Huang J, Liu W, Zhang
Q, Tang Q, Sheng F, Li G and Zhang R: ROCK1 promotes migration and
invasion of non small cell lung cancer cells through the
PTEN/PI3K/FAK pathway. Int J Oncol. 55:833–844. 2019.PubMed/NCBI View Article : Google Scholar
|
47
|
Gong H, Zhou L, Khelfat L, Qiu G, Wang Y,
Mao K and Chen W: Rho-associated protein kinase (ROCK) promotes
proliferation and migration of PC-3 and DU145 prostate cancer cells
by targeting LIM kinase 1 (LIMK1) and matrix metalloproteinase-2
(MMP-2). Med Sci Monit. 25:3090–3099. 2019.PubMed/NCBI View Article : Google Scholar
|
48
|
Zhang J, He X, Ma Y, Liu Y, Shi H, Guo W
and Liu L: Overexpression of ROCK1 and ROCK2 inhibits human
laryngeal squamous cell carcinoma. Int J Clin Exp Pathol.
8:244–251. 2015.PubMed/NCBI
|
49
|
Liu Y, Liu J, Wang L, Yang X and Liu X:
MicroRNA 195 inhibits cell proliferation, migration and invasion in
laryngeal squamous cell carcinoma by targeting ROCK1. Mol Med Rep.
16:7154–7162. 2017.PubMed/NCBI View Article : Google Scholar
|
50
|
Carlsson L, Bratman SV, Siu LL and
Spreafico A: The cisplatin total dose and concomitant radiation in
locoregionally advanced head and neck cancer: Any recent evidence
for dose efficacy? Curr Treat Options Oncol. 18(39)2017.PubMed/NCBI View Article : Google Scholar
|
51
|
Dasari S and Tchounwou PB: Cisplatin in
cancer therapy: Molecular mechanisms of action. Eur J Pharmacol.
740:364–378. 2014.PubMed/NCBI View Article : Google Scholar
|
52
|
Amable L: Cisplatin resistance and
opportunities for precision medicine. Pharmacol Res. 106:27–36.
2016.PubMed/NCBI View Article : Google Scholar
|
53
|
Chen W, Yang Y, Chen B, Lu P, Zhan L, Yu
Q, Cao K and Li Q: miR-136 targets E2F1 to reverse cisplatin
chemosensitivity in glioma cells. J Neurooncol. 120:43–53.
2014.PubMed/NCBI View Article : Google Scholar
|
54
|
Glick D, Barth S and Macleod KF:
Autophagy: Cellular and molecular mechanisms. J Pathol. 221:3–12.
2010.PubMed/NCBI View Article : Google Scholar
|
55
|
Yao Q, Chen J, Lv Y, Wang T, Zhang J, Fan
J and Wang L: The significance of expression of autophagy-related
gene Beclin, Bcl-2, and Bax in breast cancer tissues. Tumour Biol.
32:1163–1171. 2011.PubMed/NCBI View Article : Google Scholar
|
56
|
Janku F, McConkey DJ, Hong DS and Kurzrock
R: Autophagy as a target for anticancer therapy. Nat Rev Clin
Oncol. 8:528–539. 2011.PubMed/NCBI View Article : Google Scholar
|
57
|
Azoulay-Alfaguter I, Elya R, Avrahami L,
Katz A and Eldar-Finkelman H: Combined regulation of mTORC1 and
lysosomal acidification by GSK-3 suppresses autophagy and
contributes to cancer cell growth. Oncogene. 34:4613–4623.
2015.PubMed/NCBI View Article : Google Scholar
|
58
|
Tanida I, Ueno T and Kominami E: LC3
conjugation system in mammalian autophagy. Int J Biochem Cell Biol.
36:2503–2518. 2004.PubMed/NCBI View Article : Google Scholar
|
59
|
Bjørkøy G, Lamark T, Brech A, Outzen H,
Perander M, Overvatn A, Stenmark H and Johansen T: p62/SQSTM1 forms
protein aggregates degraded by autophagy and has a protective
effect on huntingtin-induced cell death. J Cell Biol. 171:603–614.
2005.PubMed/NCBI View Article : Google Scholar
|
60
|
Mathew R, Karp CM, Beaudoin B, Vuong N,
Chen G, Chen HY, Bray K, Reddy A, Bhanot G, Gelinas C, et al:
Autophagy suppresses tumorigenesis through elimination of p62.
Cell. 137:1062–1075. 2009.PubMed/NCBI View Article : Google Scholar
|
61
|
Wu T, Wang MC, Jing L, Liu ZY, Guo H, Liu
Y, Bai YY, Cheng YZ, Nan KJ and Liang X: Autophagy facilitates lung
adenocarcinoma resistance to cisplatin treatment by activation of
AMPK/mTOR signaling pathway. Drug Des Devel Ther. 9:6421–6431.
2015.PubMed/NCBI View Article : Google Scholar
|
62
|
Xu Z, Han X, Ou D, Liu T, Li Z, Jiang G,
Liu J and Zhang J: Targeting PI3K/AKT/mTOR-mediated autophagy for
tumor therapy. Appl Microbiol Biotechnol. 104:575–587.
2020.PubMed/NCBI View Article : Google Scholar
|