Regulatory long non‑coding RNAs of hepatic stellate cells in liver fibrosis (Review)
- Authors:
- Zhengjie Wu
- Shunmei Huang
- Xiaoqin Zheng
- Silan Gu
- Qiaomai Xu
- Yiwen Gong
- Jiaying Zhang
- Bin Fu
- Lingling Tang
-
Affiliations: State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China, Department of Geriatrics, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China - Published online on: February 11, 2021 https://doi.org/10.3892/etm.2021.9782
- Article Number: 351
-
Copyright: © Wu et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Friedman SL: Liver fibrosis-from bench to bedside. J Hepatol. 38 (Suppl 1):S38–S53. 2003.PubMed/NCBI View Article : Google Scholar | |
Hernandez-Gea V and Friedman SL: Pathogenesis of liver fibrosis. Annu Rev Pathol. 6:425–456. 2011.PubMed/NCBI View Article : Google Scholar | |
Cao L, Nicosia J, Larouche J, Zhang Y, Bachman H, Brown AC, Holmgren L and Barker TH: Detection of an integrin-binding mechanoswitch within fibronectin during tissue formation and fibrosis. ACS Nano. 11:7110–7117. 2017.PubMed/NCBI View Article : Google Scholar | |
Kong D, Zhang F, Zhang Z, Lu Y and Zheng S: Clearance of activated stellate cells for hepatic fibrosis regression: Molecular basis and translational potential. Biomed Pharmacother. 67:246–250. 2013.PubMed/NCBI View Article : Google Scholar | |
Friedman SL: Fibrogenic cell reversion underlies fibrosis regression in liver. Proc Natl Acad Sci USA. 109:9230–9231. 2012.PubMed/NCBI View Article : Google Scholar | |
Schuppan D: Structure of the extracellular matrix in normal and fibrotic liver: Collagens and glycoproteins. Semin Liver Dis. 10:1–10. 1990.PubMed/NCBI View Article : Google Scholar | |
Herrera J, Henke CA and Bitterman PB: Extracellular matrix as a driver of progressive fibrosis. J Clin Invest. 128:45–53. 2018.PubMed/NCBI View Article : Google Scholar | |
Anthony PP, Ishak KG, Nayak NC, Poulsen HE, Scheuer PJ and Sobin LH: The morphology of cirrhosis. Recommendations on definition, nomenclature, and classification by a working group sponsored by the World Health Organization. J Clin Pathol. 31:395–414. 1978.PubMed/NCBI View Article : Google Scholar | |
Ginès P, Cárdenas A, Arroyo V and Rodés J: Management of cirrhosis and ascites. N Engl J Med. 350:1646–1654. 2004.PubMed/NCBI View Article : Google Scholar | |
Zhou WC, Zhang QB and Qiao L: Pathogenesis of liver cirrhosis. World J Gastroenterol. 20:7312–7324. 2014.PubMed/NCBI View Article : Google Scholar | |
Friedman SL, Roll FJ, Boyles J and Bissell DM: Hepatic lipocytes: The principal collagen-producing cells of normal rat liver. Proc Natl Acad Sci USA. 82:8681–8685. 1985.PubMed/NCBI View Article : Google Scholar | |
Moreira RK: Hepatic stellate cells and liver fibrosis. Arch Pathol Lab Med. 131:1728–1734. 2007.PubMed/NCBI View Article : Google Scholar | |
Yin C, Evason KJ, Asahina K and Stainier DY: Hepatic stellate cells in liver development, regeneration, and cancer. J Clin Invest. 123:1902–1910. 2013.PubMed/NCBI View Article : Google Scholar | |
Bataller R and Brenner DA: Hepatic stellate cells as a target for the treatment of liver fibrosis. Semin Liver Dis. 21:437–451. 2001.PubMed/NCBI View Article : Google Scholar | |
Tsuchida T and Friedman SL: Mechanisms of hepatic stellate cell activation. Nat Rev Gastroenterol Hepatol. 14:397–411. 2017.PubMed/NCBI View Article : Google Scholar | |
Lanzoni G, Cardinale V and Carpino G: The hepatic, biliary, and pancreatic network of stem/progenitor cell niches in humans: A new reference frame for disease and regeneration. Hepatology. 64:277–286. 2016.PubMed/NCBI View Article : Google Scholar | |
Kitade M, Kaji K and Yoshiji H: Relationship between hepatic progenitor cell-mediated liver regeneration and non-parenchymal cells. Hepatol Res. 46:1187–1193. 2016.PubMed/NCBI View Article : Google Scholar | |
Boulter L, Govaere O, Bird TG, Radulescu S, Ramachandran P, Pellicoro A, Ridgway RA, Seo SS, Spee B, Van Rooijen N, et al: Macrophage-derived Wnt opposes Notch signaling to specify hepatic progenitor cell fate in chronic liver disease. Nat Med. 18:572–579. 2012.PubMed/NCBI View Article : Google Scholar | |
Carpino G, Renzi A, Franchitto A, Cardinale V, Onori P, Reid L, Alvaro D and Gaudio E: Stem/progenitor cell niches involved in hepatic and biliary regeneration. Stem Cells Int. 2016(3658013)2016.PubMed/NCBI View Article : Google Scholar | |
Grimaldi V, De Pascale MR, Zullo A, Soricelli A, Infante T, Mancini FP and Napoli C: Evidence of epigenetic tags in cardiac fibrosis. J Cardiol. 69:401–408. 2017.PubMed/NCBI View Article : Google Scholar | |
Kopp F and Mendell JT: Functional classification and experimental dissection of long noncoding RNAs. Cell. 172:393–407. 2018.PubMed/NCBI View Article : Google Scholar | |
Khorkova O, Hsiao J and Wahlestedt C: Basic biology and therapeutic implications of lncRNA. Adv Drug Deliv Rev. 87:15–24. 2015.PubMed/NCBI View Article : Google Scholar | |
El Khodiry A, Afify M and El Tayebi HM: Behind the curtain of non-coding RNAs; long non-coding RNAs regulating hepatocarcinogenesis. World J Gastroenterol. 24:549–572. 2018.PubMed/NCBI View Article : Google Scholar | |
Iyer MK, Niknafs YS, Malik R, Singhal U, Sahu A, Hosono Y, Barrette TR, Prensner JR, Evans JR, Zhao S, et al: The landscape of long noncoding RNAs in the human transcriptome. Nat Genet. 47:199–208. 2015.PubMed/NCBI View Article : Google Scholar | |
Djebali S, Davis CA, Merkel A, Dobin A, Lassmann T, Mortazavi A, Tanzer A, Lagarde J, Lin W, Schlesinger F, et al: Landscape of transcription in human cells. Nature. 489:101–108. 2012.PubMed/NCBI View Article : Google Scholar | |
Fatica A and Bozzoni I: Long non-coding RNAs: New players in cell differentiation and development. Nat Rev Genet. 15:7–21. 2014.PubMed/NCBI View Article : Google Scholar | |
Ponting CP, Oliver PL and Reik W: Evolution and functions of long noncoding RNAs. Cell. 136:629–641. 2009.PubMed/NCBI View Article : Google Scholar | |
Jiang X, Lei R and Ning Q: Circulating long noncoding RNAs as novel biomarkers of human diseases. Biomark Med. 10:757–769. 2016.PubMed/NCBI View Article : Google Scholar | |
Hellerbrand C, Stefanovic B, Giordano F, Burchardt ER and Brenner DA: The role of TGFbeta1 in initiating hepatic stellate cell activation in vivo. J Hepatol. 30:77–87. 1999.PubMed/NCBI View Article : Google Scholar | |
Inagaki Y and Okazaki I: Emerging insights into Transforming growth factor beta Smad signal in hepatic fibrogenesis. Gut. 56:284–292. 2007.PubMed/NCBI View Article : Google Scholar | |
Dooley S and ten Dijke P: TGF-β in progression of liver disease. Cell Tissue Res. 347:245–256. 2012.PubMed/NCBI View Article : Google Scholar | |
Fabregat I, Moreno-Càceres J, Sánchez A, Dooley S, Dewidar B, Giannelli G and Ten Dijke P: IT-LIVER Consortium. TGF-β signalling and liver disease. FEBS J. 283:2219–2232. 2016.PubMed/NCBI View Article : Google Scholar | |
Breitkopf K, Godoy P, Ciuclan L, Singer MV and Dooley S: TGF-beta/Smad signaling in the injured liver. Z Gastroenterol. 44:57–66. 2006.PubMed/NCBI View Article : Google Scholar | |
Friedman SL: Hepatic stellate cells: Protean, multifunctional, and enigmatic cells of the liver. Physiol Rev. 88:125–172. 2008.PubMed/NCBI View Article : Google Scholar | |
Border WA and Noble NA: Evidence that TGF-beta should be a therapeutic target in diabetic nephropathy. Kidney Int. 54:1390–1391. 1998.PubMed/NCBI View Article : Google Scholar | |
Fu N, Niu X, Wang Y, Du H, Wang B, Du J, Li Y, Wang R, Zhang Y, Zhao S, et al: Role of LncRNA-activated by transforming growth factor beta in the progression of hepatitis C virus-related liver fibrosis. Discov Med. 22:29–42. 2016.PubMed/NCBI | |
Zhang K, Han X, Zhang Z, Zheng L, Hu Z, Yao Q, Cui H, Shu G, Si M, Li C, et al: The liver-enriched lnc-LFAR1 promotes liver fibrosis by activating TGFβ and Notch pathways. Nat Commun. 8(144)2017.PubMed/NCBI View Article : Google Scholar | |
Zheng J, Mao Y, Dong P, Huang Z and Yu F: Long noncoding RNA HOTTIP mediates SRF expression through sponging miR-150 in hepatic stellate cells. J Cell Mol Med. 23:1572–1580. 2019.PubMed/NCBI View Article : Google Scholar | |
Li Z, Wang J, Zeng Q, Hu C, Zhang J, Wang H, Yan J, Li H and Yu Z: Long noncoding RNA HOTTIP promotes mouse hepatic stellate cell activation via downregulating miR-148a. Cell Physiol Biochem. 51:2814–2828. 2018.PubMed/NCBI View Article : Google Scholar | |
Jung KH, Zhang J, Zhou C, Shen H, Gagea M, Rodriguez-Aguayo C, Lopez-Berestein G, Sood AK and Beretta L: Differentiation therapy for hepatocellular carcinoma: Multifaceted effects of miR-148a on tumor growth and phenotype and liver fibrosis. Hepatology. 63:864–879. 2016.PubMed/NCBI View Article : Google Scholar | |
Keniry A, Oxley D, Monnier P, Kyba M, Dandolo L, Smits G and Reik W: The H19 lincRNA is a developmental reservoir of miR-675 that suppresses growth and Igf1r. Nat Cell Biol. 14:659–665. 2012.PubMed/NCBI View Article : Google Scholar | |
Chen X, Yamamoto M, Fujii K, Nagahama Y, Ooshio T, Xin B, Okada Y, Furukawa H and Nishikawa Y: Differential reactivation of fetal/neonatal genes in mouse liver tumors induced in cirrhotic and non-cirrhotic conditions. Cancer Sci. 106:972–981. 2015.PubMed/NCBI View Article : Google Scholar | |
Zhang L, Zhou F, Drabsch Y, Gao R, Snaar-Jagalska BE, Mickanin C, Huang H, Sheppard KA, Porter JA, Lu CX and ten Dijke P: USP4 is regulated by AKT phosphorylation and directly deubiquitylates TGF-β type I receptor. Nat Cell Biol. 14:717–726. 2012.PubMed/NCBI View Article : Google Scholar | |
Zhu J, Luo Z, Pan Y, Zheng W, Li W, Zhang Z, Xiong P, Xu D, Du M, Wang B, et al: H19/miR-148a/USP4 axis facilitates liver fibrosis by enhancing TGF-β signaling in both hepatic stellate cells and hepatocytes. J Cell Physiol. 234:9698–9710. 2019.PubMed/NCBI View Article : Google Scholar | |
Zhou B, Yuan W and Li X: LncRNA Gm5091 alleviates alcoholic hepatic fibrosis by sponging miR-27b/23b/24 in mice. Cell Biol Int. 42:1330–1339. 2018.PubMed/NCBI View Article : Google Scholar | |
Rogler CE, Matarlo JS, Kosmyna B, Fulop D and Rogler LE: Knockdown of miR-23, miR-27, and miR-24 alters fetal liver development and blocks fibrosis in mice. Gene Expr. 17:99–114. 2017.PubMed/NCBI View Article : Google Scholar | |
Zhu D, Lyu L, Shen P, Wang J, Chen J, Sun X, Chen L, Zhang L, Zhou Q and Duan Y: rSjP40 protein promotes PPARγ expression in LX-2 cells through microRNA-27b. FASEB J. 32:4798–4803. 2018.PubMed/NCBI View Article : Google Scholar | |
Clemson CM, Hutchinson JN, Sara SA, Ensminger AW, Fox AH, Chess A and Lawrence JB: An architectural role for a nuclear noncoding RNA: NEAT1 RNA is essential for the structure of paraspeckles. Mol Cell. 33:717–726. 2009.PubMed/NCBI View Article : Google Scholar | |
Kong Y, Huang T, Zhang H, Zhang Q, Ren J, Guo X, Fan H and Liu L: The lncRNA NEAT1/miR-29b/Atg9a axis regulates IGFBPrP1-induced autophagy and activation of mouse hepatic stellate cells. Life Sci. 237(116902)2019.PubMed/NCBI View Article : Google Scholar | |
Yu F, Jiang Z, Chen B, Dong P and Zheng J: NEAT1 accelerates the progression of liver fibrosis via regulation of microRNA-122 and Kruppel-like factor 6. J Mol Med (Berl). 95:1191–1202. 2017.PubMed/NCBI View Article : Google Scholar | |
Zeng C, Wang YL, Xie C, Sang Y, Li TJ, Zhang M, Wang R, Zhang Q, Zheng L and Zhuang SM: Identification of a novel TGF-β-miR-122-fibronectin 1/serum response factor signaling cascade and its implication in hepatic fibrogenesis. Oncotarget. 6:12224–12233. 2015.PubMed/NCBI View Article : Google Scholar | |
Kim Y, Ratziu V, Choi SG, Lalazar A, Theiss G, Dang Q, Kim SJ and Friedman SL: Transcriptional activation of transforming growth factor beta1 and its receptors by the Kruppel-like factor Zf9/core promoter-binding protein and Sp1. Potential mechanisms for autocrine fibrogenesis in response to injury. J Biol Chem. 273:33750–33758. 1998.PubMed/NCBI View Article : Google Scholar | |
Tsai WC, Hsu SD, Hsu CS, Lai TC, Chen SJ, Shen R, Huang Y, Chen HC, Lee CH, Tsai TF, et al: MicroRNA-122 plays a critical role in liver homeostasis and hepatocarcinogenesis. J Clin Invest. 122:2884–2897. 2012.PubMed/NCBI View Article : Google Scholar | |
Zhang K, Han Y, Hu Z, Zhang Z, Shao S, Yao Q, Zheng L, Wang J, Han X, Zhang Y, et al: SCARNA10, a nuclear-retained long non-coding RNA, promotes liver fibrosis and serves as a potential biomarker. Theranostics. 9:3622–3638. 2019.PubMed/NCBI View Article : Google Scholar | |
Tu X, Zhang H, Zhang J, Zhao S, Zheng X, Zhang Z, Zhu J, Chen J, Dong L, Zang Y, et al: MicroRNA-101 suppresses liver fibrosis by targeting the TGFβ signalling pathway. J Pathol. 234:46–59. 2014.PubMed/NCBI View Article : Google Scholar | |
Rapicavoli NA, Qu K, Zhang J, Mikhail M, Laberge RM and Chang HY: A mammalian pseudogene lncRNA at the interface of inflammation and anti-inflammatory therapeutics. Elife. 2(e00762)2013.PubMed/NCBI View Article : Google Scholar | |
Nusslein-Volhard C and Wieschaus E: Mutations affecting segment number and polarity in Drosophila. Nature. 287:795–801. 1980.PubMed/NCBI View Article : Google Scholar | |
Omenetti A, Choi S, Michelotti G and Diehl AM: Hedgehog signaling in the liver. J Hepatol. 54:366–373. 2011.PubMed/NCBI View Article : Google Scholar | |
Machado MV and Diehl AM: Hedgehog signalling in liver pathophysiology. J Hepatol. 68:550–562. 2018.PubMed/NCBI View Article : Google Scholar | |
Gorojankina T: Hedgehog signaling pathway: A novel model and molecular mechanisms of signal transduction. Cell Mol Life Sci. 73:1317–1332. 2016.PubMed/NCBI View Article : Google Scholar | |
Sicklick JK, Li YX, Melhem A, Schmelzer E, Zdanowicz M, Huang J, Caballero M, Fair JH, Ludlow JW, McClelland RE, et al: Hedgehog signaling maintains resident hepatic progenitors throughout life. Am J Physiol Gastrointest Liver Physiol. 290:G859–G870. 2006.PubMed/NCBI View Article : Google Scholar | |
Xie G, Choi SS, Syn WK, Michelotti GA, Swiderska M, Karaca G, Chan IS, Chen Y and Diehl AM: Hedgehog signalling regulates liver sinusoidal endothelial cell capillarisation. Gut. 62:299–309. 2013.PubMed/NCBI View Article : Google Scholar | |
Syn WK, Agboola KM, Swiderska M, Michelotti GA, Liaskou E, Pang H, Xie G, Philips G, Chan IS, Karaca GF, et al: NKT-associated hedgehog and osteopontin drive fibrogenesis in non-alcoholic fatty liver disease. Gut. 61:1323–1329. 2012.PubMed/NCBI View Article : Google Scholar | |
Yang L, Wang Y, Mao H, Fleig S, Omenetti A, Brown KD, Sicklick JK, Li YX and Diehl AM: Sonic hedgehog is an autocrine viability factor for myofibroblastic hepatic stellate cells. J Hepatol. 48:98–106. 2008.PubMed/NCBI View Article : Google Scholar | |
Gao L, Zhang Z, Zhang P, Yu M and Yang T: Role of canonical Hedgehog signaling pathway in liver. Int J Biol Sci. 14:1636–1644. 2018.PubMed/NCBI View Article : Google Scholar | |
Chen Y, Choi SS, Michelotti GA, Chan IS, Swiderska-Syn M, Karaca GF, Xie G, Moylan CA, Garibaldi F, Premont R, et al: Hedgehog controls hepatic stellate cell fate by regulating metabolism. Gastroenterology. 143:1319–1329.e11. 2012.PubMed/NCBI View Article : Google Scholar | |
Briscoe J and Thérond PP: The mechanisms of Hedgehog signalling and its roles in development and disease. Nat Rev Mol Cell Biol. 14:416–429. 2013.PubMed/NCBI View Article : Google Scholar | |
Syn WK, Jung Y, Omenetti A, Abdelmalek M, Guy CD, Yang L, Wang J, Witek RP, Fearing CM, Pereira TA, et al: Hedgehog-mediated epithelial-to-mesenchymal transition and fibrogenic repair in nonalcoholic fatty liver disease. Gastroenterology. 137:1478–1488.e8. 2009.PubMed/NCBI View Article : Google Scholar | |
Sicklick JK, Li YX, Choi SS, Qi Y, Chen W, Bustamante M, Huang J, Zdanowicz M, Camp T, Torbenson MS, et al: Role for hedgehog signaling in hepatic stellate cell activation and viability. Lab Invest. 85:1368–1380. 2005.PubMed/NCBI View Article : Google Scholar | |
Omenetti A, Yang L, Li YX, McCall SJ, Jung Y, Sicklick JK, Huang J, Choi S, Suzuki A and Diehl AM: Hedgehog-mediated mesenchymal-epithelial interactions modulate hepatic response to bile duct ligation. Lab Invest. 87:499–514. 2007.PubMed/NCBI View Article : Google Scholar | |
Choi SS, Syn WK, Karaca GF, Omenetti A, Moylan CA, Witek RP, Agboola KM, Jung Y, Michelotti GA and Diehl AM: Leptin promotes the myofibroblastic phenotype in hepatic stellate cells by activating the hedgehog pathway. J Biol Chem. 285:36551–36560. 2010.PubMed/NCBI View Article : Google Scholar | |
Choi SS, Omenetti A, Witek RP, Moylan CA, Syn WK, Jung Y, Yang L, Sudan DL, Sicklick JK, Michelotti GA, et al: Hedgehog pathway activation and epithelial-to-mesenchymal transitions during myofibroblastic transformation of rat hepatic cells in culture and cirrhosis. Am J Physiol Gastrointest Liver Physiol. 297:G1093–G1106. 2009.PubMed/NCBI View Article : Google Scholar | |
Zheng J, Yu F, Dong P, Wu L, Zhang Y, Hu Y and Zheng L: Long non-coding RNA PVT1 activates hepatic stellate cells through competitively binding microRNA-152. Oncotarget. 7:62886–62897. 2016.PubMed/NCBI View Article : Google Scholar | |
Yang JJ, Tao H, Huang C, Shi KH, Ma TT, Bian EB, Zhang L, Liu LP, Hu W, Lv XW and Li J: DNA methylation and MeCP2 regulation of PTCH1 expression during rats hepatic fibrosis. Cell Signal. 25:1202–1211. 2013.PubMed/NCBI View Article : Google Scholar | |
Yu F, Lu Z, Chen B, Wu X, Dong P and Zheng J: Salvianolic acid B-induced microRNA-152 inhibits liver fibrosis by attenuating DNMT1-mediated Patched1 methylation. J Cell Mol Med. 19:2617–2632. 2015.PubMed/NCBI View Article : Google Scholar | |
Yu F, Geng W, Dong P, Huang Z and Zheng J: LncRNA-MEG3 inhibits activation of hepatic stellate cells through SMO protein and miR-212. Cell Death Dis. 9(1014)2018.PubMed/NCBI View Article : Google Scholar | |
Haertle L, Maierhofer A, Böck J, Lehnen H, Böttcher Y, Blüuher M, Schorsch M, Potabattula R, El Hajj N, Appenzeller S and Haaf T: Hypermethylation of the non-imprinted maternal MEG3 and paternal MEST alleles is highly variable among normal individuals. PLoS One. 12(e0184030)2017.PubMed/NCBI View Article : Google Scholar | |
He Y, Wu YT, Huang C, Meng XM, Ma TT, Wu BM, Xu FY, Zhang L, Lv XW and Li J: Inhibitory effects of long noncoding RNA MEG3 on hepatic stellate cells activation and liver fibrogenesis. Biochim Biophys Acta. 1842:2204–2215. 2014.PubMed/NCBI View Article : Google Scholar | |
He Y, Meng XM, Huang C, Wu BM, Zhang L, Lv XW and Li J: Long noncoding RNAs: Novel insights into hepatocelluar carcinoma. Cancer Lett. 344:20–27. 2014.PubMed/NCBI View Article : Google Scholar | |
Logan CY and Nusse R: The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol. 20:781–810. 2004.PubMed/NCBI View Article : Google Scholar | |
Bejsovec A: Wnt signaling: An embarrassment of receptors. Curr Biol. 10:R919–R922. 2000.PubMed/NCBI View Article : Google Scholar | |
Habas R and Dawid IB: Dishevelled and Wnt signaling: Is the nucleus the final frontier? J Biol. 4(2)2005.PubMed/NCBI View Article : Google Scholar | |
Miller JR, Hocking AM, Brown JD and Moon RT: Mechanism and function of signal transduction by the Wnt/beta-catenin and Wnt/Ca2+ pathways. Oncogene. 18:7860–7872. 1999.PubMed/NCBI View Article : Google Scholar | |
Kühl M, Sheldahl LC, Park M, Miller JR and Moon RT: The Wnt/Ca2+ pathway: A new vertebrate Wnt signaling pathway takes shape. Trends Genet. 16:279–283. 2000.PubMed/NCBI View Article : Google Scholar | |
Veeman MT, Axelrod JD and Moon RT: A second canon. Functions and mechanisms of beta-catenin-independent Wnt signaling. Dev Cell. 5:367–377. 2003.PubMed/NCBI View Article : Google Scholar | |
van Amerongen R, Mikels A and Nusse R: Alternative wnt signaling is initiated by distinct receptors. Sci Signal. 1(re9)2008.PubMed/NCBI View Article : Google Scholar | |
Monga SP: beta-catenin signaling and roles in liver homeostasis, injury, and tumorigenesis. Gastroenterology. 148:1294–1310. 2015.PubMed/NCBI View Article : Google Scholar | |
Rios-Esteves J and Resh MD: Stearoyl CoA desaturase is required to produce active, lipid-modified Wnt proteins. Cell Rep. 4:1072–1081. 2013.PubMed/NCBI View Article : Google Scholar | |
Zhao C, Zhang M, Liu W, Wang C, Zhang Q and Li W: β-catenin knockdown inhibits pituitary adenoma cell proliferation and invasion via interfering with AKT and gelatinases expression. Int J Oncol. 46:1643–1650. 2015.PubMed/NCBI View Article : Google Scholar | |
Xu W and Kimelman D: Mechanistic insights from structural studies of beta-catenin and its binding partners. J Cell Sci. 120:3337–3344. 2007.PubMed/NCBI View Article : Google Scholar | |
Zhu Y, Tan J, Xie H, Wang J, Meng X and Wang R: HIF-1α regulates EMT via the Snail and beta-catenin pathways in paraquat poisoning-induced early pulmonary fibrosis. J Cell Mol Med. 20:688–697. 2016.PubMed/NCBI View Article : Google Scholar | |
Thompson MD and Monga SP: WNT/beta-catenin signaling in liver health and disease. Hepatology. 45:1298–1305. 2007.PubMed/NCBI View Article : Google Scholar | |
Miller JR: The Wnts. Genome Biol. 3(REVIEWS3001)2002.PubMed/NCBI View Article : Google Scholar | |
Miao CG, Yang YY, He X, Huang C, Huang Y, Zhang L, Lv XW, Jin Y and Li J: Wnt signaling in liver fibrosis: Progress, challenges and potential directions. Biochimie. 95:2326–2335. 2013.PubMed/NCBI View Article : Google Scholar | |
Ge WS, Wang YJ, Wu JX, Fan JG, Chen YW and Zhu L: β-catenin is overexpressed in hepatic fibrosis and blockage of Wnt/β-catenin signaling inhibits hepatic stellate cell activation. Mol Med Rep. 9:2145–2151. 2014.PubMed/NCBI View Article : Google Scholar | |
Osawa Y, Oboki K, Imamura J, Kojika E, Hayashi Y, Hishima T, Saibara T, Shibasaki F, Kohara M and Kimura K: Inhibition of cyclic adenosine monophosphate (cAMP)-response element-binding protein (CREB)-binding protein (CBP)/β-catenin reduces liver fibrosis in mice. EBioMedicine. 2:1751–1758. 2015.PubMed/NCBI View Article : Google Scholar | |
Kordes C, Sawitza I and Haussinger D: Canonical Wnt signaling maintains the quiescent stage of hepatic stellate cells. Biochem Biophys Res Commun. 367:116–123. 2008.PubMed/NCBI View Article : Google Scholar | |
Yin X, Yi H, Wang L, Wu W, Wu X and Yu L: RSPOs facilitated HSC activation and promoted hepatic fibrogenesis. Oncotarget. 7:63767–63778. 2016.PubMed/NCBI View Article : Google Scholar | |
Corbett L, Mann J and Mann DA: Non-canonical Wnt predominates in activated rat hepatic stellate cells, influencing HSC survival and paracrine stimulation of kupffer cells. PLoS One. 10(e0142794)2015.PubMed/NCBI View Article : Google Scholar | |
Chatani N, Kamada Y, Kizu T, Ogura S, Furuta K, Egawa M, Hamano M, Ezaki H, Kiso S, Shimono A, et al: Secreted frizzled-related protein 5 (Sfrp5) decreases hepatic stellate cell activation and liver fibrosis. Liver Int. 35:2017–2026. 2015.PubMed/NCBI View Article : Google Scholar | |
Shi SJ, Wang LJ, Yu B, Li YH, Jin Y and Bai XZ: LncRNA-ATB promotes trastuzumab resistance and invasion-metastasis cascade in breast cancer. Oncotarget. 6:11652–11663. 2015.PubMed/NCBI View Article : Google Scholar | |
Li J, Li Z, Zheng W, Li X, Wang Z, Cui Y and Jiang X: LncRNA-ATB: An indispensable cancer-related long noncoding RNA. Cell Prolif. 50(e12381)2017.PubMed/NCBI View Article : Google Scholar | |
Yuan JH, Yang F, Wang F, Ma JZ, Guo YJ, Tao QF, Liu F, Pan W, Wang TT, Zhou CC, et al: A long noncoding RNA activated by TGF-beta promotes the invasion-metastasis cascade in hepatocellular carcinoma. Cancer Cell. 25:666–681. 2014.PubMed/NCBI View Article : Google Scholar | |
Liu J, Ruan B, You N, Huang Q, Liu W, Dang Z, Xu W, Zhou T, Ji R, Cao Y, et al: Downregulation of miR-200a induces EMT phenotypes and CSC-like signatures through targeting the β-catenin pathway in hepatic oval cells. PLoS One. 8(e79409)2013.PubMed/NCBI View Article : Google Scholar | |
Su J, Zhang A, Shi Z, Ma F, Pu P, Wang T, Zhang J, Kang C and Zhang Q: MicroRNA-200a suppresses the Wnt/β-catenin signaling pathway by interacting with β-catenin. Int J Oncol. 40:1162–1170. 2012.PubMed/NCBI View Article : Google Scholar | |
Fu N, Zhao SX, Kong LB, Du JH, Ren WG, Han F, Zhang QS, Li WC, Cui P, Wang RQ, et al: LncRNA-ATB/microRNA-200a/β-catenin regulatory axis involved in the progression of HCV-related hepatic fibrosis. Gene. 618:1–7. 2017.PubMed/NCBI View Article : Google Scholar | |
Yu F, Zhou G, Huang K, Fan X, Li G, Chen B, Dong P and Zheng J: Serum lincRNA-p21 as a potential biomarker of liver fibrosis in chronic hepatitis B patients. J Viral Hepat. 24:580–588. 2017.PubMed/NCBI View Article : Google Scholar | |
Yu F, Dong P, Mao Y, Zhao B, Huang Z and Zheng J: Loss of lncRNA-SNHG7 Promotes the Suppression of Hepatic Stellate Cell Activation via miR-378a-3p and DVL2. Mol Ther Nucleic Acids. 17:235–244. 2019.PubMed/NCBI View Article : Google Scholar | |
Chen W, Zhao W, Yang A, Xu A, Wang H, Cong M, Liu T, Wang P and You H: Integrated analysis of microRNA and gene expression profiles reveals a functional regulatory module associated with liver fibrosis. Gene. 636:87–95. 2017.PubMed/NCBI View Article : Google Scholar | |
Yao X, Liu C, Liu C, Xi W, Sun S and Gao Z: lncRNA SNHG7 sponges miR-425 to promote proliferation, migration, and invasion of hepatic carcinoma cells via Wnt/β-catenin/EMT signalling pathway. Cell Biochem Funct. 37:525–533. 2019.PubMed/NCBI View Article : Google Scholar | |
Chakraborty JB and Mann DA: NF-kappaB signalling: Embracing complexity to achieve translation. J Hepatol. 52:285–291. 2010.PubMed/NCBI View Article : Google Scholar | |
Ghosh S and Karin M: Missing pieces in the NF-kappaB puzzle. Cell. 109 (Suppl):S81–S96. 2002.PubMed/NCBI View Article : Google Scholar | |
Sen R and Baltimore D: Multiple nuclear factors interact with the immunoglobulin enhancer sequences. Cell. 46:705–716. 1986.PubMed/NCBI View Article : Google Scholar | |
Taniguchi K and Karin M: NF-κB, inflammation, immunity and cancer: Coming of age. Nat Rev Immunol. 18:309–324. 2018.PubMed/NCBI View Article : Google Scholar | |
Gilmore TD: Introduction to NF-kappaB: Players, pathways, perspectives. Oncogene. 25:6680–6684. 2006.PubMed/NCBI View Article : Google Scholar | |
Olefsky JM and Glass CK: Macrophages, inflammation, and insulin resistance. Annu Rev Physiol. 72:219–246. 2010.PubMed/NCBI View Article : Google Scholar | |
Luedde T and Schwabe RF: NF-κB in the liver-linking injury, fibrosis and hepatocellular carcinoma. Nat Rev Gastroenterol Hepatol. 8:108–118. 2011.PubMed/NCBI View Article : Google Scholar | |
Duffield JS, Forbes SJ, Constandinou CM, Clay S, Partolina M, Vuthoori S, Wu S, Lang R and Iredale JP: Selective depletion of macrophages reveals distinct, opposing roles during liver injury and repair. J Clin Invest. 115:56–65. 2005.PubMed/NCBI View Article : Google Scholar | |
Pradere JP, Kluwe J, De Minicis S, Jiao JJ, Gwak GY, Dapito DH, Jang MK, Guenther ND, Mederacke I, Friedman R, et al: Hepatic macrophages but not dendritic cells contribute to liver fibrosis by promoting the survival of activated hepatic stellate cells in mice. Hepatology. 58:1461–1473. 2013.PubMed/NCBI View Article : Google Scholar | |
Lv P, Luo HS, Zhou XP, Xiao YJ, Paul SC, Si XM and Zhou YH: Reversal effect of thalidomide on established hepatic cirrhosis in rats via inhibition of nuclear factor-kappaB/inhibitor of nuclear factor-kappaB pathway. Arch Med Res. 38:15–27. 2007.PubMed/NCBI View Article : Google Scholar | |
Oakley F, Meso M, Iredale JP, Green K, Marek CJ, Zhou X, May MJ, Millward-Sadler H, Wright MC and Mann DA: Inhibition of inhibitor of kappaB kinases stimulates hepatic stellate cell apoptosis and accelerated recovery from rat liver fibrosis. Gastroenterology. 128:108–120. 2005.PubMed/NCBI View Article : Google Scholar | |
Wright MC, Issa R, Smart DE, Trim N, Murray GI, Primrose JN, Arthur MJ, Iredale JP and Mann DA: Gliotoxin stimulates the apoptosis of human and rat hepatic stellate cells and enhances the resolution of liver fibrosis in rats. Gastroenterology. 121:685–698. 2001.PubMed/NCBI View Article : Google Scholar | |
Seki E, De Minicis S, Osterreicher CH, Kluwe J, Osawa Y, Brenner DA and Schwabe RF: TLR4 enhances TGF-beta signaling and hepatic fibrosis. Nat Med. 13:1324–1332. 2007.PubMed/NCBI View Article : Google Scholar | |
Sunami Y, Leithauser F, Gul S, Fiedler K, Guldiken N, Espenlaub S, Holzmann KH, Hipp N, Sindrilaru A, Luedde T, et al: Hepatic activation of IKK/NFκB signaling induces liver fibrosis via macrophage-mediated chronic inflammation. Hepatology. 56:1117–1128. 2012.PubMed/NCBI View Article : Google Scholar | |
Shen H, Sheng L, Chen Z, Jiang L, Su H, Yin L, Omary MB and Rui L: Mouse hepatocyte overexpression of NF-κB-inducing kinase (NIK) triggers fatal macrophage-dependent liver injury and fibrosis. Hepatology. 60:2065–2076. 2014.PubMed/NCBI View Article : Google Scholar | |
Son G, Iimuro Y, Seki E, Hirano T, Kaneda Y and Fujimoto J: Selective inactivation of NF-kappaB in the liver using NF-kappaB decoy suppresses CCl4-induced liver injury and fibrosis. Am J Physiol Gastrointest Liver Physiol. 293:G631–G639. 2007.PubMed/NCBI View Article : Google Scholar | |
Zhang H, Li H, Ge A, Guo E, Liu S and Zhang L: Long non-coding RNA TUG1 inhibits apoptosis and inflammatory response in LPS-treated H9c2 cells by down-regulation of miR-29b. Biomed Pharmacother. 101:663–669. 2018.PubMed/NCBI View Article : Google Scholar | |
Roderburg C, Urban GW, Bettermann K, Vucur M, Zimmermann H, Schmidt S, Janssen J, Koppe C, Knolle P, Castoldi M, et al: Micro-RNA profiling reveals a role for miR-29 in human and murine liver fibrosis. Hepatology. 53:209–218. 2011.PubMed/NCBI View Article : Google Scholar | |
Sekiya Y, Ogawa T, Yoshizato K, Ikeda K and Kawada N: Suppression of hepatic stellate cell activation by microRNA-29b. Biochem Biophys Res Commun. 412:74–79. 2011.PubMed/NCBI View Article : Google Scholar | |
Ogawa T, Iizuka M, Sekiya Y, Yoshizato K, Ikeda K and Kawada N: Suppression of type I collagen production by microRNA-29b in cultured human stellate cells. Biochem Biophys Res Commun. 391:316–321. 2010.PubMed/NCBI View Article : Google Scholar | |
Xing TJ, Jiang DF, Huang JX and Xu ZL: Expression and clinical significance of miR-122 and miR-29 in hepatitis B virus-related liver disease. Genet Mol Res. 13:7912–7918. 2014.PubMed/NCBI View Article : Google Scholar | |
Han X, Hong Y and Zhang K: TUG1 is involved in liver fibrosis and activation of HSCs by regulating miR-29b. Biochem Biophys Res Commun. 503:1394–1400. 2018.PubMed/NCBI View Article : Google Scholar | |
Geisler F and Strazzabosco M: Emerging roles of Notch signaling in liver disease. Hepatology. 61:382–392. 2015.PubMed/NCBI View Article : Google Scholar | |
Morell CM and Strazzabosco M: Notch signaling and new therapeutic options in liver disease. J Hepatol. 60:885–890. 2014.PubMed/NCBI View Article : Google Scholar | |
Siebel C and Lendahl U: Notch signaling in development, tissue homeostasis, and disease. Physiol Rev. 97:1235–1294. 2017.PubMed/NCBI View Article : Google Scholar | |
Wakabayashi N, Chartoumpekis DV and Kensler TW: Crosstalk between Nrf2 and Notch signaling. Free Radic Biol Med. 88:158–167. 2015.PubMed/NCBI View Article : Google Scholar | |
Ni MM, Wang YR, Wu WW, Xia CC, Zhang YH, Xu J, Xu T and Li J: Novel Insights on Notch signaling pathways in liver fibrosis. Eur J Pharmacol. 826:66–74. 2018.PubMed/NCBI View Article : Google Scholar | |
Kimball AS, Joshi AD, Boniakowski AE, Schaller M, Chung J, Allen R, Bermick J, Carson WF IV, Henke PK, Maillard I, et al: Notch regulates macrophage-mediated inflammation in diabetic wound healing. Front Immunol. 8(635)2017.PubMed/NCBI View Article : Google Scholar | |
Wang T, Xiang Z, Wang Y, Li X, Fang C, Song S, Li C, Yu H, Wang H, Yan L, et al: (-)-Epigallocatechin gallate targets notch to attenuate the inflammatory response in the immediate early stage in human macrophages. Front Immunol. 8(433)2017.PubMed/NCBI View Article : Google Scholar | |
Xie G, Karaca G, Swiderska-Syn M, Michelotti GA, Kruger L, Chen Y, Premont RT, Choi SS and Diehl AM: Cross-talk between Notch and Hedgehog regulates hepatic stellate cell fate in mice. Hepatology. 58:1801–1813. 2013.PubMed/NCBI View Article : Google Scholar | |
Romeo S: Notch and nonalcoholic fatty liver and fibrosis. N Engl J Med. 380:681–683. 2019.PubMed/NCBI View Article : Google Scholar | |
Zhu C, Kim K, Wang X, Bartolome A, Salomao M, Dongiovanni P, Meroni M, Graham MJ, Yates KP, Diehl AM, et al: Hepatocyte Notch activation induces liver fibrosis in nonalcoholic steatohepatitis. Sci Transl Med. 10(eaat0344)2018.PubMed/NCBI View Article : Google Scholar | |
Iso T, Kedes L and Hamamori Y: HES and HERP families: Multiple effectors of the Notch signaling pathway. J Cell Physiol. 194:237–255. 2003.PubMed/NCBI View Article : Google Scholar | |
Kageyama R, Ohtsuka T, Hatakeyama J and Ohsawa R: Roles of bHLH genes in neural stem cell differentiation. Exp Cell Res. 306:343–348. 2005.PubMed/NCBI View Article : Google Scholar | |
Yu F, Chen B, Dong P and Zheng J: HOTAIR epigenetically modulates PTEN expression via MicroRNA-29b: A novel mechanism in regulation of liver fibrosis. Mol Ther. 25:205–217. 2017.PubMed/NCBI View Article : Google Scholar | |
Dong Z, Li S, Wang X, Si L, Ma R, Bao L and Bo A: lncRNA GAS5 restrains CCl4-induced hepatic fibrosis by targeting miR-23a through the PTEN/PI3K/Akt signaling pathway. Am J Physiol Gastrointest Liver Physiol. 316:G539–G550. 2019.PubMed/NCBI View Article : Google Scholar |