1
|
Ijland MM, Heunks LM and van der Hoeven
JG: Bench-to-bedside review: Hypercapnic acidosis in lung
injury-from ‘permissive’ to ‘therapeutic’. Crit Care.
14(237)2010.PubMed/NCBI View
Article : Google Scholar
|
2
|
Tan J, Liu Y, Jiang T, Wang L, Zhao C,
Shen D and Cui X: Effects of hypercapnia on acute cellular
rejection after lung transplantation in rats. Anesthesiology.
128:130–139. 2018.PubMed/NCBI View Article : Google Scholar
|
3
|
Shigemura M, Lecuona E and Sznajder JI:
Effects of hypercapnia on the lung. J Physiol. 595:2431–2437.
2017.PubMed/NCBI View
Article : Google Scholar
|
4
|
Laffey JG and Kavanagh BP: Hypocapnia. N
Engl J Med. 347:43–53. 2002.PubMed/NCBI View Article : Google Scholar
|
5
|
Contreras M, Masterson C and Laffey JG:
Permissive hypercapnia: What to remember. Curr Opin Anesthesiol.
28:26–37. 2015.PubMed/NCBI View Article : Google Scholar
|
6
|
Qu LC, Jiao Y, Jiang ZJ, Song ZP and Peng
QH: Acidic preconditioning protects against ischemia-reperfusion
lung injury via inhibiting the expression of matrix
metalloproteinase 9. J Surg Res. 235:569–577. 2019.PubMed/NCBI View Article : Google Scholar
|
7
|
Crackower MA, Sarao R, Oudit GY, Yagil C,
Kozieradzki I, Scanga SE, Oliveira-dos-Santos AJ, da Costa J, Zhang
L, Pei Y, et al: Angiotensin-converting enzyme 2 is an essential
regulator of heart function. Nature. 417:822–828. 2002.PubMed/NCBI View Article : Google Scholar
|
8
|
Huentelman MJ, Grobe JL, Vazquez J,
Stewart JM, Mecca AP, Katovich MJ, Ferrario CM and Raizada MK:
Protection from angiotensin II-induced cardiac hypertrophy and
fibrosis by systemic lentiviral delivery of ACE2 in rats. Exp
Physiol. 90:783–790. 2005.PubMed/NCBI View Article : Google Scholar
|
9
|
Abdul-Hafez A, Mohamed T, Omar H, Shemis M
and Uhal BD: The renin angiotensin system in liver and lung: Impact
and therapeutic potential in organ fibrosis. J Lung Pulm Respir
Res. 5(00160)2018.PubMed/NCBI
|
10
|
Oudit GY and Penninger JM: Recombinant
human angiotensin-converting enzyme 2 as a new renin-angiotensin
system peptidase for heart failure therapy. Curr Heart Fail Rep.
8:176–183. 2011.PubMed/NCBI View Article : Google Scholar
|
11
|
Chappell MC, Marshall AC, Alzayadneh EM,
Shaltout HA and Diz DI: Update on the Angiotensin converting enzyme
2-Angiotensin (1-7)-MAS receptor axis: Fetal programing, sex
differences, and intracellular pathways. Front Endocrinol
(Lausanne). 4(201)2014.PubMed/NCBI View Article : Google Scholar
|
12
|
Kuba K, Imai Y, Ohto-Nakanishi T and
Penninger JM: Trilogy of ACE2: A peptidase in the renin-angiotensin
system, a SARS receptor, and a partner for amino acid transporters.
Pharmacol Ther. 128:119–128. 2010.PubMed/NCBI View Article : Google Scholar
|
13
|
Cheng H, Wang Y and Wang GQ:
Organ-protective effect of angiotensin-converting enzyme 2 and its
effect on the prognosis of COVID-19. J Med Virol. 92:726–730.
2020.PubMed/NCBI View Article : Google Scholar
|
14
|
Contini C, Di Nuzzo M, Barp N, Bonazza A,
De Giorgio R, Tognon M and Rubino S: The novel zoonotic COVID-19
pandemic: An expected global health concern. J Infect Dev Ctries.
14:254–264. 2020.PubMed/NCBI View Article : Google Scholar
|
15
|
Danser AJ, Epstein M and Batlle D:
Renin-angiotensin system blockers and the COVID-19 pandemic: At
present there is no evidence to abandon renin-angiotensin system
blockers. Hypertension. 175:1382–1385. 2020.PubMed/NCBI View Article : Google Scholar
|
16
|
Chen Q, Liu J, Wang W, Liu S, Yang X, Chen
M, Cheng L, Lu J, Guo T and Huang F: Sini decoction ameliorates
sepsis-induced acute lung injury via regulating ACE2-Ang (1-7)-Mas
axis and inhibiting the MAPK signaling pathway. Biomed
Pharmacother. 115(108971)2019.PubMed/NCBI View Article : Google Scholar
|
17
|
Li Y, Zeng Z, Cao Y, Liu Y, Ping F, Liang
M, Xue Y, Xi C, Zhou M and Jiang W: Angiotensin-converting enzyme 2
prevents lipopolysaccharide-induced rat acute lung injury via
suppressing the ERK1/2 and NF-κB signaling pathways. Sci Rep.
6(27911)2016.PubMed/NCBI View Article : Google Scholar
|
18
|
Liu Q, Du J, Yu X, Xu J, Huang F, Li X,
Zhang C, Li X, Chang J, Shang D, et al: miRNA-200c-3p is crucial in
acute respiratory distress syndrome. Cell Discov.
3(17021)2017.PubMed/NCBI View Article : Google Scholar
|
19
|
Zhang X, Huang H, Yang T, Ye Y, Shan J,
Yin Z and Luo L: Chlorogenic acid protects mice against
lipopolysaccharide-induced acute lung injury. Injury. 41:746–752.
2010.PubMed/NCBI View Article : Google Scholar
|
20
|
Zhang CH, Fan YY, Wang XF, Xiong JY, Tang
YY, Gao JQ, Shen Z, Song XH, Zhang JY, Shen Y, et al: Acidic
preconditioning protects against ischemia-induced brain injury.
Neurosci Lett. 523:3–8. 2012.PubMed/NCBI View Article : Google Scholar
|
21
|
Gu H, Xie Z, Li T, Zhang S, Lai C, Zhu P,
Wang K, Han L, Duan Y, Zhao Z, et al: Angiotensin-converting enzyme
2 inhibits lung injury induced by respiratory syncytial virus. Sci
Rep. 6(19840)2016.PubMed/NCBI View Article : Google Scholar
|
22
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408.
2001.PubMed/NCBI View Article : Google Scholar
|
23
|
Ye R and Liu Z: ACE2 exhibits protective
effects against LPS-induced acute lung injury in mice by inhibiting
the LPS-TLR4 pathway. Exp Mol Pathol. 113(104350)2020.PubMed/NCBI View Article : Google Scholar
|
24
|
Niu J, Shi Y, Tan G, Yang CH, Fan M,
Pfeffer LM and Wu ZH: DNA damage induces NF-κB-dependent
microRNA-21 up-regulation and promotes breast cancer cell invasion.
J Biol Chem. 287:21783–21795. 2012.PubMed/NCBI View Article : Google Scholar
|
25
|
Zhou R, Hu G, Liu J, Gong AY, Drescher KM
and Chen XM: NF-kappaB p65-dependent transactivation of miRNA genes
following Cryptosporidium parvum infection stimulates epithelial
cell immune responses. PLoS Pathog. 5(e1000681)2009.PubMed/NCBI View Article : Google Scholar
|
26
|
Minato T, Nirasawa S, Sato T, Yamaguchi T,
Hoshizaki M, Inagaki T, Nakahara K, Yoshihashi T, Ozawa R, Yokota
S, et al: B38-CAP is a bacteria-derived ACE2-like enzyme that
suppresses hypertension and cardiac dysfunction. Nat Commun.
11(1058)2020.PubMed/NCBI View Article : Google Scholar
|
27
|
Celec P: Nuclear factor kappa B-molecular
biomedicine: The next generation. Biomed Pharmacother. 58:365–371.
2004.PubMed/NCBI View Article : Google Scholar
|
28
|
Kvandova M and Dovinova I: Functioning of
the PPAR gamma and its effect on cardiovascular and metabolic
Diseases. In: Metabolic Syndrome, edition: 160 Greentree Drive,
Suite 101, Dover, DE 19904, USA, pp1-41, 2017 http://smgebooks.com/metabolic-syndrome/index.php.
|
29
|
Passos-Silva DG, Verano-Braga T and Santos
RA: Angiotensin-(1-7): Beyond the cardio-renal actions. Clin Sci.
124:443–456. 2013.PubMed/NCBI View Article : Google Scholar
|
30
|
Rodrigues Prestes TR, Rocha NP, Miranda
AS, Teixeira AL and Simoes-E-Silva AC: The anti-inflammatory
potential of ACE2/angiotensin-(1-7)/mas receptor axis: evidence
from basic and clinical research. Current Drug Targets.
18:1301–1313. 2017.PubMed/NCBI View Article : Google Scholar
|
31
|
Kuba K, Imai Y, Rao S, Jiang C and
Penninger JM: Lessons from SARS: Control of acute lung failure by
the SARS receptor ACE2. J Mol Med. 84:814–820. 2006.PubMed/NCBI View Article : Google Scholar
|
32
|
Zou Z, Yan Y, Shu Y, Gao R, Sun Y, Li X,
Ju X, Liang Z, Liu Q, Zhao Y, et al: Angiotensin-converting enzyme
2 protects from lethal avian influenza A H5N1 infections. Nat
Commun. 5(3594)2014.PubMed/NCBI View Article : Google Scholar
|
33
|
Wang J, Zhao S, Liu M, Zhao Z, Xu Y, Wang
P, Lin M, Xu Y, Huang B, Zuo X, et al: ACE2 expression by colonic
epithelial cells is associated with viral infection, immunity and
energy metabolism. medRxiv, Feb 7, 2020 doi: https://doi.org/10.1101/2020.02.05.20020545.
|
34
|
Gralinski LE, Sheahan TP, Morrison TE,
Menachery VD, Jensen K, Leist SR, Whitmore A, Heise MT and Baric
RS: Complement activation contributes to severe acute respiratory
syndrome coronavirus pathogenesis. MBio. 9:e01753–18.
2018.PubMed/NCBI View Article : Google Scholar
|
35
|
Imai Y, Kuba K, Rao S, Huan Y, Guo F, Guan
B, Yang P, Sarao R, Wada T, Leong-Poi H, et al:
Angiotensin-converting enzyme 2 protects from severe acute lung
failure. Nature. 436:112–116. 2005.PubMed/NCBI View Article : Google Scholar
|
36
|
Ebert MS and Sharp PA: Emerging roles for
natural microRNA sponges. Curr Biol. 20:R858–R861. 2010.PubMed/NCBI View Article : Google Scholar
|
37
|
Christopher AF, Kaur RP, Kaur G, Kaur A,
Gupta V and Bansal P: MicroRNA therapeutics: Discovering novel
targets and developing specific therapy. Perspect Clin Res.
7:68–74. 2016.PubMed/NCBI View Article : Google Scholar
|
38
|
Magenta A, Greco S, Gaetano C and Martelli
F: Oxidative stress and microRNAs in vascular diseases. Int J Mol
Sci. 14:17319–17346. 2013.PubMed/NCBI View Article : Google Scholar
|
39
|
Zhang HN, Xu QQ, Thakur A, Alfred MO,
Chakraborty M, Ghosh A and Yu XB: Endothelial dysfunction in
diabetes and hypertension: Role of microRNAs and long non-coding
RNAs. Life Sci. 213:258–268. 2018.PubMed/NCBI View Article : Google Scholar
|
40
|
Caballero AE: Endothelial dysfunction in
obesity and insulin resistance: A road to diabetes and heart
disease. Obes Res. 11:1278–1289. 2003.PubMed/NCBI View Article : Google Scholar
|
41
|
Alexopoulou L, Holt AC, Medzhitov R and
Flavell RA: Recognition of double-stranded RNA and activation of
NF-κB by Toll-like receptor 3. Nature. 413:732–738. 2001.PubMed/NCBI View Article : Google Scholar
|
42
|
Uchida T, Shirasawa M, Ware LB, Kojima K,
Hata Y, Makita K, Mednick G, Matthay ZA and Matthay MA: Receptor
for advanced glycation end-products is a marker of type I cell
injury in acute lung injury. Am J Respir Criti Care Med.
173:1008–1015. 2006.PubMed/NCBI View Article : Google Scholar
|
43
|
Proudfoot AG, McAuley DF, Griffiths MJ and
Hind M: Human models of acute lung injury. Dis Models Mech.
4:145–153. 2011.PubMed/NCBI View Article : Google Scholar
|