1
|
Lipton SA and Rosenberg PA: Excitatory
amino acids as a final common pathway for neurologic disorders. N
Engl J Med. 330:613–622. 1994.PubMed/NCBI View Article : Google Scholar
|
2
|
Wang R and Reddy PH: Role of Glutamate and
NMDA Receptors in Alzheimer's Disease. J Alzheimers Dis.
57:1041–1048. 2017.PubMed/NCBI View Article : Google Scholar
|
3
|
Pisanò CA, Brugnoli A, Novello S, Caccia
C, Keywood C, Melloni E, Vailati S, Padoani G and Morari M:
Safinamide inhibits in vivo glutamate release in a rat model of
Parkinson's disease. Neuropharmacology. 167(108006)2020.PubMed/NCBI View Article : Google Scholar
|
4
|
Connaughton V: Glutamate and Glutamate
Receptors in the Vertebrate Retina. In: Webvision: The Organization
of the Retina and Visual System. Kolb H, Fernandez E and Nelson R
(eds) University of Utah Health Sciences Center Copyright,
Webvision, Salt Lake City, UT, 1995.
|
5
|
Charles-Messance H, Blot G, Couturier A,
Vignaud L, Touhami S, Beguier F, Siqueiros L, Forster V, Barmo N,
Augustin S, et al: IL-1β induces rod degeneration through the
disruption of retinal glutamate homeostasis. J Neuroinflammation.
17(1)2020.PubMed/NCBI View Article : Google Scholar
|
6
|
Delyfer MN, Forster V, Neveux N, Picaud S,
Léveillard T and Sahel JA: Evidence for glutamate-mediated
excitotoxic mechanisms during photoreceptor degeneration in the rd1
mouse retina. Mol Vis. 11:688–696. 2005.PubMed/NCBI
|
7
|
Reynolds IJ and Hastings TG: Glutamate
induces the production of reactive oxygen species in cultured
forebrain neurons following NMDA receptor activation. J Neurosci.
15:3318–3327. 1995.PubMed/NCBI View Article : Google Scholar
|
8
|
Kruman II and Mattson MP: Pivotal role of
mitochondrial calcium uptake in neural cell apoptosis and necrosis.
J Neurochem. 72:529–540. 1999.PubMed/NCBI View Article : Google Scholar
|
9
|
Ginsberg MD: Neuroprotection for ischemic
stroke: Past, present and future. Neuropharmacology. 55:363–389.
2008.PubMed/NCBI View Article : Google Scholar
|
10
|
Osborne NN, Casson RF, Wood JP, Chidlow G,
Graham M and Melena J: Retinal ischemia: Mechanisms of damage and
potential therapeutic strategies. Prog Retin Eye Res. 23:91–147.
2004.PubMed/NCBI View Article : Google Scholar
|
11
|
Binda NS, Carayon CP, Agostini RM,
Pinheiro AC, Cordeiro MN, Silva MA, Silva JF, Pereira EM, da Silva
CA Jr, Castro CJ Jr, et al: PhTx3-4, a spider toxin calcium channel
blocker, reduces NMDA-induced injury of the retina. Toxins (Basel).
8(70)2016.PubMed/NCBI View Article : Google Scholar
|
12
|
Yiğit U, Erdenöz S, Uslu U, Oba E, Cumbul
A, Cağatay H, Aktaş S and Eskicoğlu E: An immunohistochemical
analysis of the neuroprotective effects of memantine, hyperbaric
oxygen therapy, and brimonidine after acute ischemia reperfusion
injury. Mol Vis. 17:1024–1033. 2011.PubMed/NCBI
|
13
|
Stankowska DL, Dibas A, Li L, Zhang W,
Krishnamoorthy VR, Chavala SH, Nguyen TP, Yorio T, Ellis DZ and
Acharya S: Hybrid compound SA-2 is neuroprotective in animal models
of retinal ganglion cell death. Invest Ophthalmol Vis Sci.
60:3064–3073. 2019.PubMed/NCBI View Article : Google Scholar
|
14
|
Craik DJ, Fairlie DF, Liras S, Liras S and
Price D: The future of peptide-based drugs. Chem Biol Drug Des.
81:136–147. 2013.PubMed/NCBI View Article : Google Scholar
|
15
|
Jiang Y, Wei N, Lu T, Zhu J, Xu G and Liu
X: Intranasal brain-derived neurotrophic factor protects brain from
ischemic insult via modulating local inflammation in rats.
Neuroscience. 172:398–405. 2011.PubMed/NCBI View Article : Google Scholar
|
16
|
Larpthaveesarp A, Georgevits M, Ferriero
DM and Gonzalez FF: Delayed erythropoietin therapy improves
histological and behavioral outcomes after transient neonatal
stroke. Neurobiol Dis. 93:57–63. 2016.PubMed/NCBI View Article : Google Scholar
|
17
|
Zhao YZ, Lin M, Lin Q, Yang W, Yu XC, Tian
FR, Mao KL, Yang JJ, Lu CT and Wong HL: Intranasal delivery of bFGF
with nanoliposomes enhances in vivo neuroprotection and neural
injury recovery in a rodent stroke model. J Control Release.
224:165–175. 2016.PubMed/NCBI View Article : Google Scholar
|
18
|
Harrell CR, Fellabaum C, Arsenijevic A,
Markovic BS, Djonov V and Volarevic V: Therapeutic potential of
mesenchymal stem cells and their secretome in the treatment of
glaucoma. Stem Cells Int. 2019(7869130)2019.PubMed/NCBI View Article : Google Scholar
|
19
|
Minhas G, Prabhakar S, Morishita R,
Shimamura M, Bansal R and Anand A: Transplantation of
lineage-negative stem cells in pterygopalatine artery ligation
induced retinal ischemia-reperfusion injury in mice. Mol Cell
Biochem. 429:123–136. 2017.PubMed/NCBI View Article : Google Scholar
|
20
|
Cervia D, Catalani E and Casini G:
Neuroprotective peptides in retinal disease. J Clin Med.
8(1146)2019.PubMed/NCBI View Article : Google Scholar
|
21
|
Sun Q, Shen Y, Su L and Xu X: Inhibition
of pathological retinal neovascularization by a small peptide
derived from human tissue-type plasminogen kringle 2. Front
Pharmacol. 10(1639)2020.PubMed/NCBI View Article : Google Scholar
|
22
|
Niu T, Cheng L, Wang H, Zhu S, Yang X, Liu
K, Jin H and Xu X: KS23, a novel peptide derived from adiponectin,
inhibits retinal inflammation and downregulates the proportions of
Th1 and Th17 cells during experimental autoimmune uveitis. J
Neuroinflammation. 16(278)2019.PubMed/NCBI View Article : Google Scholar
|
23
|
Xiong S, Xu Y, Ma M, Wang H, Wei F, Gu Q
and Xu X: Neuroprotective effects of a novel peptide, FK18, under
oxygen-glucose deprivation in SH-SY5Y cells and retinal ischemia in
rats via the Akt pathway. Neurochem Int. 108:78–90. 2017.PubMed/NCBI View Article : Google Scholar
|
24
|
Fernández-Sánchez MT and Novelli A: Basic
fibroblast growth factor protects cerebellar neurons in primary
culture from NMDA and non-NMDA receptor mediated neurotoxicity.
FEBS Lett. 335:124–131. 1993.PubMed/NCBI View Article : Google Scholar
|
25
|
Ma J, Qiu J, Hirt L, Dalkara T and
Moskowitz MA: Synergistic protective effect of caspase inhibitors
and bFGF against brain injury induced by transient focal ischaemia.
Br J Pharmacol. 133:345–350. 2001.PubMed/NCBI View Article : Google Scholar
|
26
|
O'Driscoll C, O'Connor J, O'Brien CJ and
Cotter TG: Basic fibroblast growth factor-induced protection from
light damage in the mouse retina in vivo. J Neurochem. 105:524–536.
2008.PubMed/NCBI View Article : Google Scholar
|
27
|
Oltvai ZN, Milliman CL and Korsmeyer SJ:
Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that
accelerates programmed cell death. Cell. 74:609–619.
1993.PubMed/NCBI View Article : Google Scholar
|
28
|
Taveira M, Sousa C, Valentão P, Ferreres
F, Teixeira JP and Andrade PB: Neuroprotective effect of steroidal
alkaloids on glutamate-induced toxicity by preserving mitochondrial
membrane potential and reducing oxidative stress. J Steroid Biochem
Mol Biol. 140:106–115. 2014.PubMed/NCBI View Article : Google Scholar
|
29
|
Ito S, Ménard M, Atkinson T, Brown L,
Whitfield J and Chakravarthy B: Relative expression of the p75
neurotrophin receptor, tyrosine receptor kinase A, and insulin
receptor in SH-SY5Y neuroblastoma cells and hippocampi from
Alzheimer's disease patients. Neurochem Int. 101:22–29.
2016.PubMed/NCBI View Article : Google Scholar
|
30
|
Liu W, Ma H, DaSilva NA, Rose KN, Johnson
SL, Zhang L, Wan C, Dain JA and Seeram NP: Development of a
neuroprotective potential algorithm for medicinal plants. Neurochem
Int. 100:164–177. 2016.PubMed/NCBI View Article : Google Scholar
|
31
|
Gao M, Zhang WC, Liu QS, Hu JJ, Liu GT and
Du GH: Pinocembrin prevents glutamate-induced apoptosis in SH-SY5Y
neuronal cells via decrease of bax/bcl-2 ratio. Eur J Pharmacol.
591:73–79. 2008.PubMed/NCBI View Article : Google Scholar
|
32
|
Hu Y, Li J, Liu P, Chen X, Guo DH, Li QS
and Rahman K: Protection of SH-SY5Y neuronal cells from
glutamate-induced apoptosis by 3,6'-disinapoyl sucrose, a bioactive
compound isolated from Radix Polygala. J Biomed Biotechnol.
2012:1–5. 2012.PubMed/NCBI View Article : Google Scholar
|
33
|
Xu MF, Xiong YY, Liu JK, Qian JJ, Zhu L
and Gao J: Asiatic acid, a pentacyclic triterpene in Centella
asiatica, attenuates glutamate-induced cognitive deficits in mice
and apoptosis in SH-SY5Y cells. Acta Pharmacol Sin. 33:578–587.
2012.PubMed/NCBI View Article : Google Scholar
|
34
|
Santos-Carvalho A, Elvas F, Alvaro AR,
Ambrósio AF and Cavadas C: Neuropeptide Y receptors activation
protects rat retinal neural cells against necrotic and apoptotic
cell death induced by glutamate. Cell Death Dis.
4(e636)2013.PubMed/NCBI View Article : Google Scholar
|
35
|
Ahrens VM, Bellmann-Sickert K and
Beck-Sickinger AG: Peptides and peptide conjugates: Therapeutics on
the upward path. Future Med Chem. 4:1567–1586. 2012.PubMed/NCBI View Article : Google Scholar
|
36
|
Brazil DP, Yang ZZ and Hemmings BA:
Advances in protein kinase B signalling: AKTion on multiple fronts.
Trends Biochem Sci. 29:233–242. 2004.PubMed/NCBI View Article : Google Scholar
|
37
|
Manning BD and Cantley LC: AKT/PKB
signaling: Navigating downstream. Cell. 129:1261–1274.
2007.PubMed/NCBI View Article : Google Scholar
|
38
|
Hanada M, Feng J and Hemmings BA:
Structure, regulation and function of PKB/AKT - a major therapeutic
target. Biochim Biophys Acta. 1697:3–16. 2004.PubMed/NCBI View Article : Google Scholar
|
39
|
Lim JY, Park SI, Oh JH, Kim SM, Jeong CH,
Jun JA, Lee KS, Oh W, Lee JK and Jeun SS: Brain-derived
neurotrophic factor stimulates the neural differentiation of human
umbilical cord blood-derived mesenchymal stem cells and survival of
differentiated cells through MAPK/ERK and PI3K/Akt-dependent
signaling pathways. J Neurosci Res. 86:2168–2178. 2008.PubMed/NCBI View Article : Google Scholar
|
40
|
Luo C, Huang Q, Yuan X, Yang Y, Wang B,
Huang Z, Tang L and Sun H: Abdominal paracentesis drainage
attenuates severe acute pancreatitis by enhancing cell apoptosis
via PI3K/AKT signaling pathway. Apoptosis. 25:290–303.
2020.PubMed/NCBI View Article : Google Scholar
|
41
|
Sweatt JD: Mitogen-activated protein
kinases in synaptic plasticity and memory. Curr Opin Neurobiol.
14:311–317. 2004.PubMed/NCBI View Article : Google Scholar
|
42
|
Fukunaga K and Miyamoto E: Role of MAP
kinase in neurons. Mol Neurobiol. 16:79–95. 1998.PubMed/NCBI View Article : Google Scholar
|
43
|
Stanciu M, Wang Y, Kentor R, Burke N,
Watkins S, Kress G, Reynolds I, Klann E, Angiolieri MR, Johnson JW,
et al: Persistent activation of ERK contributes to
glutamate-induced oxidative toxicity in a neuronal cell line and
primary cortical neuron cultures. J Biol Chem. 275:12200–12206.
2000.PubMed/NCBI View Article : Google Scholar
|
44
|
Chu CT, Levinthal DJ, Kulich SM, Chalovich
EM and DeFranco DB: Oxidative neuronal injury. The dark side of
ERK1/2. Eur J Biochem. 271:2060–2066. 2004.PubMed/NCBI View Article : Google Scholar
|
45
|
Subramaniam S, Zirrgiebel U, von Bohlen
Und Halbach O, Strelau J, Laliberté C, Kaplan DR and Unsicker K:
ERK activation promotes neuronal degeneration predominantly through
plasma membrane damage and independently of caspase-3. J Cell Biol.
165:357–369. 2004.PubMed/NCBI View Article : Google Scholar
|
46
|
Kolch W: Meaningful relationships: The
regulation of the Ras/Raf/MEK/ERK pathway by protein interactions.
Biochem J. 351:289–305. 2000.PubMed/NCBI
|
47
|
Wennström S and Downward J: Role of
phosphoinositide 3-kinase in activation of ras and
mitogen-activated protein kinase by epidermal growth factor. Mol
Cell Biol. 19:4279–4288. 1999.PubMed/NCBI View Article : Google Scholar
|
48
|
Rommel C, Clarke BA, Zimmermann S, Nuñez
L, Rossman R, Reid K, Moelling K, Yancopoulos GD and Glass DJ:
Differentiation stage-specific inhibition of the Raf-MEK-ERK
pathway by Akt. Science. 286:1738–1741. 1999.PubMed/NCBI View Article : Google Scholar
|