Update on the etiopathogenesis of psoriasis (Review)
- Authors:
- Daciana Elena Branisteanu
- Catalina Cojocaru
- Roxana Diaconu
- Elena Andrese Porumb
- Anisia Iuliana Alexa
- Alin Codrut Nicolescu
- Ilarie Brihan
- Camelia Margareta Bogdanici
- George Branisteanu
- Andreea Dimitriu
- Mihail Zemba
- Nicoleta Anton
- Mihaela Paula Toader
- Adrian Grechin
- Daniel Constantin Branisteanu
-
Affiliations: Department of Dermatology, ‘Grigore T. Popa’ University of Medicine and Pharmacy, 700115 Iasi, Romania, Department of Dermatology, Railway Clinical Hospital, 700506 Iasi, Romania, Department of Dermatology, ‘Sf. Spiridon’ Clinical Emergency County Hospital, 700111 Iasi, Romania, Department of Ophthalmology, ‘Grigore T. Popa’ University of Medicine and Pharmacy, 700115 Iasi, Romania, Department of Dermatology, ‘Roma’ Medical Center for Diagnosis and Treatment, 011773 Bucharest, Romania, Department of Dermatology, Dermatology Clinic, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania, Department of Ophthalmology, ‘Grigore T. Popa’ University of Medicine and Pharmacy, 700115 Iași, Romania, Faculty of Medicine, ‘Grigore T. Popa’ University of Medicine and Pharmacy, 700115 Iasi, Romania, Department of Dermatology, ‘Arcadia’ Hospitals and Medical Centers, 700620 Iasi, Romania, Department of Ophthalmology, ‘Carol Davila’ University of Medicine and Pharmacy, 020021 Bucharest, Romania, Department of Oral Dermatology, ‘Grigore T. Popa’ University of Medicine and Pharmacy, 700115 Iasi, Romania, Department of Ophthalmology, ‘Sf. Spiridon’ Clinical Emergency County Hospital, 700111 Iasi, Romania - Published online on: January 5, 2022 https://doi.org/10.3892/etm.2022.11124
- Article Number: 201
-
Copyright: © Branisteanu et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Tokuyama M and Mabuchi T: New treatment addressing the pathogenesis of psoriasis. Int J Mol Sci. 21(7488)2020.PubMed/NCBI View Article : Google Scholar | |
Griffiths CE and Barker JN: Pathogenesis and clinical features of psoriasis. Lancet. 370:263–271. 2007.PubMed/NCBI View Article : Google Scholar | |
Nestle FO, Kaplan DH and Barker J: Psoriasis. N Engl J Med. 361:496–509. 2009.PubMed/NCBI View Article : Google Scholar | |
Parisi R, Symmons DPM, Griffiths CE and Ashcroft DM: Identification and Management of Psoriasis and Associated ComorbidiTy (IMPACT) project team. Global epidemiology of psoriasis: A systematic review of incidence and prevalence. J Invest Dermatol. 133:377–385. 2013.PubMed/NCBI View Article : Google Scholar | |
Rachakonda TD, Schupp CW and Armstrong AW: Psoriasis prevalence among adults in the United States. J Am Acad Dermatol. 70:512–516. 2014.PubMed/NCBI View Article : Google Scholar | |
Parisi R, Iskandar IYK, Kontopantelis E, Augustin M, Griffiths CEM and Ashcroft DM: Global Psoriasis Atlas. National, regional, and worldwide epidemiology of psoriasis: Systematic analysis and modelling study. BMJ. 369(m1590)2020.PubMed/NCBI View Article : Google Scholar | |
Michalek IM, Loring B and John SM: A systematic review of worldwide epidemiology of psoriasis. J Eur Acad Dermatol Venereol. 31:205–212. 2017.PubMed/NCBI View Article : Google Scholar | |
Dand N, Mahil SK, Capon F, Smith CH, Simpson MA and Barker JN: Psoriasis and Genetics. Acta Derm Venereol. 100(adv00030)2020.PubMed/NCBI View Article : Google Scholar | |
O'Rielly DD, Jani M, Rahman P and Elder JT: The genetics of psoriasis and psoriatic arthritis. J Rheumatol. (Suppl 95):46–50. 2019.PubMed/NCBI View Article : Google Scholar | |
Weiss G, Shemer A and Trau H: The Koebner phenomenon: Review of the literature. J Eur Acad Dermatol Venereol. 16:241–248. 2002.PubMed/NCBI View Article : Google Scholar | |
Malhotra SK and Mehta V: Role of stressful life events in induction or exacerbation of psoriasis and chronic urticaria. Indian J Dermatol Venereol Leprol. 74:594–599. 2008.PubMed/NCBI View Article : Google Scholar | |
Basavaraj KH, Ashok NM, Rashmi R and Praveen TK: The role of drugs in the induction and/or exacerbation of psoriasis. Int J Dermatol. 49:1351–1361. 2010.PubMed/NCBI View Article : Google Scholar | |
Fry L and Baker BS: Triggering psoriasis: The role of infections and medications. Clin Dermatol. 25:606–615. 2007.PubMed/NCBI View Article : Google Scholar | |
Higgins E: Alcohol, smoking and psoriasis. Clin Exp Dermatol. 25:107–110. 2000.PubMed/NCBI View Article : Google Scholar | |
Armstrong AW, Harskamp CT and Armstrong EJ: The association between psoriasis and obesity: A systematic review and meta-analysis of observational studies. Nutr Diabetes. 2(e54)2012.PubMed/NCBI View Article : Google Scholar | |
Balato N, Di Costanzo L, Patruno C, Patrì A and Ayala F: Effect of weather and environmental factors on the clinical course of psoriasis. Occup Environ Med. 70(600)2013.PubMed/NCBI View Article : Google Scholar | |
López-Estebaranz JL, Sánchez-Carazo JL and Sulleiro S: Effect of a family history of psoriasis and age on comorbidities and quality of life in patients with moderate to severe psoriasis: Results from the ARIZONA study. J Dermatol. 43:395–401. 2016.PubMed/NCBI View Article : Google Scholar | |
Duffy DL, Spelman LS and Martin NG: Psoriasis in Australian twins. J Am Acad Dermatol. 29:428–434. 1993.PubMed/NCBI View Article : Google Scholar | |
Trembath RC, Clough RL, Rosbotham JL, Jones AB, Camp RD, Frodsham A, Browne J, Barber R, Terwilliger J, Lathrop GM and Barker JN: Identification of a major susceptibility locus on chromosome 6p and evidence for further disease loci revealed by a two stage genome-wide search in psoriasis. Hum Mol Genet. 6:813–820. 1997.PubMed/NCBI View Article : Google Scholar | |
Sagoo GS, Tazi-Ahnini R, Barker JWN, Elder JT, Nair RP, Samuelsson L, Traupe H, Trembath RC, Robinson DA and Iles MM: Meta-analysis of genome-wide studies of psoriasis susceptibility reveals linkage to chromosomes 6p21 and 4q28-q31 in Caucasian and Chinese Hans population. J Invest Dermatol. 122:1401–1405. 2004.PubMed/NCBI View Article : Google Scholar | |
Chen L and Tsai TF: HLA-Cw6 and psoriasis. Br J Dermatol. 178:854–862. 2018.PubMed/NCBI View Article : Google Scholar | |
Umapathy S, Pawar A, Mitra R, Khuperkar D, Devaraj JP, Ghosh K and Khopkar U: Hla-a and Hla-B alleles associated in psoriasis patients from Mumbai, Western India. Indian J Dermatol. 56:497–500. 2011.PubMed/NCBI View Article : Google Scholar | |
Nair RP, Duffin KC, Helms C, Ding J, Stuart PE, Goldgar D, Gudjonsson JE, Li Y, Tejasvi T, Feng BJ, et al: Genome-wide scan reveals association of psoriasis with IL-23 and NF-kappaB pathways. Nat Genet. 41:199–204. 2009.PubMed/NCBI View Article : Google Scholar | |
Cargill M, Schrodi SJ, Chang M, Garcia VE, Brandon R, Callis KP, Matsunami N, Ardlie KG, Civello D, Catanese JJ, et al: A large-scale genetic association study confirms IL12B and leads to the identification of IL23R as psoriasis-risk genes. Am J Hum Genet. 80:273–290. 2007.PubMed/NCBI View Article : Google Scholar | |
Garcia VE, Chang M, Brandon R, Li Y, Matsunami N, Callis-Duffin KP, Civello D, Rowland CM, Bui N, Catanese JJ, et al: Detailed genetic characterization of the interleukin-23 receptor in psoriasis. Genes Immun. 9:546–555. 2008.PubMed/NCBI View Article : Google Scholar | |
Hasegawa H, Mizoguchi I, Chiba Y, Ohashi M, Xu M and Yoshimoto T: Expanding diversity in molecular structures and functions of the IL-6/IL-12 heterodimeric cytokine Family. Front Immunol. 7(479)2016.PubMed/NCBI View Article : Google Scholar | |
Onoufriadis A, Simpson MA, Pink AE, Di Meglio P, Smith CH, Pullabhatla V, Knight J, Spain SL, Nestle FO, Burden AD, et al: Mutations in IL36RN/IL1F5 are associated with the severe episodic inflammatory skin disease known as generalized pustular psoriasis. Am J Hum Genet. 89:432–437. 2011.PubMed/NCBI View Article : Google Scholar | |
Cullen G, Kroshinsky D, Cheifetz AS and Korzenik JR: Psoriasis associated with anti-tumour necrosis factor therapy in inflammatory bowel disease: A new series and a review of 120 cases from the literature. Aliment Pharmacol Ther. 34:1318–1327. 2011.PubMed/NCBI View Article : Google Scholar | |
Pugliese D, Guidi L, Ferraro PM, Marzo M, Felice C, Celleno L, Landi R, Andrisani G, Pizzolante F, De Vitis I, et al: Paradoxical psoriasis in a large cohort of patients with inflammatory bowel disease receiving treatment with anti-TNF alpha: 5-year follow-up study. Aliment Pharmacol Ther. 42:880–888. 2015.PubMed/NCBI View Article : Google Scholar | |
Eickstaedt JB, Killpack L, Tung J, Davis D, Hand JL and Tollefson MM: Psoriasis and psoriasiform eruptions in pediatric patients with inflammatory bowel disease treated with Anti-tumor necrosis factor alpha agents. Pediatr Dermatol. 34:253–260. 2017.PubMed/NCBI View Article : Google Scholar | |
Famenini S and Wu JJ: Infliximab-induced psoriasis in treatment of Crohn's disease-associated ankylosing spondylitis: Case report and review of 142 cases. J Drugs Dermatol. 12:939–943. 2013.PubMed/NCBI | |
Filoni A, Vestita M, Congedo M, Giudice G, Tafuri S and Bonamonte D: Association between psoriasis and vitamin D: Duration of disease correlates with decreased vitamin D serum levels: An observational case-control study. Medicine (Baltimore). 97(e11185)2018.PubMed/NCBI View Article : Google Scholar | |
Orgaz-Molina J, Buendía-Eisman A, Arrabal-Polo MA, Ruiz JC and Arias-Santiago S: Deficiency of serum concentration of 25-hydroxyvitamin D in psoriatic patients: A case-control study. J Am Acad Dermatol. 67:931–938. 2012.PubMed/NCBI View Article : Google Scholar | |
Porumb-Andrese E, Vâță D, Postolică R, Stătescu L, Stătescu C, Grăjdeanu AI, Pătrașcu AI, Popescu IA and Solovastru LG: Association between personality type, affective distress profile and quality of life in patients with psoriasis vs. patients with cardiovascular disease. Exp Ther Med. 18:4967–4973. 2019.PubMed/NCBI View Article : Google Scholar | |
Cai Y, Fleming C and Yan J: New insights of T cells in the pathogenesis of psoriasis. Cell Mol Immunol. 9:302–309. 2012.PubMed/NCBI View Article : Google Scholar | |
Coimbra S, Figueiredo A, Castro E, Rocha-Pereira P and Santos-Silva A: The roles of cells and cytokines in the pathogenesis of psoriasis. Int J Dermatol. 51:389–395. 2012.PubMed/NCBI View Article : Google Scholar | |
Boehncke WH: Etiology and pathogenesis of psoriasis. Rheum Dis Clin North Am. 41:665–675. 2015.PubMed/NCBI View Article : Google Scholar | |
Lai Y and Gallo RL: AMPed up immunity: How antimicrobial peptides have multiple roles in immune defense. Trends Immunol. 30:131–141. 2009.PubMed/NCBI View Article : Google Scholar | |
Ogawa E, Sato Y, Minagawa A and Okuyama R: Pathogenesis of psoriasis and development of treatment. J Dermatol. 45:264–272. 2018.PubMed/NCBI View Article : Google Scholar | |
Rendon A and Schäkel K: Psoriasis pathogenesis and treatment. Int J Mol Sci. 20(1475)2019.PubMed/NCBI View Article : Google Scholar | |
Eckert RL, Broome AM, Ruse M, Robinson N, Ryan D and Lee K: S100 proteins in the epidermis. J Invest Dermatol. 123:23–33. 2004.PubMed/NCBI View Article : Google Scholar | |
Büchau AS and Gallo RL: Innate immunity and antimicrobial defense systems in psoriasis. Clin Dermatol. 25:616–624. 2007.PubMed/NCBI View Article : Google Scholar | |
Liang SC, Tan XY, Luxenberg DP, Karim R, Dunussi-Joannopoulos K, Collins M and Fouser LA: Interleukin (IL)-22 and IL-17 are coexpressed by Th17 cells and cooperatively enhance expression of antimicrobial peptides. J Exp Med. 203:2271–2279. 2006.PubMed/NCBI View Article : Google Scholar | |
Jinquan T, Vorum H, Larsen CG, Madsen P, Rasmussen HH, Gesser B, Etzerodt M, Honoré B, Celis JE and Thestrup-Pedersen K: Psoriasin: A novel chemotactic protein. J Invest Dermatol. 107:5–10. 1996.PubMed/NCBI View Article : Google Scholar | |
Harder J and Schröder JM: Psoriatic scales: A promising source for the isolation of human skin-derived antimicrobial proteins. J Leukoc Biol. 77:476–486. 2005.PubMed/NCBI View Article : Google Scholar | |
Morizane S and Gallo RL: Antimicrobial peptides in the pathogenesis of psoriasis. J Dermatol. 39:225–230. 2012.PubMed/NCBI View Article : Google Scholar | |
Frohm M, Agerberth B, Ahangari G, Stâhle-Bäckdahl M, Lidén S, Wigzell H and Gudmundsson G: The expression of the gene coding for the antibacterial peptide LL-37 is induced in human keratinocytes during inflammatory disorders. J Biol Chem. 272:15258–15263. 1997.PubMed/NCBI View Article : Google Scholar | |
Lande R, Gregorio J, Facchinetti V, Chatterjee B, Wang YH, Homey B, Cao W, Wang YH, Su B, Nestle FO, et al: Plasmacytoid dendritic cells sense self-DNA coupled with antimicrobial peptide. Nature. 449:564–569. 2007.PubMed/NCBI View Article : Google Scholar | |
Morizane S, Yamasaki K, Mühleisen B, Kotol PF, Murakami M, Aoyama Y, Iwatsuki K, Hata T and Gallo RL: Cathelicidin antimicrobial peptide LL-37 in psoriasis enables keratinocyte reactivity against TLR9 Ligands. J Invest Dermatol. 132:135–143. 2012.PubMed/NCBI View Article : Google Scholar | |
Hänsel A, Günther C, Ingwersen J, Starke J, Schmitz M, Bachmann M, Meurer M, Rieber EP and Schäkel K: Human slan (6-sulfo LacNAc) dendritic cells are inflammatory dermal dendritic cells in psoriasis and drive strong Th17/Th1 T-cell responses. J Allergy Clin Immunol. 127:787–794.e1-e9. 2011.PubMed/NCBI View Article : Google Scholar | |
Mabuchi T and Hirayama N: Binding affinity and interaction of LL-37 with HLA-C*06:02 in psoriasis. J Invest Dermatol. 136:1901–1903. 2016.PubMed/NCBI View Article : Google Scholar | |
Arakawa A, Siewert K, Stöhr J, Besgen P, Kim SM, Rühl G, Nickel J, Vollmer S, Thomas P, Krebs S, et al: Melanocyte antigen triggers autoimmunity in human psoriasis. J Exp Med. 212:2203–2212. 2015.PubMed/NCBI View Article : Google Scholar | |
Krueger JG: An autoimmune ‘attack’ on melanocytes triggers psoriasis and cellular hyperplasia. J Exp Med. 212:2186. 2015.PubMed/NCBI View Article : Google Scholar | |
Nishimoto S, Kotani H, Tsuruta S, Shimizu N, Ito M, Shichita T, Morita R, Takahashi H, Amagai M and Yoshimura A: Th17 cells carrying TCR recognizing epidermal autoantigen induce psoriasis-like skin inflammation. J Immunol. 191:3065–3072. 2013.PubMed/NCBI View Article : Google Scholar | |
Chiricozzi A, Romanelli P, Volpe E, Borsellino G and Romanelli M: Scanning the immunopathogenesis of psoriasis. Int J Mol Sci. 19(E179)2018.PubMed/NCBI View Article : Google Scholar | |
Fuentes-Duculan J, Bonifacio KM, Hawkes JE, Kunjravia N, Cueto I, Li X, Gonzalez J, Garcet S and Krueger JG: Autoantigens ADAMTSL5 and LL37 are significantly upregulated in active Psoriasis and localized with keratinocytes, dendritic cells and other leukocytes. Exp Dermatol. 26:1075–1082. 2017.PubMed/NCBI View Article : Google Scholar | |
Bonifacio KM, Kunjravia N, Krueger JG and Duculan JF: Cutaneous expression of A Disintegrin-like and Metalloprotease domain containing thrombospondin type 1 motif-like 5 (ADAMTSL5) in psoriasis goes beyond Melanocytes. J Pigment Disord. 3(244)2016.PubMed/NCBI View Article : Google Scholar | |
Liu YJ: IPC: Professional type 1 interferon-producing cells and plasmacytoid dendritic cell precursors. Annu Rev Immunol. 23:275–306. 2005.PubMed/NCBI View Article : Google Scholar | |
Benhadou F, Mintoff D and Del Marmol V: Psoriasis: Keratinocytes or immune cells-which is the trigger? Dermatology. 235:91–100. 2019.PubMed/NCBI View Article : Google Scholar | |
Nestle FO, Conrad C, Tun-Kyi A, Homey B, Gombert M, Boyman O, Burg G, Liu YJ and Gilliet M: Plasmacytoid predendritic cells initiate psoriasis through interferon-alpha production. J Exp Med. 202:135–143. 2005.PubMed/NCBI View Article : Google Scholar | |
van der Fits L, van der Wel LI, Laman JD, Prens EP and Verschuren MCM: In psoriasis lesional skin the type I interferon signaling pathway is activated, whereas interferon-alpha sensitivity is unaltered. J Invest Dermatol. 122:51–60. 2004.PubMed/NCBI View Article : Google Scholar | |
Gilliet M, Conrad C, Geiges M, Cozzio A, Thürlimann W, Burg G, Nestle FO and Dummer R: Psoriasis triggered by toll-like receptor 7 agonist imiquimod in the presence of dermal plasmacytoid dendritic cell precursors. Arch Dermatol. 140:1490–1495. 2004.PubMed/NCBI View Article : Google Scholar | |
Vinter H, Iversen L, Steiniche T, Kragballe K and Johansen C: Aldara®-induced skin inflammation: Studies of patients with psoriasis. Br J Dermatol. 172:345–353. 2015.PubMed/NCBI View Article : Google Scholar | |
Takeda K, Kaisho T and Akira S: Toll-like receptors. Annu Rev Immunol. 21:335–376. 2003.PubMed/NCBI View Article : Google Scholar | |
Honda K, Ohba Y, Yanai H, Negishi H, Mizutani T, Takaoka A, Taya C and Taniguchi T: Spatiotemporal regulation of MyD88-IRF-7 signalling for robust type-I interferon induction. Nature. 434:1035–1040. 2005.PubMed/NCBI View Article : Google Scholar | |
Lande R, Botti E, Jandus C, Dojcinovic D, Fanelli G, Conrad C, Chamilos G, Feldmeyer L, Marinari B, Chon S, et al: The antimicrobial peptide LL37 is a T-cell autoantigen in psoriasis. Nat Commun. 5(5621)2014.PubMed/NCBI View Article : Google Scholar | |
Farkas A and Kemény L: Interferon-α in the generation of monocyte-derived dendritic cells: Recent advances and implications for dermatology. Br J Dermatol. 165:247–254. 2011.PubMed/NCBI View Article : Google Scholar | |
Lowes MA, Chamian F, Abello MV, Fuentes-Duculan J, Lin SL, Nussbaum R, Novitskaya I, Carbonaro H, Cardinale I, Kikuchi T, et al: Increase in TNF-alpha and inducible nitric oxide synthase-expressing dendritic cells in psoriasis and reduction with efalizumab (anti-CD11a). Proc Natl Acad Sci USA. 102:19057–19062. 2005.PubMed/NCBI View Article : Google Scholar | |
Zaba LC, Cardinale I, Gilleaudeau P, Sullivan-Whalen M, Suárez-Fariñas M, Fuentes-Duculan J, Novitskaya I, Khatcherian A, Bluth MJ, Lowes MA and Krueger JG: Amelioration of epidermal hyperplasia by TNF inhibition is associated with reduced Th17 responses. J Exp Med. 204:3183–3194. 2007.PubMed/NCBI View Article : Google Scholar | |
Zaba LC, Krueger JG and Lowes MA: Resident and ‘inflammatory’ dendritic cells in human skin. J Invest Dermatol. 129:302–308. 2009.PubMed/NCBI View Article : Google Scholar | |
Martini E, Wikén M, Cheuk S, Gallais Sérézal I, Baharom F, Ståhle M, Smed-Sörensen A and Eidsmo L: Dynamic changes in resident and infiltrating epidermal dendritic cells in active and resolved psoriasis. J Invest Dermatol. 137:865–873. 2017.PubMed/NCBI View Article : Google Scholar | |
McKenzie BS, Kastelein RA and Cua DJ: Understanding the IL-23-IL-17 immune pathway. Trends Immunol. 27:17–23. 2006.PubMed/NCBI View Article : Google Scholar | |
Wang F, Lee E, Lowes MA, Haider AS, Fuentes-Duculan J, Abello MV, Chamian F, Cardinale I and Krueger JG: Prominent production of IL-20 by CD68+/CD11c+ myeloid-derived cells in psoriasis: Gene regulation and cellular effects. J Invest Dermatol. 126:1590–1599. 2006.PubMed/NCBI View Article : Google Scholar | |
Nickoloff BJ: The cytokine network in psoriasis. Arch Dermatol. 127:871–884. 1991.PubMed/NCBI | |
Reich K, Nestle FO, Papp K, Ortonne JP, Evans R, Guzzo C, Li S, Dooley LT and Griffiths CE: EXPRESS study investigators. Infliximab induction and maintenance therapy for moderate-to-severe psoriasis: A phase III, multicentre, double-blind trial. Lancet. 366:1367–1374. 2005.PubMed/NCBI View Article : Google Scholar | |
Yao Y, Richman L, Morehouse C, de los Reyes M, Higgs BW, Boutrin A, White B, Coyle A, Krueger J, Kiener PA and Jallal B: Type I interferon: Potential therapeutic target for psoriasis? PLoS One. 3(e2737)2008.PubMed/NCBI View Article : Google Scholar | |
Funk J, Langeland T, Schrumpf E and Hanssen LE: Psoriasis induced by interferon-alpha. Br J Dermatol. 125:463–465. 1991.PubMed/NCBI View Article : Google Scholar | |
Ketikoglou I, Karatapanis S, Elefsiniotis I, Kafiri G and Moulakakis A: Extensive psoriasis induced by pegylated interferon alpha-2b treatment for chronic hepatitis B. Eur J Dermatol. 15:107–109. 2005.PubMed/NCBI | |
Patel U, Mark NM, Machler BC and Levine VJ: Imiquimod 5% cream induced psoriasis: A case report, summary of the literature and mechanism. Br J Dermatol. 164:670–672. 2011.PubMed/NCBI View Article : Google Scholar | |
van der Fits L, Mourits S, Voerman JS, Kant M, Boon L, Laman JD, Cornelissen F, Mus AM, Florencia E, Prens EP and Lubberts E: Imiquimod-induced psoriasis-like skin inflammation in mice is mediated via the IL-23/IL-17 axis. J Immunol. 182:5836–5845. 2009.PubMed/NCBI View Article : Google Scholar | |
Hida S, Ogasawara K, Sato K, Abe M, Takayanagi H, Yokochi T, Sato T, Hirose S, Shirai T, Taki S and Taniguchi T: CD8(+) T cell-mediated skin disease in mice lacking IRF-2, the transcriptional attenuator of interferon-alpha/beta signaling. Immunity. 13:643–655. 2000.PubMed/NCBI View Article : Google Scholar | |
Tracey D, Klareskog L, Sasso EH, Salfeld JG and Tak PP: Tumor necrosis factor antagonist mechanisms of action: A comprehensive review. Pharmacol Ther. 117:244–279. 2008.PubMed/NCBI View Article : Google Scholar | |
Uyemura K, Yamamura M, Fivenson DF, Modlin RL and Nickoloff BJ: The cytokine network in lesional and lesion-free psoriatic skin is characterized by a T-helper type 1 cell-mediated response. J Invest Dermatol. 101:701–705. 1993.PubMed/NCBI View Article : Google Scholar | |
Mocanu M, Toader MP, Rezus E and Taranu T: Aspects concerning patient adherence to anti-TNFα therapy in psoriasis: A decade of clinical experience. Exp Ther Med. 18:4987–4992. 2019.PubMed/NCBI View Article : Google Scholar | |
Menter A, Tyring SK, Gordon K, Kimball AB, Leonardi CL, Langley RG, Strober BE, Kaul M, Gu Y, Okun M and Papp K: Adalimumab therapy for moderate to severe psoriasis: A randomized, controlled phase III trial. J Am Acad Dermatol. 58:106–115. 2008.PubMed/NCBI View Article : Google Scholar | |
Papp KA, Tyring S, Lahfa M, Prinz J, Griffiths CE, Nakanishi AM, Zitnik R, van de Kerkhof PCM and Melvin L: Etanercept psoriasis study group. A global phase III randomized controlled trial of etanercept in psoriasis: Safety, efficacy, and effect of dose reduction. Br J Dermatol. 152:1304–1312. 2005.PubMed/NCBI View Article : Google Scholar | |
Blauvelt A, Reich K, Lebwohl M, Burge D, Arendt C, Peterson L, Drew J, Rolleri R and Gottlieb AB: Certolizumab pegol for the treatment of patients with moderate-to-severe chronic plaque psoriasis: Pooled analysis of week 16 data from three randomized controlled trials. J Eur Acad Dermatol Venereol. 33:546–552. 2019.PubMed/NCBI View Article : Google Scholar | |
Lee E, Trepicchio WL, Oestreicher JL, Pittman D, Wang F, Chamian F, Dhodapkar M and Krueger JG: Increased expression of interleukin 23 p19 and p40 in lesional skin of patients with psoriasis vulgaris. J Exp Med. 199:125–130. 2004.PubMed/NCBI View Article : Google Scholar | |
Haider AS, Lowes MA, Suárez-Fariñas M, Zaba LC, Cardinale I, Khatcherian A, Novitskaya I, Wittkowski KM and Krueger JG: Identification of cellular pathways of ‘type 1,’ Th17 T cells, and TNF- and inducible nitric oxide synthase-producing dendritic cells in autoimmune inflammation through pharmacogenomic study of cyclosporine A in psoriasis. J Immunol. 180:1913–1920. 2008.PubMed/NCBI View Article : Google Scholar | |
Mahil SK, Capon F and Barker JN: Update on psoriasis immunopathogenesis and targeted immunotherapy. Semin Immunopathol. 38:11–27. 2016.PubMed/NCBI View Article : Google Scholar | |
Grechin C, Solovăstru LG, Vâță D, Pătrașcu AI, Grăjdeanu AI and Porumb-Andrese E: Inflammatory marker alteration in response to systemic therapies in psoriasis. Exp Ther Med. 20:42–46. 2020.PubMed/NCBI View Article : Google Scholar | |
Chan JR, Blumenschein W, Murphy E, Diveu C, Wiekowski M, Abbondanzo S, Lucian L, Geissler R, Brodie S, Kimball AB, et al: IL-23 stimulates epidermal hyperplasia via TNF and IL-20R2-dependent mechanisms with implications for psoriasis pathogenesis. J Exp Med. 203:2577–2587. 2006.PubMed/NCBI View Article : Google Scholar | |
Chamian F, Lowes MA, Lin SL, Lee E, Kikuchi T, Gilleaudeau P, Sullivan-Whalen M, Cardinale I, Khatcherian A, Novitskaya I, et al: Alefacept reduces infiltrating T cells, activated dendritic cells, and inflammatory genes in psoriasis vulgaris. Proc Natl Acad Sci USA. 102:2075–2080. 2005.PubMed/NCBI View Article : Google Scholar | |
Rizzo HL, Kagami S, Phillips KG, Kurtz SE, Jacques SL and Blauvelt A: IL-23-mediated psoriasis-like epidermal hyperplasia is dependent on IL-17A. J Immunol. 186:1495–1502. 2011.PubMed/NCBI View Article : Google Scholar | |
Zheng Y, Danilenko DM, Valdez P, Kasman I, Eastham-Anderson J, Wu J and Ouyang W: Interleukin-22, a T(H)17 cytokine, mediates IL-23-induced dermal inflammation and acanthosis. Nature. 445:648–651. 2007.PubMed/NCBI View Article : Google Scholar | |
Tonel G, Conrad C, Laggner U, Di Meglio P, Grys K, McClanahan TK, Blumenschein WM, Qin JZ, Xin H, Oldham E, et al: Cutting edge: A critical functional role for IL-23 in psoriasis. J Immunol. 185:5688–5691. 2010.PubMed/NCBI View Article : Google Scholar | |
Lowes MA, Kikuchi T, Fuentes-Duculan J, Cardinale I, Zaba LC, Haider AS, Bowman EP and Krueger JG: Psoriasis vulgaris lesions contain discrete populations of Th1 and Th17 T cells. J Invest Dermatol. 128:1207–1211. 2008.PubMed/NCBI View Article : Google Scholar | |
Szabo SK, Hammerberg C, Yoshida Y, Bata-Csorgo Z and Cooper KD: Identification and quantitation of interferon-gamma Producing T cells in psoriatic lesions: Localization to Both CD4+ and CD8+ Subsets. J Invest Dermatol. 111:1072–1078. 1998.PubMed/NCBI View Article : Google Scholar | |
Kulig P, Musiol S, Freiberger SN, Schreiner B, Gyülveszi G, Russo G, Pantelyushin S, Kishihara K, Alessandrini F, Kündig T, et al: IL-12 protects from psoriasiform skin inflammation. Nat Commun. 7(13466)2016.PubMed/NCBI View Article : Google Scholar | |
Krueger GG, Langley RG, Leonardi C, Yeilding N, Guzzo C, Wang Y, Dooley LT and Lebwohl M: CNTO 1275 Psoriasis Study Group. A human interleukin-12/23 monoclonal antibody for the treatment of psoriasis. N Engl J Med. 356:580–592. 2007.PubMed/NCBI View Article : Google Scholar | |
Lanna C, Mancini M, Gaziano R, Cannizzaro MV, Galluzzo M, Talamonti M, Rovella V, Annicchiarico-Petruzzelli M, Melino G, Wang Y, et al: Skin immunity and its dysregulation in psoriasis. Cell Cycle. 18:2581–2589. 2019.PubMed/NCBI View Article : Google Scholar | |
Nikaein A, Phillips C, Gilbert SC, Savino D, Silverman A, Stone MJ and Menter A: Characterization of skin-infiltrating lymphocytes in patients with psoriasis. J Invest Dermatol. 96:3–9. 1991.PubMed/NCBI View Article : Google Scholar | |
Nickoloff BJ and Wrone-Smith T: Injection of pre-psoriatic skin with CD4+ T cells induces psoriasis. Am J Pathol. 155:145–158. 1999.PubMed/NCBI View Article : Google Scholar | |
Gottlieb AB, Lebwohl M, Shirin S, Sherr A, Gilleaudeau P, Singer G, Solodkina G, Grossman R, Gisoldi E, Phillips S, et al: Anti-CD4 monoclonal antibody treatment of moderate to severe psoriasis vulgaris: Results of a pilot, multicenter, multiple-dose, placebo-controlled study. J Am Acad Dermatol. 43:595–604. 2000.PubMed/NCBI View Article : Google Scholar | |
Di Cesare A, Di Meglio P and Nestle FO: The IL-23/Th17 axis in the immunopathogenesis of psoriasis. J Invest Dermatol. 129:1339–1350. 2009.PubMed/NCBI View Article : Google Scholar | |
Chiricozzi A, Guttman-Yassky E, Suárez-Fariñas M, Nograles KE, Tian S, Cardinale I, Chimenti S and Krueger JG: Integrative responses to IL-17 and TNF-α in human keratinocytes account for key inflammatory pathogenic circuits in psoriasis. J Invest Dermatol. 131:677–687. 2011.PubMed/NCBI View Article : Google Scholar | |
Harper EG, Guo C, Rizzo H, Lillis JV, Kurtz SE, Skorcheva I, Purdy D, Fitch E, Iordanov M and Blauvelt A: Th17 cytokines stimulate CCL20 expression in keratinocytes in vitro and in vivo: Implications for psoriasis pathogenesis. J Invest Dermatol. 129:2175–2183. 2009.PubMed/NCBI View Article : Google Scholar | |
Teunissen MB, Koomen CW, de Waal Malefyt R, Wierenga EA and Bos JD: Interleukin-17 and interferon-gamma synergize in the enhancement of proinflammatory cytokine production by human keratinocytes. J Invest Dermatol. 111:645–649. 1998.PubMed/NCBI View Article : Google Scholar | |
Kagami S, Rizzo HL, Lee JJ, Koguchi Y and Blauvelt A: Circulating Th17, Th22, and Th1 cells are increased in psoriasis. J Invest Dermatol. 130:1373–1383. 2010.PubMed/NCBI View Article : Google Scholar | |
Tesmer LA, Lundy SK, Sarkar S and Fox DA: Th17 cells in human disease. Immunol Rev. 223:87–113. 2008.PubMed/NCBI View Article : Google Scholar | |
Priyadarssini M, Divya Priya D, Indhumathi S, Rajappa M, Chandrashekar L and Thappa DM: Immunophenotyping of T cells in the peripheral circulation in psoriasis. Br J Biomed Sci. 73:174–179. 2016.PubMed/NCBI View Article : Google Scholar | |
Langley RG, Elewski BE, Lebwohl M, Reich K, Griffiths CEM, Papp K, Puig L, Nakagawa H, Spelman L, Sigurgeirsson B, et al: Secukinumab in plaque psoriasis-results of two phase 3 trials. N Engl J Med. 371:326–338. 2014.PubMed/NCBI View Article : Google Scholar | |
Gordon KB, Blauvelt A, Papp KA, Langley RG, Luger T, Ohtsuki M, Reich K, Amato D, Ball SG, Braun DK, et al: Phase 3 trials of Ixekizumab in Moderate-to-Severe plaque psoriasis. N Engl J Med. 375:345–356. 2016.PubMed/NCBI View Article : Google Scholar | |
Papp KA, Merola JF, Gottlieb AB, Griffiths CEM, Cross N, Peterson L, Cioffi C and Blauvelt A: Dual neutralization of both interleukin 17A and interleukin 17F with bimekizumab in patients with psoriasis: Results from BE ABLE 1, a 12-week randomized, double-blinded, placebo-controlled phase 2b trial. J Am Acad Dermatol. 79:277–286.e10. 2018.PubMed/NCBI View Article : Google Scholar | |
Lebwohl M, Strober B, Menter A, Gordon K, Weglowska J, Puig L, Papp K, Spelman L, Toth D, Kerdel F, et al: Phase 3 studies comparing brodalumab with ustekinumab in psoriasis. N Engl J Med. 373:1318–1328. 2015.PubMed/NCBI View Article : Google Scholar | |
Blauvelt A: T-Helper 17 cells in psoriatic plaques and additional genetic links between IL-23 and Psoriasis. J Invest Dermatol. 128:1064–1067. 2008.PubMed/NCBI View Article : Google Scholar | |
Papp KA, Blauvelt A, Bukhalo M, Gooderham M, Krueger JG, Lacour JP, Menter A, Philipp S, Sofen H, Tyring S, et al: Risankizumab versus Ustekinumab for Moderate-to-severe plaque psoriasis. N Engl J Med. 376:1551–1560. 2017.PubMed/NCBI View Article : Google Scholar | |
Kurzeja M, Rudnicka L and Olszewska M: New interleukin-23 pathway inhibitors in dermatology: Ustekinumab, briakinumab, and secukinumab. Am J Clin Dermatol. 12:113–125. 2011.PubMed/NCBI View Article : Google Scholar | |
Alunno A, Carubbi F, Cafaro G, Pucci G, Battista F, Bartoloni E, Giacomelli R, Schillaci G and Gerli R: Targeting the IL-23/IL-17 axis for the treatment of psoriasis and psoriatic arthritis. Expert Opin Biol Ther. 15:1727–1737. 2015.PubMed/NCBI View Article : Google Scholar | |
Papp KA, Menter A, Strober B, Langley RG, Buonanno M, Wolk R, Gupta P, Krishnaswami S, Tan H and Harness JA: Efficacy and safety of tofacitinib, an oral Janus kinase inhibitor, in the treatment of psoriasis: A Phase 2b randomized placebo-controlled dose-ranging study. Br J Dermatol. 167:668–677. 2012.PubMed/NCBI View Article : Google Scholar | |
Papp K, Gordon K, Thaçi D, Morita A, Gooderham M, Foley P, Girgis IG, Kundu S and Banerjee S: Phase 2 Trial of selective tyrosine kinase 2 inhibition in psoriasis. N Engl J Med. 379:1313–1321. 2018.PubMed/NCBI View Article : Google Scholar | |
Papp KA, Menter MA, Raman M, Disch D, Schlichting DE, Gaich C, Macias W, Zhang X and Janes JM: A randomized phase 2b trial of baricitinib, an oral Janus kinase (JAK) 1/JAK2 inhibitor, in patients with moderate-to-severe psoriasis. Br J Dermatol. 174:1266–1276. 2016.PubMed/NCBI View Article : Google Scholar | |
Murphy KM and Reiner SL: The lineage decisions of helper T cells. Nat Rev Immunol. 2:933–944. 2002.PubMed/NCBI View Article : Google Scholar | |
Wei L, Debets R, Hegmans JJ, Benner R and Prens EP: IL-1 beta and IFN-gamma induce the regenerative epidermal phenotype of psoriasis in the transwell skin organ culture system. IFN-gamma up-regulates the expression of keratin 17 and keratinocyte transglutaminase via endogenous IL-1 production. J Pathol. 187:358–364. 1999.PubMed/NCBI View Article : Google Scholar | |
Haider AS, Cohen J, Fei J, Zaba LC, Cardinale I, Toyoko K, Ott J and Krueger JG: Insights into gene modulation by therapeutic TNF and IFNgamma antibodies: TNF regulates IFNgamma production by T cells and TNF-regulated genes linked to psoriasis transcriptome. J Invest Dermatol. 128:655–666. 2008.PubMed/NCBI View Article : Google Scholar | |
Conrad C, Boyman O, Tonel G, Tun-Kyi A, Laggner U, de Fougerolles A, Kotelianski V, Gardner H and Nestle FO: Alpha1beta1 integrin is crucial for accumulation of epidermal T cells and the development of psoriasis. Nat Med. 13:836–842. 2007.PubMed/NCBI View Article : Google Scholar | |
Ortega C, Fernández-A S, Carrillo JM, Romero P, Molina IJ, Moreno JC and Santamaría M: IL-17-producing CD8+ T lymphocytes from psoriasis skin plaques are cytotoxic effector cells that secrete Th17-related cytokines. J Leukoc Biol. 86:435–443. 2009.PubMed/NCBI View Article : Google Scholar | |
Liang Y, Pan HF and Ye DQ: IL-17A-producing CD8(+)T cells as therapeutic targets in autoimmunity. Expert Opin Ther Targets. 19:651–661. 2015.PubMed/NCBI View Article : Google Scholar | |
Opferman JT and Kothari A: Anti-apoptotic BCL-2 family members in development. Cell Death Differ. 25:37–45. 2018.PubMed/NCBI View Article : Google Scholar | |
Pekarsky Y, Balatti V and Croce CM: BCL2 and miR-15/16: From gene discovery to treatment. Cell Death Differ. 25:21–26. 2018.PubMed/NCBI View Article : Google Scholar | |
Montero J and Letai A: Why do BCL-2 inhibitors work and where should we use them in the clinic? Cell Death Differ. 25:56–64. 2018.PubMed/NCBI View Article : Google Scholar | |
Rose AM, Sansom OJ and Inman GJ: Loss of TGF-β signaling drives cSCC from skin stem cells-More evidence. Cell Cycle. 16:386–387. 2017.PubMed/NCBI View Article : Google Scholar | |
Yuan Y, Ding D, Zhang N, Xia Z, Wang J, Yang H, Guo F and Li B: TNF-α induces autophagy through ERK1/2 pathway to regulate apoptosis in neonatal necrotizing enterocolitis model cells IEC-6. Cell Cycle. 17:1390–1402. 2018.PubMed/NCBI View Article : Google Scholar | |
Schlaak JF, Buslau M, Jochum W, Hermann E, Girndt M, Gallati H, Meyer zum Büschenfelde KH and Fleischer B: T cells involved in psoriasis vulgaris belong to the Th1 subset. J Invest Dermatol. 102:145–149. 1994.PubMed/NCBI View Article : Google Scholar | |
Jacob SE, Nassiri M, Kerdel FA and Vincek V: Simultaneous measurement of multiple Th1 and Th2 serum cytokines in psoriasis and correlation with disease severity. Mediators Inflamm. 12:309–313. 2003.PubMed/NCBI View Article : Google Scholar | |
Fierlbeck G, Rassner G and Müller C: Psoriasis induced at the injection site of recombinant interferon gamma: Results of immunohistologic investigations. Arch Dermatol. 126:351–355. 1990.PubMed/NCBI | |
Cheuk S, Wikén M, Blomqvist L, Nylén S, Talme T, Ståhle M and Eidsmo L: Epidermal Th22 and Tc17 cells form a localized disease memory in clinically healed psoriasis. J Immunol. 192:3111–3120. 2014.PubMed/NCBI View Article : Google Scholar | |
Lin WJ, Norris DA, Achziger M, Kotzin BL and Tomkinson B: Oligoclonal expansion of intraepidermal T cells in psoriasis skin lesions. J Invest Dermatol. 117:1546–1553. 2001.PubMed/NCBI View Article : Google Scholar | |
Takamura S: Niches for the long-term maintenance of tissue-resident memory T cells. Front Immunol. 9(1214)2018.PubMed/NCBI View Article : Google Scholar | |
Wu H, Liao W, Li Q, Long H, Yin H, Zhao M, Chan V, Lau CS and Lu Q: Pathogenic role of tissue-resident memory T cells in autoimmune diseases. Autoimmun Rev. 17:906–911. 2018.PubMed/NCBI View Article : Google Scholar | |
Clark RA, Chong B, Mirchandani N, Brinster NK, Yamanaka KI, Dowgiert RK and Kupper TS: The vast majority of CLA+ T cells are resident in normal skin. J Immunol. 176:4431–4439. 2006.PubMed/NCBI View Article : Google Scholar | |
Casey KA, Fraser KA, Schenkel JM, Moran A, Abt MC, Beura LK, Lucas PJ, Artis D, Wherry EJ, Hogquist K, et al: Antigen-independent differentiation and maintenance of effector-like resident memory T cells in tissues. J Immunol. 188:4866–4875. 2012.PubMed/NCBI View Article : Google Scholar | |
Mackay LK, Rahimpour A, Ma JZ, Collins N, Stock AT, Hafon ML, Vega-Ramos J, Lauzurica P, Mueller SN, Stefanovic T, et al: The developmental pathway for CD103(+)CD8+ tissue-resident memory T cells of skin. Nat Immunol. 14:1294–1301. 2013.PubMed/NCBI View Article : Google Scholar | |
Owczarczyk Saczonek A, Krajewska-Włodarczyk M, Kasprowicz-Furmańczyk M and Placek W: Immunological memory of psoriatic lesions. Int J Mol Sci. 21(625)2020.PubMed/NCBI View Article : Google Scholar | |
Milner JJ and Goldrath AW: Transcriptional programming of tissue-resident memory CD8+ T cells. Curr Opin Immunol. 51:162–169. 2018.PubMed/NCBI View Article : Google Scholar | |
Eberle FC, Brück J, Holstein J, Hirahara K and Ghoreschi K: Recent advances in understanding psoriasis. F1000Res. 5(F1000 Faculty Rev-770)2016.PubMed/NCBI View Article : Google Scholar | |
Patra V, Laoubi L, Nicolas JF, Vocanson M and Wolf P: A Perspective on the interplay of ultraviolet-radiation, skin microbiome and skin resident memory TCRαβ+ cells. Front Med (Lausanne). 5(166)2018.PubMed/NCBI View Article : Google Scholar | |
Clark RA: Resident memory T cells in human health and disease. Sci Transl Med. 7(269rv1)2015.PubMed/NCBI View Article : Google Scholar | |
Mueller SN, Zaid A and Carbone FR: Tissue-Resident T Cells: Dynamic players in skin immunity. Front Immunol. 5(332)2014.PubMed/NCBI View Article : Google Scholar | |
Corgnac S, Boutet M, Kfoury M, Naltet C and Mami-Chouaib F: The Emerging Role of CD8+ tissue resident memory T (TRM) cells in antitumor immunity: A unique functional contribution of the CD103 integrin. Front Immunol. 9(1904)2018.PubMed/NCBI View Article : Google Scholar | |
Kurihara K, Fujiyama T, Phadungsaksawasdi P, Ito T and Tokura Y: Significance of IL-17A-producing CD8+CD103+ skin resident memory T cells in psoriasis lesion and their possible relationship to clinical course. J Dermatol Sci. 95:21–27. 2019.PubMed/NCBI View Article : Google Scholar | |
Walsh D, Borges da Silva H, Beura L, Peng C, Hamilton S, Masopust D and Jameson S: The functional requirement for CD69 in establishment of resident memory CD8 + T cells varies with tissue location. J Immunol. 203:946–955. 2019.PubMed/NCBI View Article : Google Scholar | |
Mackay LK, Braun A, Macleod BL, Collins N, Tebartz C, Bedoui S, Carbone FR and Gebhardt T: Cutting edge: CD69 interference with sphingosine-1-phosphate receptor function regulates peripheral T cell retention. J Immunol. 194:2059–2063. 2015.PubMed/NCBI View Article : Google Scholar | |
Schenkel JM and Masopust D: Tissue-resident memory T cells. Immunity. 41:886–897. 2014.PubMed/NCBI View Article : Google Scholar | |
Cheuk S, Schlums H, Gallais Sérézal I, Martini E, Chiang SC, Marquardt N, Gibbs A, Detlofsson E, Introini A, Forkel M, et al: CD49a expression defines Tissue-resident CD8+ T cells poised for cytotoxic function in human skin. Immunity. 46:287–300. 2017.PubMed/NCBI View Article : Google Scholar | |
Seidel JA, Vukmanovic-Stejic M, Muller-Durovic B, Patel N, Fuentes-Duculan J, Henson SM, Krueger JG, Rustin MHA, Nestle FO, Lacy KE and Akbar AN: Skin resident memory CD8+ T cells are phenotypically and functionally distinct from circulating populations and lack immediate cytotoxic function. Clin Exp Immunol. 194:79–92. 2018.PubMed/NCBI View Article : Google Scholar | |
Petrelli A and van Wijk F: CD8(+) T cells in human autoimmune arthritis: The unusual suspects. Nat Rev Rheumatol. 12:421–428. 2016.PubMed/NCBI View Article : Google Scholar | |
Ritchlin C: Tissue-resident memory T cells: Sequestered immune sensors and effectors of inflammation in Spondyloarthritis. Arthritis Rheumatol. 72:379–382. 2020.PubMed/NCBI View Article : Google Scholar | |
Adachi T, Kobayashi T, Sugihara E, Yamada T, Ikuta K, Pittaluga S, Saya H, Amagai M and Nagao K: Hair follicle-derived IL-7 and IL-15 mediate skin-resident memory T cell homeostasis and lymphoma. Nat Med. 21:1272–1279. 2015.PubMed/NCBI View Article : Google Scholar | |
Diani M, Galasso M, Cozzi C, Sgambelluri F, Altomare A, Cigni C, Frigerio E, Drago L, Volinia S, Granucci F, et al: Blood to skin recirculation of CD4+ memory T cells associates with cutaneous and systemic manifestations of psoriatic disease. Clin Immunol. 180:84–94. 2017.PubMed/NCBI View Article : Google Scholar | |
Matos TR, O'Malley JT, Lowry EL, Hamm D, Kirsch IR, Robins HS, Kupper TS, Krueger JG and Clark RA: Clinically resolved psoriatic lesions contain psoriasis-specific IL-17-producing αβ T cell clones. J Clin Invest. 127:4031–4041. 2017.PubMed/NCBI View Article : Google Scholar | |
Meglio PD, Villanova F, Navarini AA, Mylonas A, Tosi I, Nestle FO and Conrad C: Targeting CD8+ T cells prevents psoriasis development. J Allergy Clin Immunol. 138:274–276.e6. 2016.PubMed/NCBI View Article : Google Scholar | |
Farber DL, Yudanin NA and Restifo NP: Human memory T cells: Generation, compartmentalization and homeostasis. Nat Rev Immunol. 14:24–35. 2014.PubMed/NCBI View Article : Google Scholar | |
Boyman O, Hefti HP, Conrad C, Nickoloff BJ, Suter M and Nestle FO: Spontaneous development of psoriasis in a new animal model shows an essential role for resident T cells and tumor necrosis Factor-alpha. J Exp Med. 199:731–736. 2004.PubMed/NCBI View Article : Google Scholar | |
Campbell JJ, Clark RA, Watanabe R and Kupper TS: Sezary syndrome and mycosis fungoides arise from distinct T-cell subsets: A biologic rationale for their distinct clinical behaviors. Blood. 116:767–771. 2010.PubMed/NCBI View Article : Google Scholar | |
Gallais Sérézal I, Classon C, Cheuk S, Barrientos-Somarribas M, Wadman E, Martini E, Chang D, Landén NX, Ehrström M, Nylén S and Eidsmo L: Resident T cells in resolved psoriasis steer tissue responses that stratify clinical outcome. J Invest Dermatol. 138:1754–1763. 2018.PubMed/NCBI View Article : Google Scholar | |
Sérézal IG, Hoffer E, Ignatov B, Martini E, Zitti B, Ehrström M and Eidsmo L: A skewed pool of resident T cells triggers psoriasis-associated tissue responses in never-lesional skin from patients with psoriasis. J Allergy Clin Immunol. 143:1444–1454. 2019.PubMed/NCBI View Article : Google Scholar | |
Vo S, Watanabe R, Koguchi-Yoshioka H, Matsumura Y, Ishitsuka Y, Nakamura Y, Okiyama N, Fujisawa Y and Fujimoto M: CD8 resident memory T cells with interleukin 17A-producing potential are accumulated in disease-naïve nonlesional sites of psoriasis possibly in correlation with disease duration. Br J Dermatol. 181:410–412. 2019.PubMed/NCBI View Article : Google Scholar | |
Diani M, Altomare G and Reali E: T Helper cell subsets in clinical manifestations of psoriasis. J Immunol Res. 2016(e7692024)2016.PubMed/NCBI View Article : Google Scholar | |
Bosè F, Petti L, Diani M, Moscheni C, Molteni S, Altomare A, Rossi RL, Talarico D, Fontana R, Russo V, et al: Inhibition of CCR7/CCL19 axis in lesional skin is a critical event for clinical remission induced by TNF blockade in patients with psoriasis. Am J Pathol. 183:413–421. 2013.PubMed/NCBI View Article : Google Scholar | |
Watanabe R: Protective and pathogenic roles of resident memory T cells in human skin disorders. J Dermatol Sci. 95:2–7. 2019.PubMed/NCBI View Article : Google Scholar | |
Sgambelluri F, Diani M, Altomare A, Frigerio E, Drago L, Granucci F, Banfi G, Altomare G and Reali E: A role for CCR5(+)CD4 T cells in cutaneous psoriasis and for CD103(+) CCR4(+) CD8 Teff cells in the associated systemic inflammation. J Autoimmun. 70:80–90. 2016.PubMed/NCBI View Article : Google Scholar | |
Chen L and Shen Z: Tissue-resident memory T cells and their biological characteristics in the recurrence of inflammatory skin disorders. Cell Mol Immunol. 17:64–75. 2020.PubMed/NCBI View Article : Google Scholar | |
Pan Y and Kupper TS: Metabolic reprogramming and longevity of tissue-resident memory T cells. Front Immunol. 9(1347)2018.PubMed/NCBI View Article : Google Scholar | |
Pearce EL, Walsh MC, Cejas PJ, Harms GM, Shen H, Wang LS, Jones RG and Choi Y: Enhancing CD8 T-cell memory by modulating fatty acid metabolism. Nature. 460:103–107. 2009.PubMed/NCBI View Article : Google Scholar | |
Cui G, Staron MM, Gray SM, Ho PC, Amezquita RA, Wu J and Kaech SM: IL-7-induced glycerol transport and TAG synthesis promotes memory CD8+ T cell longevity. Cell. 161:750–761. 2015.PubMed/NCBI View Article : Google Scholar | |
Pan Y, Tian T, Park CO, Lofftus SY, Mei S, Liu X, Luo C, O'Malley JT, Gehad A, Teague JE, et al: Survival of tissue-resident memory T cells requires exogenous lipid uptake and metabolism. Nature. 543:252–256. 2017.PubMed/NCBI View Article : Google Scholar | |
Esmaeili B, Mansouri P, Doustimotlagh AH and Izad M: Redox imbalance and IL-17 responses in memory CD4+ T cells from patients with psoriasis. Scand J Immunol. 89(e12730)2019.PubMed/NCBI View Article : Google Scholar | |
Karamehic J, Zecevic L, Resic H, Jukic M, Jukic T, Ridjic O, Panjeta M and Coric J: Immunophenotype lymphocyte of peripheral blood in patients with psoriasis. Med Arch. 68:236–238. 2014.PubMed/NCBI View Article : Google Scholar |