1
|
Chai J, Wang S, Han D, Dong W, Xie C and
Guo H: MicroRNA-455 inhibits proliferation and invasion of
colorectal cancer by targeting RAF proto-oncogene
serine/threonine-protein kinase. Tumour Biol. 36:1313–1321.
2015.PubMed/NCBI View Article : Google Scholar
|
2
|
Kahouli I, Tomaro-Duchesneau C and Prakash
S: Probiotics in colorectal cancer (CRC) with emphasis on
mechanisms of action and current perspectives. J Med Microbiol.
62:1107–1123. 2013.PubMed/NCBI View Article : Google Scholar
|
3
|
Siegel RL, Miller KD and Jemal A: Cancer
statistics, 2015. CA Cancer J Clin. 65:5–29. 2015.PubMed/NCBI View Article : Google Scholar
|
4
|
Rodríguez J, Viúdez A, Ponz-Sarvisé M,
Gil-Aldea I, Chopitea A, García-Foncillas J and Gil-Bazo I:
Improving disease control in advanced colorectal cancer:
Panitumumab and cetuximab. Crit Rev Oncol Hematol. 74:193–202.
2010.PubMed/NCBI View Article : Google Scholar
|
5
|
Corbo C, Cevenini A and Salvatore F:
Biomarker discovery by proteomics-based approaches for early
detection and personalized medicine in colorectal cancer.
Proteomics Clin Appl. 11(1600072)2017.PubMed/NCBI View Article : Google Scholar
|
6
|
Arnold M, Sierra MS, Laversanne M,
Soerjomataram I, Jemal A and Bray F: Global patterns and trends in
colorectal cancer incidence and mortality. Gut. 66:683–691.
2017.PubMed/NCBI View Article : Google Scholar
|
7
|
Ramzi NH, Chahil JK, Lye SH, Munretnam K,
Sahadevappa KI, Velapasamy S, Hashim NA, Cheah SK, Lim GC, Hussein
H, et al: Role of genetic & environment risk factors in the
aetiology of colorectal cancer in Malaysia. Indian J Med Res.
139:873–882. 2014.PubMed/NCBI
|
8
|
Migliore L, Migheli F, Spisni R and
Coppedè F: Genetics, cytogenetics, and epigenetics of colorectal
cancer. J Biomed Biotechnol. 2011(792362)2011.PubMed/NCBI View Article : Google Scholar
|
9
|
Peters U, Jiao S, Schumacher FR, Hutter
CM, Aragaki AK, Baron JA, Berndt SI, Bézieau S, Brenner H,
Butterbach K, et al: Identification of genetic susceptibility loci
for colorectal tumors in a genome-wide meta-analysis.
Gastroenterology. 144:799–807.e24. 2013.PubMed/NCBI View Article : Google Scholar
|
10
|
McManus MT, Petersen CP, Haines BB, Chen J
and Sharp PA: Gene silencing using micro-RNA designed hairpins.
RNA. 8:842–850. 2002.PubMed/NCBI View Article : Google Scholar
|
11
|
Chen K and Rajewsky N: The evolution of
gene regulation by transcription factors and microRNAs. Nat Rev
Genet. 8:93–103. 2007.PubMed/NCBI View
Article : Google Scholar
|
12
|
Ryan BM, Robles AI and Harris CC: Genetic
variation in microRNA networks: The implications for cancer
research. Nat Rev Cancer. 10:389–402. 2010.PubMed/NCBI View
Article : Google Scholar
|
13
|
Leonardo TR, Schultheisz HL, Loring JF and
Laurent LC: The functions of microRNAs in pluripotency and
reprogramming. Nat Cell Biol. 14:1114–1121. 2012.PubMed/NCBI View
Article : Google Scholar
|
14
|
Thomas J, Ohtsuka M, Pichler M and Ling H:
MicroRNAs: Clinical relevance in colorectal cancer. Int J Mol Sci.
16:28063–28076. 2015.PubMed/NCBI View Article : Google Scholar
|
15
|
Li X, Nie J, Mei Q and Han WD: MicroRNAs:
Novel immunotherapeutic targets in colorectal carcinoma. World J
Gastroenterol. 22:5317–5331. 2016.PubMed/NCBI View Article : Google Scholar
|
16
|
Kagiya T: MicroRNAs: Potential biomarkers
and therapeutic targets for alveolar bone loss in periodontal
disease. Int J Mol Sci. 17(1317)2016.PubMed/NCBI View Article : Google Scholar
|
17
|
Piletič K and Kunej T: MicroRNA epigenetic
signatures in human disease. Arch Toxicol. 90:2405–2419.
2016.PubMed/NCBI View Article : Google Scholar
|
18
|
Varamo C, Occelli M, Vivenza D, Merlano M
and Lo Nigro C: MicroRNAs role as potential biomarkers and key
regulators in melanoma. Genes Chromosomes Cancer. 56:3–10.
2017.PubMed/NCBI View Article : Google Scholar
|
19
|
Arai T, Kojima S, Yamada Y, Sugawara S,
Kato M, Yamazaki K, Naya Y, Ichikawa T and Seki N: Pirin: A
potential novel therapeutic target for castration-resistant
prostate cancer regulated by miR-455-5p. Mol Oncol. 13:322–337.
2019.PubMed/NCBI View Article : Google Scholar
|
20
|
Guo J, Liu C, Wang W, Liu Y, He H, Chen C,
Xiang R and Luo Y: Identification of serum miR-1915-3p and
miR-455-3p as biomarkers for breast cancer. PLoS One.
13(e0200716)2018.PubMed/NCBI View Article : Google Scholar
|
21
|
Zhan T, Huang X, Tian X, Chen X, Ding Y,
Luo H and Zhang Y: Downregulation of MicroRNA-455-3p links to
proliferation and drug resistance of pancreatic cancer cells via
targeting TAZ. Mol Ther Nucleic Acids. 10:215–226. 2018.PubMed/NCBI View Article : Google Scholar
|
22
|
Chai L, Kang XJ, Sun ZZ, Zeng MF, Yu SR,
Ding Y, Liang JQ, Li TT and Zhao J: MiR-497-5p, miR-195-5p and
miR-455-3p function as tumor suppressors by targeting hTERT in
melanoma A375 cells. Cancer Manag Res. 10:989–1003. 2018.PubMed/NCBI View Article : Google Scholar
|
23
|
Zheng J, Lin Z, Zhang L and Chen H:
MicroRNA-455-3p inhibits tumor cell proliferation and induces
apoptosis in HCT116 human colon cancer cells. Med Sci Monit.
22:4431–4437. 2016.PubMed/NCBI View Article : Google Scholar
|
24
|
Qu S, Yang X, Li X, Wang J, Gao Y, Shang
R, Sun W, Dou K and Li H: Circular RNA: A new star of noncoding
RNAs. Cancer Lett. 365:141–148. 2015.PubMed/NCBI View Article : Google Scholar
|
25
|
Qu S, Zhong Y, Shang R, Zhang X, Song W,
Kjems J and Li H: The emerging landscape of circular RNA in life
processes. RNA Biol. 14:992–999. 2017.PubMed/NCBI View Article : Google Scholar
|
26
|
Salzman J: Circular RNA expression: Its
potential regulation and function. Trends Genet. 32:309–316.
2012.PubMed/NCBI View Article : Google Scholar
|
27
|
Ouyang Y, Li Y, Huang Y, Li X, Zhu Y, Long
Y, Wang Y, Guo X and Gong K: CircRNA circPDSS1 promotes the gastric
cancer progression by sponging miR-186-5p and modulating NEK2. J
Cell Physiol. 234:10458–10469. 2019.PubMed/NCBI View Article : Google Scholar
|
28
|
Sun H, Xi P, Sun Z, Wang Q, Zhu B, Zhou J,
Jin H, Zheng W, Tang W, Cao H and Cao X: Circ-SFMBT2 promotes the
proliferation of gastric cancer cells through sponging miR-182-5p
to enhance CREB1 expression. Cancer Manag Res. 10:5725–5734.
2018.PubMed/NCBI View Article : Google Scholar
|
29
|
Li XN, Wang ZJ, Ye CX, Zhao BC, Li ZL and
Yang Y: RNA sequencing reveals the expression profiles of circRNA
and indicates that circDDX17 acts as a tumor suppressor in
colorectal cancer. J Exp Clin Cancer Res. 37(325)2018.PubMed/NCBI View Article : Google Scholar
|
30
|
Li Y, Wan B, Liu L, Zhou L and Zeng Q:
Circular RNA circMTO1 suppresses bladder cancer metastasis by
sponging miR-221 and inhibiting epithelial-to-mesenchymal
transition. Biochem Biophys Res Commun. 508:991–996.
2019.PubMed/NCBI View Article : Google Scholar
|
31
|
Ebbesen KK, Kjems J and Hansen TB:
Circular RNAs: Identification, biogenesis and function. Biochim
Biophys Acta. 1859:163–168. 2016.PubMed/NCBI View Article : Google Scholar
|
32
|
Zhong Y, Du Y, Yang X, Mo Y, Fan C, Xiong
F, Ren D, Ye X, Li C, Wang Y, et al: Circular RNAs function as
ceRNAs to regulate and control human cancer progression. Mol
Cancer. 17(79)2018.PubMed/NCBI View Article : Google Scholar
|
33
|
Cui J, Li W, Liu G, Chen X, Gao X, Lu H
and Lin D: A novel circular RNA, hsa_circ_0043278, acts as a
potential biomarker and promotes non-small cell lung cancer cell
proliferation and migration by regulating miR-520f. Artif Cells
Nanomed Biotechnol. 47:810–821. 2019.PubMed/NCBI View Article : Google Scholar
|
34
|
Zhang Y, Ren J, Fang M and Wang X:
Investigation of fusion gene expression in HCT116 cells. Oncol
Lett. 14:6962–6968. 2017.PubMed/NCBI View Article : Google Scholar
|
35
|
Hermanek P: Colorectal carcinoma:
Histopathological diagnosis and staging. Baillieres Clin
Gastroenterol. 3:511–529. 1989.PubMed/NCBI View Article : Google Scholar
|
36
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408.
2001.PubMed/NCBI View Article : Google Scholar
|
37
|
Jia B, Xia L and Cao F: The role of
miR-766-5p in cell migration and invasion in colorectal cancer. Exp
Ther Med. 15:2569–2574. 2018.PubMed/NCBI View Article : Google Scholar
|
38
|
Fan X, Liu M, Tang H, Leng D, Hu S, Lu R,
Wan W and Yuan S: MicroRNA-7 exerts antiangiogenic effect on
colorectal cancer via ERK signaling. J Surg Res. 240:48–59.
2019.PubMed/NCBI View Article : Google Scholar
|
39
|
Ding L, Zhao Y, Dang S, Wang Y, Li X, Yu
X, Li Z, Wei J, Liu M and Li G: Circular RNA circ-DONSON
facilitates gastric cancer growth and invasion via NURF complex
dependent activation of transcription factor SOX4. Mol Cancer.
18(45)2019.PubMed/NCBI View Article : Google Scholar
|
40
|
Zhang M, Xia B, Xu Y, Zhang Y, Xu J and
Lou G: Circular RNA (hsa_circ_0051240) promotes cell proliferation,
migration and invasion in ovarian cancer through miR-637/KLK4 axis.
Artif Cells Nanomed Biotechnol. 47:1224–1233. 2019.PubMed/NCBI View Article : Google Scholar
|
41
|
Jin Y, Yu LL, Zhang B, Liu CF and Chen Y:
Circular RNA hsa_circ_0000523 regulates the proliferation and
apoptosis of colorectal cancer cells as miRNA sponge. Braz J Med
Biol Res. 51(e7811)2018.PubMed/NCBI View Article : Google Scholar
|
42
|
Chen LY, Zhi Z, Wang L, Zhao YY, Deng M,
Liu YH, Qin Y, Tian MM, Liu Y, Shen T, et al: NSD2 circular RNA
promotes metastasis of colorectal cancer by targeting
miR-199b-5p-mediated DDR1 and JAG1 signalling. J Pathol.
248:103–115. 2019.PubMed/NCBI View Article : Google Scholar
|
43
|
Li XN, Wang ZJ, Ye CX, Zhao BC, Huang XX
and Yang L: Circular RNA circVAPA is up-regulated and exerts
oncogenic properties by sponging miR-101 in colorectal cancer.
Biomed Pharmacother. 112(108611)2019.PubMed/NCBI View Article : Google Scholar
|
44
|
Wu Y, Xie Z, Chen J, Chen J, Ni W, Ma Y,
Huang K, Wang G, Wang J, Ma J, et al: Circular RNA circTADA2A
promotes osteosarcoma progression and metastasis by sponging
miR-203a-3p and regulating CREB3 expression. Mol Cancer.
18(73)2019.PubMed/NCBI View Article : Google Scholar
|