Open Access

Inhibition of Sestrin2 overexpression in diabetic cardiomyopathy ameliorates cardiac injury via restoration of mitochondrial function

  • Authors:
    • Xiaodan Zhang
    • Xiaoyi Deng
    • Huiyu Ye
    • Zhishan Chen
    • Wangen Li
  • View Affiliations

  • Published online on: February 4, 2022     https://doi.org/10.3892/etm.2022.11191
  • Article Number: 265
  • Copyright: © Zhang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Mitochondrial dysfunction‑induced apoptosis plays a crucial role in the progression of diabetic cardiomyopathy (DCM). Sestrin2 is an important oxidative stress response protein and is involved in the maintenance of mitochondrial function, especially under stress. The aim of the present study was to investigate the role of Sestrin2 in DCM and to explore the underlying mechanisms. H9c2 cardiomyocytes were induced with high glucose (HG) medium (33 mmol/l glucose) for an in vitro DCM model. C57BL/6 mice were induced for the in vivo DCM model by intraperitoneal streptozotocin injection. H9c2 cardiomyocytes were exposed to HG and infected with lentiviruses to express Sestrin2 short hairpin RNA (shRNA). The study found that cell viability and mitochondrial function were impaired while cell apoptosis and oxidative stress were increased in DCM. Sestrin2 was significantly upregulated in myocardial tissues of DCM mice and H9c2 cardiomyocytes in HG conditions. Downregulation of Sestrin2 increased cell viability, decreased cell apoptosis, and attenuated oxidative stress in H9c2 cells exposed to HG. Moreover, HG‑induced mitochondrial injury was alleviated by Sestrin2 silencing. In conclusion, our finding indicated that the inhibition of enhanced Sestrin2 expression ameliorates cardiac injury in DCM, which might be largely attributed to the restoration of mitochondrial function.
View Figures
View References

Related Articles

Journal Cover

April-2022
Volume 23 Issue 4

Print ISSN: 1792-0981
Online ISSN:1792-1015

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
x
Spandidos Publications style
Zhang X, Deng X, Ye H, Chen Z and Li W: Inhibition of Sestrin2 overexpression in diabetic cardiomyopathy ameliorates cardiac injury via restoration of mitochondrial function. Exp Ther Med 23: 265, 2022.
APA
Zhang, X., Deng, X., Ye, H., Chen, Z., & Li, W. (2022). Inhibition of Sestrin2 overexpression in diabetic cardiomyopathy ameliorates cardiac injury via restoration of mitochondrial function. Experimental and Therapeutic Medicine, 23, 265. https://doi.org/10.3892/etm.2022.11191
MLA
Zhang, X., Deng, X., Ye, H., Chen, Z., Li, W."Inhibition of Sestrin2 overexpression in diabetic cardiomyopathy ameliorates cardiac injury via restoration of mitochondrial function". Experimental and Therapeutic Medicine 23.4 (2022): 265.
Chicago
Zhang, X., Deng, X., Ye, H., Chen, Z., Li, W."Inhibition of Sestrin2 overexpression in diabetic cardiomyopathy ameliorates cardiac injury via restoration of mitochondrial function". Experimental and Therapeutic Medicine 23, no. 4 (2022): 265. https://doi.org/10.3892/etm.2022.11191