1
|
Kitade H, Chen G, Ni Y and Ota T:
Nonalcoholic fatty liver disease and insulin resistance: New
insights and potential new treatments. Nutrients.
9(387)2017.PubMed/NCBI View Article : Google Scholar
|
2
|
Milic S, Lulic D and Stimac D:
Non-alcoholic fatty liver disease and obesity: Biochemical,
metabolic and clinical presentations. World J Gastroenterol.
20:9330–9337. 2014.PubMed/NCBI View Article : Google Scholar
|
3
|
Sheka AC, Adeyi O, Thompson J, Hameed B,
Crawford PA and Ikramuddin S: Nonalcoholic steatohepatitis: A
review. JAMA. 323:1175–1183. 2020.PubMed/NCBI View Article : Google Scholar
|
4
|
Anstee QM, Reeves HL, Kotsiliti E, Govaere
O and Heikenwalder M: From NASH to HCC: Current concepts and future
challenges. Nat Rev Gastroenterol Hepatol. 16:411–428.
2019.PubMed/NCBI View Article : Google Scholar
|
5
|
Younossi Z, Anstee QM, Marietti M, Hardy
T, Henry L, Eslam M, George J and Bugianesi E: Global burden of
NAFLD and NASH: Trends, predictions, risk factors and prevention.
Nat Rev Gastroenterol Hepatol. 15:11–20. 2018.PubMed/NCBI View Article : Google Scholar
|
6
|
Bonora E and Targher G: Increased risk of
cardiovascular disease and chronic kidney disease in NAFLD. Nat Rev
Gastroenterol Hepatol. 9:372–381. 2012.PubMed/NCBI View Article : Google Scholar
|
7
|
Ferguson D and Finck BN: Emerging
therapeutic approaches for the treatment of NAFLD and type 2
diabetes mellitus. Nat Rev Endocrinol. 17:484–495. 2021.PubMed/NCBI View Article : Google Scholar
|
8
|
Buzzetti E, Pinzani M and Tsochatzis EA:
The multiple-hit pathogenesis of non-alcoholic fatty liver disease
(NAFLD). Metabolism. 65:1038–1048. 2016.PubMed/NCBI View Article : Google Scholar
|
9
|
Horton JD, Goldstein JL and Brown MS:
SREBPs: Activators of the complete program of cholesterol and fatty
acid synthesis in the liver. J Clin Invest. 109:1125–1131.
2002.PubMed/NCBI View
Article : Google Scholar
|
10
|
Han J and Kaufman RJ: The role of ER
stress in lipid metabolism and lipotoxicity. J Lipid Res.
57:1329–1338. 2016.PubMed/NCBI View Article : Google Scholar
|
11
|
Yan J and Horng T: Lipid metabolism in
regulation of macrophage functions. Trends Cell Biol. 30:979–989.
2020.PubMed/NCBI View Article : Google Scholar
|
12
|
Wachtel-Galor S, Yuen J, Buswell JA and
Benzie IFF: Ganoderma lucidum (Lingzhi or Reishi): A
Medicinal Mushroom. In: Herbal Medicine: Biomolecular and Clinical
Aspects. Benzie IFF and Wachtel-Galor S (eds). 2nd edition. CRC
Press/Taylor & Francis, Boca Raton, FL, 2011.
|
13
|
Paterson RR: Ganoderma-a therapeutic
fungal biofactory. Phytochemistry. 67:1985–2001. 2006.PubMed/NCBI View Article : Google Scholar
|
14
|
Sliva D: Cellular and physiological
effects of Ganoderma lucidum (Reishi). Mini Rev Med Chem.
4:873–879. 2004.PubMed/NCBI View Article : Google Scholar
|
15
|
Tong CC, Choong YK, Mohamed S, Mustapha NM
and Umar NA: Nutrition & Food Science. Efficacy of Ganoderma
lucidum on plasma lipids and lipoproteins in rats fed with high
cholesterol diet. Nutrition Food Sci. 38:229–238. 2008.
|
16
|
Wasser SP: Reishi or ling zhi
(Ganoderma lucidum). Encyclopedia Dietary Suppl. 1:603–622.
2005.
|
17
|
Kabir Y, Kimura S and Tamura T: Dietary
effect of Ganoderma lucidum mushroom on blood pressure and
lipid levels in spontaneously hypertensive rats (SHR). J Nutr Sci
Vitaminol. 34:433–438. 1988.PubMed/NCBI View Article : Google Scholar
|
18
|
Li C, Li Y and Sun HH: New ganoderic
acids, bioactive triterpenoid metabolites from the mushroom
Ganoderma lucidum. Nat Prod Res. 20:985–991. 2006.PubMed/NCBI View Article : Google Scholar
|
19
|
Xu JW, Zhao W and Zhong JJ:
Biotechnological production and application of ganoderic acids.
Appl Microbiol Biotechnol. 87:457–466. 2010.PubMed/NCBI View Article : Google Scholar
|
20
|
Zhu J, Jin J, Ding J, Li S, Cen P, Wang K,
Wang H and Xia J: Ganoderic Acid A improves high fat diet-induced
obesity, lipid accumulation and insulin sensitivity through
regulating SREBP pathway. Chem Biol Interact. 290:77–87.
2018.PubMed/NCBI View Article : Google Scholar
|
21
|
Lang S, Demir M, Martin A, Jiang L, Zhang
X, Duan Y, Gao B, Wisplinghoff H, Kasper P, Roderburg C, et al:
Intestinal virome signature associated with severity of
nonalcoholic fatty liver disease. Gastroenterology. 159:1839–1852.
2020.PubMed/NCBI View Article : Google Scholar
|
22
|
Sun R, Liang H, Guo H, Wang Z and Deng Q:
PMCA4 gene expression is regulated by the androgen receptor in the
mouse testis during spermatogenesis. Mol Med Rep.
23(152)2021.PubMed/NCBI View Article : Google Scholar
|
23
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408.
2001.PubMed/NCBI View Article : Google Scholar
|
24
|
Ucar F, Sezer S, Erdogan S, Akyol S,
Armutcu F and Akyol OJ: The relationship between oxidative stress
and nonalcoholic fatty liver disease: Its effects on the
development of nonalcoholic steatohepatitis. Redox Rep. 18:127–133.
2013.PubMed/NCBI View Article : Google Scholar
|
25
|
Pan K, Jiang Q, Liu G, Miao X and Zhong D:
Optimization extraction of Ganoderma lucidum polysaccharides
and its immunity and antioxidant activities. Int J Biol Macromol.
55:301–306. 2013.PubMed/NCBI View Article : Google Scholar
|
26
|
Liang C, Tian D, Liu Y, Li H, Zhu J, Li M,
Xin M and Xia J: Review of the molecular mechanisms of Ganoderma
lucidum triterpenoids: Ganoderic acids A, C2, D, F, DM, X and
Y. Eur J Med Chem. 174:130–141. 2019.PubMed/NCBI View Article : Google Scholar
|
27
|
Boh B, Berovic M, Zhang J and Zhi-Bin L:
Ganoderma lucidum and its pharmaceutically active compounds.
Biotechnol Annu Rev. 13:265–301. 2007.PubMed/NCBI View Article : Google Scholar
|
28
|
Liu F, Shi K, Dong J, Jin Z, Wu Y, Cai Y,
Lin T, Cai Q, Liu L and Zhang Y: Ganoderic acid A attenuates
high-fat-diet-induced liver injury in rats by regulating the lipid
oxidation and liver inflammation. Arch Pharm Res. 43:744–754.
2020.PubMed/NCBI View Article : Google Scholar
|
29
|
Wu GS, Lu JJ, Guo JJ, Li YB, Tan W, Dang
YY, Zhong ZF, Xu ZT, Chen XP and Wang YT: Ganoderic acid DM, a
natural triterpenoid, induces DNA damage, G1 cell cycle arrest and
apoptosis in human breast cancer cells. Fitoterapia. 83:408–414.
2012.PubMed/NCBI View Article : Google Scholar
|
30
|
Lixin X, Lijun Y and Songping H: Ganoderic
acid A against cyclophosphamide-induced hepatic toxicity in mice. J
Biochem Mol Toxicol. 33(e22271)2019.PubMed/NCBI View Article : Google Scholar
|
31
|
Bessone F, Razori MV and Roma MG:
Molecular pathways of nonalcoholic fatty liver disease development
and progression. Cell Mol Life Sci. 76:99–128. 2019.PubMed/NCBI View Article : Google Scholar
|
32
|
Bala S, Ganz M, Babuta M, Zhuang Y, Csak
T, Calenda CD and Szabo G: Steatosis, inflammasome upregulation,
and fibrosis are attenuated in miR-155 deficient mice in a high
fat-cholesterol-sugar diet-induced model of NASH. Lab Invest.
101:1540–1549. 2021.PubMed/NCBI View Article : Google Scholar
|
33
|
Ma JQ, Zhang YJ and Tian ZK: Anti-oxidant,
anti-inflammatory and anti-fibrosis effects of ganoderic acid A on
carbon tetrachloride induced nephrotoxicity by regulating the
Trx/TrxR and JAK/ROCK pathway. Chem Biol Interact.
344(109529)2021.PubMed/NCBI View Article : Google Scholar
|
34
|
Ganz M and Szabo G: Immune and
inflammatory pathways in NASH. Hepatol Int. 7 (Suppl 2):S771–S781.
2013.PubMed/NCBI View Article : Google Scholar
|
35
|
Heebøll S, Thomsen KL, Clouston A,
Sundelin EI, Radko Y, Christensen LP, Ramezani-Moghadam M,
Kreutzfeldt M, Pedersen SB, Jessen N, et al: Effect of resveratrol
on experimental non-alcoholic steatohepatitis. Pharmacol Res.
95-96:34–41. 2015.PubMed/NCBI View Article : Google Scholar
|
36
|
Ji G, Wang Y, Deng Y, Li X and Jiang Z:
Resveratrol ameliorates hepatic steatosis and inflammation in
methionine/choline-deficient diet-induced steatohepatitis through
regulating autophagy. Lipids Health Dis. 14(134)2015.PubMed/NCBI View Article : Google Scholar
|
37
|
Kessoku T, Imajo K, Honda Y, Kato T, Ogawa
Y, Tomeno W, Kato S, Mawatari H, Fujita K, Yoneda M, et al:
Resveratrol ameliorates fibrosis and inflammation in a mouse model
of nonalcoholic steatohepatitis. Sci Rep. 6(22251)2016.PubMed/NCBI View Article : Google Scholar
|
38
|
Trautwein C, Friedman SL, Schuppan D and
Pinzani M: Hepatic fibrosis: Concept to treatment. J Hepatol. 62
(Suppl 1):S15–S24. 2015.PubMed/NCBI View Article : Google Scholar
|
39
|
Arroyave-Ospina JC, Wu Z, Geng Y and
Moshage H: Role of oxidative stress in the pathogenesis of
non-alcoholic fatty liver disease: Implications for prevention and
therapy. Antioxidants (Basel). 10(174)2021.PubMed/NCBI View Article : Google Scholar
|
40
|
Chen Z, Tian R, She Z, Cai J and Li H:
Role of oxidative stress in the pathogenesis of nonalcoholic fatty
liver disease. Free Radic Biol Med. 152:116–141. 2020.PubMed/NCBI View Article : Google Scholar
|
41
|
Darling NJ and Cook SJ: The role of MAPK
signalling pathways in the response to endoplasmic reticulum
stress. Biochim Biophys Acta. 1843:2150–2163. 2014.PubMed/NCBI View Article : Google Scholar
|
42
|
Parakh S, Jagaraj CJ, Vidal M, Ragagnin
AMG, Perri ER, Konopka A, Toth RP, Galper J, Blair IP, Thomas CJ,
et al: ERp57 is protective against mutant SOD1-induced cellular
pathology in amyotrophic lateral sclerosis. Hum Mol Genet.
27:1311–1331. 2018.PubMed/NCBI View Article : Google Scholar
|
43
|
Koruk M, Taysi S, Savas MC, Yilmaz O,
Akcay F and Karakok M: Oxidative stress and enzymatic antioxidant
status in patients with nonalcoholic steatohepatitis. Ann Clin Lab
Sci. 34:57–62. 2004.PubMed/NCBI
|
44
|
Sutti S, Jindal A, Locatelli I, Vacchiano
M, Gigliotti L, Bozzola C and Albano E: Adaptive immune responses
triggered by oxidative stress contribute to hepatic inflammation in
NASH. Hepatology. 59:886–897. 2014.PubMed/NCBI View Article : Google Scholar
|
45
|
Gabbia D, Cannella L and De Martin S: The
Role of Oxidative Stress in NAFLD-NASH-HCC Transition-Focus on
NADPH Oxidases. Biomedicines. 9(687)2021.PubMed/NCBI View Article : Google Scholar
|