Myocardial ischemia/reperfusion injury: Mechanisms of injury and implications for management (Review)
- Authors:
- Jianfeng He
- Danyong Liu
- Lixia Zhao
- Dongcheng Zhou
- Jianhui Rong
- Liangqing Zhang
- Zhengyuan Xia
-
Affiliations: Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524000, P.R. China, Department of Anesthesiology, The Eighth Affiliated Hospital of Sun Yat‑Sen University, Shenzhen, Guangdong 518033, P.R. China, Department of Internal Medicine, Shenzhen Institute of Research and Innovation, The University of Hong Kong, Shenzhen, Guangdong 518057, P.R. China - Published online on: May 6, 2022 https://doi.org/10.3892/etm.2022.11357
- Article Number: 430
-
Copyright: © He et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Moreira PVL, de Arruda Neta ADCP, Ferreira SS, Ferreira FELL, de Lima RLFC, de Toledo Vianna RP, de Araújo JM, de Alencar Rodrigues RE, da Silva Neto JM and O'Flaherty M: Coronary heart disease and stroke mortality trends in Brazil 2000-2018. PLoS One. 16(e253639)2021.PubMed/NCBI View Article : Google Scholar | |
Roger VL, Go AS, Lloyd-Jones DM, Adams RJ, Berry JD, Brown TM, Carnethon MR, Dai S, de Simone G, Ford ES, et al: Heart disease and stroke statistics-2011 update: A report from the American Heart Association. Circulation. 123:e18–e209. 2011.PubMed/NCBI View Article : Google Scholar | |
Hausenloy DJ and Yellon DM: Myocardial ischemia-reperfusion injury: A neglected therapeutic target. J Clin Invest. 123:92–100. 2013.PubMed/NCBI View Article : Google Scholar | |
Ogura Y, Ouchi N, Ohashi K, Shibata R, Kataoka Y, Kambara T, Kito T, Maruyama S, Yuasa D, Matsuo K, et al: Therapeutic impact of follistatin-like 1 on myocardial ischemic injury in preclinical models. Circulation. 126:1728–1738. 2012.PubMed/NCBI View Article : Google Scholar | |
Verma S, Fedak PW, Weisel RD, Butany J, Rao V, Maitland A, Li RK, Dhillon B and Yau TM: Fundamentals of reperfusion injury for the clinical cardiologist. Circulation. 105:2332–2336. 2002.PubMed/NCBI View Article : Google Scholar | |
Jennings RB, Sommers HM, Smyth GA, Flack HA and Linn H: Myocardial necrosis induced by temporary occlusion of a coronary artery in the dog. Arch Pathol. 70:68–78. 1960.PubMed/NCBI | |
Heusch G: Myocardial stunning and hibernation revisited. Nat Rev Cardiol. 18:522–536. 2021.PubMed/NCBI View Article : Google Scholar | |
Caiazzo G, Musci RL, Frediani L, Umińska J, Wanha W, Filipiak KJ, Kubica J and Navarese EP: State of the art: No-Reflow phenomenon. Cardiol Clin. 38:563–573. 2020.PubMed/NCBI View Article : Google Scholar | |
Nagao K, Ooiwa K and Kanmatsuse K: Reperfusion arrhythmia. Ryoikibetsu Shokogun Shirizu. 277–281. 1996.PubMed/NCBI(In Japanese). | |
Yellon DM and Hausenloy DJ: Myocardial reperfusion injury. N Engl J Med. 357:1121–1135. 2007.PubMed/NCBI View Article : Google Scholar | |
Yang CF: Clinical manifestations and basic mechanisms of myocardial ischemia/reperfusion injury. Ci Ji Yi Xue Za Zhi. 30:209–215. 2018.PubMed/NCBI View Article : Google Scholar | |
Javat D, Heal C, Banks J, Buchholz S and Zhang Z: Regional to tertiary inter-hospital transfer versus in-house percutaneous coronary intervention in acute coronary syndrome. PLoS One. 13(e198272)2018.PubMed/NCBI View Article : Google Scholar | |
Li Y, Li Y, Li B, Liu Y, Zhang J, Kuang W, Lu J, Cao Z, Cui J, Fan Z, et al: Antiplatelet therapy with integrated traditional Chinese and western medicine for use in myocardial Ischemia-Reperfusion injury: A review of clinical applications and mechanisms. Evid Based Complement Alternat Med. 2021(7409094)2021.PubMed/NCBI View Article : Google Scholar | |
Li Q, Shen L, Wang Z, Jiang HP and Liu LX: Tanshinone IIA protects against myocardial ischemia reperfusion injury by activating the PI3K/Akt/mTOR signaling pathway. Biomed Pharmacother. 84:106–114. 2016.PubMed/NCBI View Article : Google Scholar | |
Hotchkiss RS, Strasser A, McDunn JE and Swanson PE: Cell death. N Engl J Med. 361:1570–1583. 2009.PubMed/NCBI View Article : Google Scholar | |
Kalogeris T, Baines CP, Krenz M and Korthuis RJ: Cell biology of ischemia/reperfusion injury. Int Rev Cell Mol Biol. 298:229–317. 2012.PubMed/NCBI View Article : Google Scholar | |
Li R, Jia Z and Trush MA: Defining ROS in biology and medicine. React Oxyg Species (Apex). 1:9–21. 2016.PubMed/NCBI View Article : Google Scholar | |
González-Montero J, Brito R, Gajardo AI and Rodrigo R: Myocardial reperfusion injury and oxidative stress: Therapeutic opportunities. World J Cardiol. 10:74–86. 2018.PubMed/NCBI View Article : Google Scholar | |
Kandula V, Kosuru R, Li H, Yan D, Zhu Q, Lian Q, Ge RS, Xia Z and Irwin MG: Forkhead box transcription factor 1: Role in the pathogenesis of diabetic cardiomyopathy. Cardiovasc Diabetol. 15(44)2016.PubMed/NCBI View Article : Google Scholar | |
Li H, Xia Z, Chen Y, Qi D and Zheng H: Mechanism and therapies of oxidative Stress-Mediated cell death in ischemia reperfusion injury. Oxid Med Cell Longev. 2018(2910643)2018.PubMed/NCBI View Article : Google Scholar | |
Xia Z, Chen Y, Fan Q and Xue M: Oxidative stress-mediated reperfusion injury: Mechanism and therapies. Oxid Med Cell Longev. 2014(373081)2014.PubMed/NCBI View Article : Google Scholar | |
Xia Z, Chen Y, Fan Q, Xue M and Liu KX: Oxidative stress-mediated reperfusion injury 2014. Oxid Med Cell Longev. 2015(689416)2015.PubMed/NCBI View Article : Google Scholar | |
García N, Zazueta C and Aguilera-Aguirre L: Oxidative stress and inflammation in cardiovascular disease. Oxid Med Cell Longev. 2017(5853238)2017.PubMed/NCBI View Article : Google Scholar | |
Goldhaber JI and Weiss JN: Oxygen free radicals and cardiac reperfusion abnormalities. Hypertension. 20:118–1127. 1992.PubMed/NCBI View Article : Google Scholar | |
Brookes PS, Yoon Y, Robotham JL, Anders MW and Sheu SS: Calcium, ATP, and ROS: A mitochondrial love-hate triangle. Am J Physiol Cell Physiol. 287:C817–C833. 2004.PubMed/NCBI View Article : Google Scholar | |
Chen Y, Liu C, Zhou P, Li J, Zhao X, Wang Y, Chen R, Song L, Zhao H and Yan H: Coronary endothelium No-Reflow injury is associated with ROS-Modified mitochondrial fission through the JNK-Drp1 signaling pathway. Oxid Med Cell Longev. 2021(6699516)2021.PubMed/NCBI View Article : Google Scholar | |
Pena E, Brito J, El Alam S and Siques P: Oxidative stress, kinase activity and inflammatory implications in right ventricular hypertrophy and heart failure under hypobaric hypoxia. Int J Mol Sci. 21(6421)2020.PubMed/NCBI View Article : Google Scholar | |
Cadenas S: ROS and redox signaling in myocardial ischemia-reperfusion injury and cardioprotection. Free Radic Biol Med. 117:76–89. 2018.PubMed/NCBI View Article : Google Scholar | |
Kura B, Szeiffova BB, Kalocayova B, Sykora M and Slezak J: Oxidative stress-responsive MicroRNAs in heart injury. Int J Mol Sci. 21(358)2020.PubMed/NCBI View Article : Google Scholar | |
Wu MY, Yiang GT, Liao WT, Tsai AP, Cheng YL, Cheng PW, Li CY and Li CJ: Current mechanistic concepts in ischemia and reperfusion injury. Cell Physiol Biochem. 46:1650–1667. 2018.PubMed/NCBI View Article : Google Scholar | |
Li H, Yao W, Liu Z, Xu A, Huang Y, Ma XL, Irwin MG and Xia Z: Hyperglycemia abrogates ischemic postconditioning cardioprotection by impairing AdipoR1/Caveolin-3/STAT3 signaling in diabetic rats. Diabetes. 65:942–955. 2016.PubMed/NCBI View Article : Google Scholar | |
Su W, Zhang Y, Zhang Q, Xu J, Zhan L, Zhu Q, Lian Q, Liu H, Xia ZY, Xia Z and Lei S: N-acetylcysteine attenuates myocardial dysfunction and postischemic injury by restoring caveolin-3/eNOS signaling in diabetic rats. Cardiovasc Diabetol. 15(146)2016.PubMed/NCBI View Article : Google Scholar | |
Jeddi S, Gheibi S, Kashfi K, Carlström M and Ghasemi A: Protective effect of intermediate doses of hydrogen sulfide against myocardial ischemia-reperfusion injury in obese type 2 diabetic rats. Life Sci. 256(117855)2020.PubMed/NCBI View Article : Google Scholar | |
Wang T, Mao X, Li H, Qiao S, Xu A, Wang J, Lei S, Liu Z, Ng KF, Wong GT, et al: N-Acetylcysteine and allopurinol up-regulated the Jak/STAT3 and PI3K/Akt pathways via adiponectin and attenuated myocardial postischemic injury in diabetes. Free Radic Biol Med. 63:291–303. 2013.PubMed/NCBI View Article : Google Scholar | |
Xue R, Lei S, Xia ZY, Wu Y, Meng Q, Zhan L, Su W, Liu H, Xu J, Liu Z, et al: Selective inhibition of PTEN preserves ischaemic post-conditioning cardioprotection in STZ-induced Type 1 diabetic rats: Role of the PI3K/Akt and JAK2/STAT3 pathways. Clin Sci (Lond). 130:377–392. 2016.PubMed/NCBI View Article : Google Scholar | |
Wu Q, Wang T, Chen S, Zhou Q, Li H, Hu N, Feng Y, Dong N, Yao S and Xia Z: Cardiac protective effects of remote ischaemic preconditioning in children undergoing tetralogy of fallot repair surgery: A randomized controlled trial. Eur Heart J. 39:1028–1037. 2018.PubMed/NCBI View Article : Google Scholar | |
Wang TT, Shi MM, Liao XL, Li YQ, Yuan HX, Li Y, Liu X, Ning DS, Peng YM, Yang F, et al: Overexpression of inducible nitric oxide synthase in the diabetic heart compromises ischemic postconditioning. J Mol Cell Cardiol. 129:144–153. 2019.PubMed/NCBI View Article : Google Scholar | |
Liu Y, Paterson M, Baumgardt SL, Irwin MG, Xia Z, Bosnjak ZJ and Ge ZD: Vascular endothelial growth factor regulation of endothelial nitric oxide synthase phosphorylation is involved in isoflurane cardiac preconditioning. Cardiovasc Res. 115:168–178. 2019.PubMed/NCBI View Article : Google Scholar | |
Trafford AW, Díaz ME, Negretti N and Eisner DA: Enhanced Ca2+ current and decreased Ca2+ efflux restore sarcoplasmic reticulum Ca2+ content after depletion. Circ Res. 81:477–4784. 1997.PubMed/NCBI View Article : Google Scholar | |
Eisner D, Bode E, Venetucci L and Trafford A: Calcium flux balance in the heart. J Mol Cell Cardiol. 58:110–117. 2013.PubMed/NCBI View Article : Google Scholar | |
Chen S and Li S: The Na+/Ca²+ exchanger in cardiac ischemia/reperfusion injury. Med Sci Monit. 18:RA161–RA165. 2012.PubMed/NCBI View Article : Google Scholar | |
Murphy E and Steenbergen C: Mechanisms underlying acute protection from cardiac ischemia-reperfusion injury. Physiol Rev. 88:581–609. 2008.PubMed/NCBI View Article : Google Scholar | |
Aghaei M, Motallebnezhad M, Ghorghanlu S, Jabbari A, Enayati A, Rajaei M, Pourabouk M, Moradi A, Alizadeh AM and Khori V: Targeting autophagy in cardiac ischemia/reperfusion injury: A novel therapeutic strategy. J Cell Physiol. 234:16768–16778. 2019.PubMed/NCBI View Article : Google Scholar | |
Hotta Y, Ishikawa N, Ohashi N and Matsui K: Effects of SM-20550, a selective Na+-H+ exchange inhibitor, on the ion transport of myocardial mitochondria. Mol Cell Biochem. 219:83–90. 2001.PubMed/NCBI View Article : Google Scholar | |
Talukder MA, Zweier JL and Periasamy M: Targeting calcium transport in ischaemic heart disease. Cardiovasc Res. 84:345–352. 2009.PubMed/NCBI View Article : Google Scholar | |
Chen C, Lu W, Wu G, Lv L, Chen W, Huang L, Wu X, Xu N and Wu Y: Cardioprotective effects of combined therapy with diltiazem and superoxide dismutase on myocardial ischemia-reperfusion injury in rats. Life Sci. 183:50–59. 2017.PubMed/NCBI View Article : Google Scholar | |
Kook H, Hong SJ, Yang KS, Lee S, Kim JS and Park CG: Comparison of nebivolol versus diltiazem in improving coronary artery spasm and quality of life in patients with hypertension and vasospastic angina: A prospective, randomized, double-blind pilot study. PLoS One. 15(e239039)2020.PubMed/NCBI View Article : Google Scholar | |
Lodha AR, Pillai A, Sheth K and Hiremath J: A retrospective cohort study exploring diltiazem as a pharmaco-enhancer for tacrolimus, in a post-heart transplant setting. Clin Transplant. 34(e14100)2020.PubMed/NCBI View Article : Google Scholar | |
Bou-Teen D, Kaludercic N, Weissman D, Turan B, Maack C, Di Lisa F and Ruiz-Meana M: Mitochondrial ROS and mitochondria-targeted antioxidants in the aged heart. Free Radic Biol Med. 167:109–124. 2021.PubMed/NCBI View Article : Google Scholar | |
Yu J, Wu J, Xie P, Maimaitili Y, Wang J, Xia Z, Gao F, Zhang X and Zheng H: Sevoflurane postconditioning attenuates cardiomyocyte hypoxia/reoxygenation injury via restoring mitochondrial morphology. Peerj. 4(e2659)2016.PubMed/NCBI View Article : Google Scholar | |
Boengler K, Kosiol M, Mayr M, Schulz R and Rohrbach S: Mitochondria and ageing: Role in heart, skeletal muscle and adipose tissue. J Cachexia Sarcopenia Muscle. 8:349–369. 2017.PubMed/NCBI View Article : Google Scholar | |
Fieni F, Johnson DE, Hudmon A and Kirichok Y: Mitochondrial Ca2+ uniporter and CaMKII in heart. Nature. 513:E1–E2. 2014.PubMed/NCBI View Article : Google Scholar | |
Santulli G, Xie W, Reiken SR and Marks AR: Mitochondrial calcium overload is a key determinant in heart failure. Proc Natl Acad Sci USA. 112:11389–11394. 2015.PubMed/NCBI View Article : Google Scholar | |
Cheng Y, Xia Z, Han Y and Rong J: Plant natural product formononetin protects rat cardiomyocyte h9c2 cells against oxygen glucose deprivation and reoxygenation via inhibiting ROS formation and promoting GSK-3β phosphorylation. Oxid Med Cell Longev. 2016(2060874)2016.PubMed/NCBI View Article : Google Scholar | |
Shintani-Ishida K, Inui M and Yoshida K: Ischemia-reperfusion induces myocardial infarction through mitochondrial Ca²+ overload. J Mol Cell Cardiol. 53:233–239. 2012.PubMed/NCBI View Article : Google Scholar | |
Kulek AR, Anzell A, Wider JM, Sanderson TH and Przyklenk K: Mitochondrial quality control: Role in cardiac models of lethal ischemia-reperfusion injury. Cells. 9(214)2020.PubMed/NCBI View Article : Google Scholar | |
Chang JC, Lien CF, Lee WS, Chang HR, Hsu YC, Luo YP, Jeng JR, Hsieh JC and Yang KT: Intermittent hypoxia prevents myocardial mitochondrial Ca 2+ Overload and cell death during ischemia/reperfusion: The role of reactive oxygen species. Cells-Basel. 8(564)2019.PubMed/NCBI View Article : Google Scholar | |
Obeng E: Apoptosis (programmed cell death) and its signals-A review. Braz J Biol. 81:1133–1143. 2021.PubMed/NCBI View Article : Google Scholar | |
Slee EA, Adrain C and Martin SJ: Executioner caspase-3, -6, and -7 perform distinct, non-redundant roles during the demolition phase of apoptosis. J Biol Chem. 276:7320–7326. 2001.PubMed/NCBI View Article : Google Scholar | |
Schlegel RA and Williamson P: Phosphatidylserine, a death knell. Cell Death Differ. 8:551–563. 2001.PubMed/NCBI View Article : Google Scholar | |
Xu X, Lai Y and Hua ZC: Apoptosis and apoptotic body: Disease message and therapeutic target potentials. Biosci Rep. 39(BSR20180992)2019.PubMed/NCBI View Article : Google Scholar | |
D'Arcy MS: Cell death: A review of the major forms of apoptosis, necrosis and autophagy. Cell Biol Int. 43:582–592. 2019.PubMed/NCBI View Article : Google Scholar | |
Dong Y, Chen H, Gao J, Liu Y, Li J and Wang J: Molecular machinery and interplay of apoptosis and autophagy in coronary heart disease. J Mol Cell Cardiol. 136:27–41. 2019.PubMed/NCBI View Article : Google Scholar | |
Wajant H: The Fas signaling pathway: More than a paradigm. Science. 296:1635–1636. 2002.PubMed/NCBI View Article : Google Scholar | |
Kischkel FC, Hellbardt S, Behrmann I, Germer M, Pawlita M, Krammer PH and Peter ME: Cytotoxicity-dependent APO-1 (Fas/CD95)-associated proteins form a death-inducing signaling complex (DISC) with the receptor. EMBO J. 14:5579–5588. 1995.PubMed/NCBI View Article : Google Scholar | |
Teringova E and Tousek P: Apoptosis in ischemic heart disease. J Transl Med. 15(87)2017.PubMed/NCBI View Article : Google Scholar | |
Del Re DP, Amgalan D, Linkermann A, Liu Q and Kitsis RN: Fundamental mechanisms of regulated cell death and implications for heart disease. Physiol Rev. 99:1765–1817. 2019.PubMed/NCBI View Article : Google Scholar | |
Condorelli G, Roncarati R, Ross JJ Jr, Pisani A, Stassi G, Todaro M, Trocha S, Drusco A, Gu Y, Russo MA, et al: Heart-targeted overexpression of caspase3 in mice increases infarct size and depresses cardiac function. Proc Natl Acad Sci USA. 98:9977–9982. 2001.PubMed/NCBI View Article : Google Scholar | |
Lee P, Sata M, Lefer DJ, Factor SM, Walsh K and Kitsis RN: Fas pathway is a critical mediator of cardiac myocyte death and MI during ischemia-reperfusion in vivo. Am J Physiol Heart Circ Physiol. 284:H456–H463. 2003.PubMed/NCBI View Article : Google Scholar | |
Jeremias I, Kupatt C, Martin-Villalba A, Habazettl H, Schenkel J, Boekstegers P and Debatin KM: Involvement of CD95/Apo1/Fas in cell death after myocardial ischemia. Circulation. 102:915–920. 2000.PubMed/NCBI View Article : Google Scholar | |
Kosuru R, Cai Y, Kandula V, Yan D, Wang C, Zheng H, Li Y, Irwin MG, Singh S and Xia Z: AMPK contributes to cardioprotective effects of pterostilbene against myocardial ischemia-reperfusion injury in diabetic rats by suppressing cardiac oxidative stress and apoptosis. Cell Physiol Biochem. 46:1381–1397. 2018.PubMed/NCBI View Article : Google Scholar | |
Forini F, Kusmic C, Nicolini G, Mariani L, Zucchi R, Matteucci M, Iervasi G and Pitto L: Triiodothyronine prevents cardiac ischemia/reperfusion mitochondrial impairment and cell loss by regulating miR30a/p53 axis. Endocrinology. 155:4581–4590. 2014.PubMed/NCBI View Article : Google Scholar | |
Lin CL, Tseng HC, Chen RF, Chen WP, Su MJ, Fang KM and Wu ML: Intracellular zinc release-activated ERK-dependent GSK-3β-p53 and Noxa-Mcl-1 signaling are both involved in cardiac ischemic-reperfusion injury. Cell Death Differ. 18:1651–1663. 2011.PubMed/NCBI View Article : Google Scholar | |
Zhang C, Shi J, Qian L, Zhang C, Wu K, Yang C, Yan D, Wu X and Liu X: Nucleostemin exerts anti-apoptotic function via p53 signaling pathway in cardiomyocytes. In Vitro Cell Dev Biol Anim. 51:1064–1071. 2015.PubMed/NCBI View Article : Google Scholar | |
Li M, Wang D, He J, Chen L and Li H: Bcl-XL: A multifunctional anti-apoptotic protein. Pharmacol Res. 151(104547)2020.PubMed/NCBI View Article : Google Scholar | |
Hochhauser E, Kivity S, Offen D, Maulik N, Otani H, Barhum Y, Pannet H, Shneyvays V, Shainberg A, Goldshtaub V, et al: Bax ablation protects against myocardial ischemia-reperfusion injury in transgenic mice. Am J Physiol Heart Circ Physiol. 284:H2351–H2359. 2003.PubMed/NCBI View Article : Google Scholar | |
Chen Z, Chua CC, Ho YS, Hamdy RC and Chua BH: Overexpression of Bcl-2 attenuates apoptosis and protects against myocardial I/R injury in transgenic mice. Am J Physiol Heart Circ Physiol. 280:H2313–H2320. 2001.PubMed/NCBI View Article : Google Scholar | |
Zhang D, He Y, Ye X, Cai Y, Xu J, Zhang L, Li M, Liu H, Wang S and Xia Z: Activation of autophagy inhibits nucleotide-binding oligomerization domain-like receptor protein 3 inflammasome activation and attenuates myocardial ischemia-reperfusion injury in diabetic rats. J Diabetes Investig. 11:1126–1136. 2020.PubMed/NCBI View Article : Google Scholar | |
Cai Y, Ying F, Liu H, Ge L, Song E, Wang L, Zhang D, Hoi CTE, Xia Z and Irwin MG: Deletion of Rap1 protects against myocardial ischemia/reperfusion injury through suppressing cell apoptosis via activation of STAT3 signaling. FASEB J. 34:4482–4496. 2020.PubMed/NCBI View Article : Google Scholar | |
Peng K, Chen WR, Xia F, Liu H, Meng XW, Zhang J, Liu HY, Xia ZY and Ji FH: Dexmedetomidine post-treatment attenuates cardiac ischaemia/reperfusion injury by inhibiting apoptosis through HIF-1α signalling. J Cell Mol Med. 24:850–861. 2020.PubMed/NCBI View Article : Google Scholar | |
Gao S, Wang R, Dong S, Wu J, Perek B, Xia Z, Yao S and Wang T: Inactivation of TOPK caused by hyperglycemia blocks diabetic heart sensitivity to sevoflurane postconditioning by impairing the PTEN/PI3K/Akt signaling. Oxid Med Cell Longev. 2021(6657529)2021.PubMed/NCBI View Article : Google Scholar | |
Pang L, Cai Y, Tang EH, Yan D, Kosuru R, Li H, Irwin MG, Ma H and Xia Z: Cox-2 inhibition protects against hypoxia/reoxygenation-induced cardiomyocyte apoptosis via Akt-dependent enhancement of iNOS expression. Oxid Med Cell Longev. 2016(3453059)2016.PubMed/NCBI View Article : Google Scholar | |
Korshunova AY, Blagonravov ML, Neborak EV, Syatkin SP, Sklifasovskaya AP, Semyatov SM and Agostinelli E: BCL2-regulated apoptotic process in myocardial ischemia-reperfusion injury (Review). Int J Mol Med. 47:23–36. 2021.PubMed/NCBI View Article : Google Scholar | |
Liu J, Liu M and Chen L: Novel pathogenesis: Regulation of apoptosis by Apelin/APJ system. Acta Biochim Biophys Sin (Shanghai). 49:471–478. 2017.PubMed/NCBI View Article : Google Scholar | |
Qi Z and Chen L: Endoplasmic reticulum stress and autophagy. Adv Exp Med Biol. 1206:167–177. 2019.PubMed/NCBI View Article : Google Scholar | |
Sanderson TH, Gallaway M and Kumar R: Unfolding the unfolded protein response: Unique insights into brain ischemia. Int J Mol Sci. 16:7133–7142. 2015.PubMed/NCBI View Article : Google Scholar | |
Chen X, Wang Y, Xie X, Chen H, Zhu Q, Ge Z, Wei H, Deng J, Xia Z and Lian Q: Heme oxygenase-1 reduces Sepsis-Induced endoplasmic reticulum stress and acute lung injury. Mediators Inflamm. 2018(9413876)2018.PubMed/NCBI View Article : Google Scholar | |
Zhang YM, Wang CY, Zheng FC, Gao FF, Chen YC, Huang ZQ, Xia ZY, Irwin MG, Li WQ, Liu XP, et al: Effects of N-n-butyl haloperidol iodide on the rat myocardial sarcoplasmic reticulum Ca(2+)-ATPase during ischemia/reperfusion. Biochem Biophys Res Commun. 425:426–430. 2012.PubMed/NCBI View Article : Google Scholar | |
Liu Y, Baumgardt SL, Fang J, Shi Y, Qiao S, Bosnjak ZJ, Vásquez-Vivar J, Xia Z, Warltier DC, Kersten JR and Ge ZD: Transgenic overexpression of GTP cyclohydrolase 1 in cardiomyocytes ameliorates post-infarction cardiac remodeling. Sci Rep. 7(3093)2017.PubMed/NCBI View Article : Google Scholar | |
Su RY, Geng XY, Yang Y and Yin HS: Nesfatin-1 inhibits myocardial ischaemia/reperfusion injury through activating Akt/ERK pathway-dependent attenuation of endoplasmic reticulum stress. J Cell Mol Med. 25:5050–5059. 2021.PubMed/NCBI View Article : Google Scholar | |
Vekich JA, Belmont PJ, Thuerauf DJ and Glembotski CC: Protein disulfide isomerase-associated 6 is an ATF6-inducible ER stress response protein that protects cardiac myocytes from ischemia/reperfusion-mediated cell death. J Mol Cell Cardiol. 53:259–267. 2012.PubMed/NCBI View Article : Google Scholar | |
Glembotski CC: Roles for ATF6 and the sarco/endoplasmic reticulum protein quality control system in the heart. J Mol Cell Cardiol. 71:11–15. 2014.PubMed/NCBI View Article : Google Scholar | |
Dai B, Qiao L, Zhang M, Cheng L, Zhang L, Geng L, Shi C, Zhang M, Sui C, Shen W, et al: LncRNA AK054386 functions as a ceRNA to sequester miR-199 and induce sustained endoplasmic reticulum stress in hepatic reperfusion injury. Oxid Med Cell Longev. 2019(8189079)2019.PubMed/NCBI View Article : Google Scholar | |
Gao P, Yan Z and Zhu Z: Mitochondria-Associated endoplasmic reticulum membranes in cardiovascular diseases. Front Cell Dev Biol. 8(604240)2020.PubMed/NCBI View Article : Google Scholar | |
Zhou J, Ahmad F, Parikh S, Hoffman NE, Rajan S, Verma VK, Song J, Yuan A, Shanmughapriya S, Guo Y, et al: Loss of adult cardiac myocyte GSK-3 leads to mitotic catastrophe resulting in fatal dilated cardiomyopathy. Circ Res. 118:1208–1222. 2016.PubMed/NCBI View Article : Google Scholar | |
Zeeshan HM, Lee GH, Kim HR and Chae HJ: Endoplasmic reticulum stress and associated ROS. Int J Mol Sci. 17(327)2016.PubMed/NCBI View Article : Google Scholar | |
Zhang G, Wang X, Gillette TG, Deng Y and Wang ZV: Unfolded protein response as a therapeutic target in cardiovascular disease. Curr Top Med Chem. 19:1902–1917. 2019.PubMed/NCBI View Article : Google Scholar | |
Song S, Tan J, Miao Y and Zhang Q: Crosstalk of ER stress-mediated autophagy and ER-phagy: Involvement of UPR and the core autophagy machinery. J Cell Physiol. 233:3867–3874. 2018.PubMed/NCBI View Article : Google Scholar | |
Verfaillie T, Rubio N, Garg AD, Bultynck G, Rizzuto R, Decuypere JP, Piette J, Linehan C, Gupta S, Samali A and Agostinis P: PERK is required at the ER-mitochondrial contact sites to convey apoptosis after ROS-based ER stress. Cell Death Differ. 19:1880–1891. 2012.PubMed/NCBI View Article : Google Scholar | |
Carreras-Sureda A, Jaña F, Urra H, Durand S, Mortenson DE, Sagredo A, Bustos G, Hazari Y, Ramos-Fernández E, Sassano ML, et al: Non-canonical function of IRE1α determines mitochondria-associated endoplasmic reticulum composition to control calcium transfer and bioenergetics. Nat Cell Biol. 21:755–767. 2019.PubMed/NCBI View Article : Google Scholar | |
Shi B, Ma M, Zheng Y, Pan Y and Lin X: MTOR and Beclin1: Two key autophagy-related molecules and their roles in myocardial ischemia/reperfusion injury. J Cell Physiol. 234:12562–12568. 2019.PubMed/NCBI View Article : Google Scholar | |
Wang S, Wang C, Yan F, Wang T, He Y, Li H, Xia Z and Zhang Z: N-Acetylcysteine attenuates diabetic myocardial ischemia reperfusion injury through inhibiting excessive autophagy. Mediators Inflamm. 2017(9257291)2017.PubMed/NCBI View Article : Google Scholar | |
Klionsky DJ, Abdel-Aziz AK, Abdelfatah S, Abdellatif M, Abdoli A, Abel S, Abeliovich H, Abildgaard MH, Abudu YP, Acevedo-Arozena A, et al: Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)1. Autophagy. 17:1–382. 2021.PubMed/NCBI View Article : Google Scholar | |
Ouyang C, You J and Xie Z: The interplay between autophagy and apoptosis in the diabetic heart. J Mol Cell Cardiol. 71:71–80. 2014.PubMed/NCBI View Article : Google Scholar | |
Levine B and Yuan J: Autophagy in cell death: An innocent convict? J Clin Invest. 115:2679–2688. 2005.PubMed/NCBI View Article : Google Scholar | |
Sala-Mercado JA, Wider J, Undyala VV, Jahania S, Yoo W, Mentzer RJ, Gottlieb RA and Przyklenk K: Profound cardioprotection with chloramphenicol succinate in the swine model of myocardial ischemia-reperfusion injury. Circulation. 122 (11 Suppl):S179–S184. 2010.PubMed/NCBI View Article : Google Scholar | |
Wang Y, Zhou L, Su W, Huang F, Zhang Y, Xia ZY, Xia Z and Lei S: Selective inhibition of PKCβ2 restores ischemic Postconditioning-Mediated cardioprotection by modulating autophagy in diabetic rats. J Diabetes Res. 2020(2408240)2020.PubMed/NCBI View Article : Google Scholar | |
Chen Z, Hu Z, Lu Z, Cai S, Gu X, Zhuang H, Ruan Z, Xia Z, Irwin MG, Feng D and Zhang L: Differential microRNA profiling in a cellular hypoxia reoxygenation model upon posthypoxic propofol treatment reveals alterations in autophagy signaling network. Oxid Med Cell Longev. 2013(378484)2013.PubMed/NCBI View Article : Google Scholar | |
Abdrakhmanov A, Gogvadze V and Zhivotovsky B: To Eat or to Die: Deciphering selective forms of autophagy. Trends Biochem Sci. 45:347–364. 2020.PubMed/NCBI View Article : Google Scholar | |
Cong Y, Dinesh KN, Mauthe M, Verlhac P and Reggiori F: Manipulation of selective macroautophagy by pathogens at a glance. J Cell Sci. 133(jcs240440)2020.PubMed/NCBI View Article : Google Scholar | |
Schuck S: Microautophagy-distinct molecular mechanisms handle cargoes of many sizes. J Cell Sci. 133(jcs246322)2020.PubMed/NCBI View Article : Google Scholar | |
Yang Q, Wang R and Zhu L: Chaperone-Mediated autophagy. Adv Exp Med Biol. 1206:435–452. 2019.PubMed/NCBI View Article : Google Scholar | |
Zhu H and He L: Beclin 1 biology and its role in heart disease. Curr Cardiol Rev. 11:229–237. 2015.PubMed/NCBI View Article : Google Scholar | |
Brady NR, Hamacher-Brady A, Yuan H and Gottlieb RA: The autophagic response to nutrient deprivation in the hl-1 cardiac myocyte is modulated by Bcl-2 and sarco/endoplasmic reticulum calcium stores. FEBS J. 274:3184–3197. 2007.PubMed/NCBI View Article : Google Scholar | |
Ma X, Liu H, Foyil SR, Godar RJ, Weinheimer CJ, Hill JA and Diwan A: Impaired autophagosome clearance contributes to cardiomyocyte death in ischemia/reperfusion injury. Circulation. 125:3170–3181. 2012.PubMed/NCBI View Article : Google Scholar | |
Ma X, Liu H, Foyil SR, Godar RJ, Weinheimer CJ and Diwan A: Autophagy is impaired in cardiac ischemia-reperfusion injury. Autophagy. 8:1394–1396. 2012.PubMed/NCBI View Article : Google Scholar | |
Manganelli V, Matarrese P, Antonioli M, Gambardella L, Vescovo T, Gretzmeier C, Longo A, Capozzi A, Recalchi S, Riitano G, et al: Raft-like lipid microdomains drive autophagy initiation via AMBRA1-ERLIN1 molecular association within MAMs. Autophagy. 17:2528–2548. 2021.PubMed/NCBI View Article : Google Scholar | |
Sun L, Ma W, Gao W, Xing Y, Chen L, Xia Z, Zhang Z and Dai Z: Propofol directly induces caspase-1-dependent macrophage pyroptosis through the NLRP3-ASC inflammasome. Cell Death Dis. 10(542)2019.PubMed/NCBI View Article : Google Scholar | |
Ball DP, Taabazuing CY, Griswold AR, Orth EL, Rao SD, Kotliar IB, Vostal LE, Johnson DC and Bachovchin DA: Caspase-1 interdomain linker cleavage is required for pyroptosis. Life Sci Alliance. 3(e202000664)2020.PubMed/NCBI View Article : Google Scholar | |
Toldo S, Mauro AG, Cutter Z and Abbate A: Inflammasome, pyroptosis, and cytokines in myocardial ischemia-reperfusion injury. Am J Physiol Heart Circ Physiol. 315:H1553–H1568. 2018.PubMed/NCBI View Article : Google Scholar | |
Tsuchiya K: Inflammasome-associated cell death: Pyroptosis, apoptosis, and physiological implications. Microbiol Immunol. 64:252–269. 2020.PubMed/NCBI View Article : Google Scholar | |
Frank D and Vince JE: Pyroptosis versus necroptosis: Similarities, differences, and crosstalk. Cell Death Differ. 26:99–114. 2019.PubMed/NCBI View Article : Google Scholar | |
Liu X, Zhang Z, Ruan J, Pan Y, Magupalli VG, Wu H and Lieberman J: Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores. Nature. 535:153–158. 2016.PubMed/NCBI View Article : Google Scholar | |
He WT, Wan H, Hu L, Chen P, Wang X, Huang Z, Yang ZH, Zhong CQ and Han J: Gasdermin D is an executor of pyroptosis and required for interleukin-1β secretion. Cell Res. 25:1285–1298. 2015.PubMed/NCBI View Article : Google Scholar | |
Yue RC, Lu SZ, Luo Y, Wang T, Liang H, Zeng J, Liu J and Hu HX: Calpain silencing alleviates myocardial ischemia-reperfusion injury through the NLRP3/ASC/Caspase-1 axis in mice. Life Sci. 233(116631)2019.PubMed/NCBI View Article : Google Scholar | |
Djulbegovic MB and Uversky VN: Ferroptosis-an iron- and disorder-dependent programmed cell death. Int J Biol Macromol. 135:1052–1069. 2019.PubMed/NCBI View Article : Google Scholar | |
Liu Q, Zhang D, Hu D, Zhou X and Zhou Y: The role of mitochondria in NLRP3 inflammasome activation. Mol Immunol. 103:115–124. 2018.PubMed/NCBI View Article : Google Scholar | |
Kawaguchi M, Takahashi M, Hata T, Kashima Y, Usui F, Morimoto H, Izawa A, Takahashi Y, Masumoto J, Koyama J, et al: Inflammasome activation of cardiac fibroblasts is essential for myocardial ischemia/reperfusion injury. Circulation. 123:594–604. 2011.PubMed/NCBI View Article : Google Scholar | |
Ding S, Liu D, Wang L, Wang G and Zhu Y: Inhibiting MicroRNA-29a protects myocardial Ischemia-Reperfusion injury by targeting SIRT1 and suppressing oxidative stress and NLRP3-Mediated pyroptosis pathway. J Pharmacol Exp Ther. 372:128–135. 2020.PubMed/NCBI View Article : Google Scholar | |
Wang C, Zhu L, Yuan W, Sun L, Xia Z, Zhang Z and Yao W: Diabetes aggravates myocardial ischaemia reperfusion injury via activating Nox2-related programmed cell death in an AMPK-dependent manner. J Cell Mol Med. 24:6670–6679. 2020.PubMed/NCBI View Article : Google Scholar | |
Popov SV, Maslov LN, Naryzhnaya NV, Mukhomezyanov AV, Krylatov AV, Tsibulnikov SY, Ryabov VV, Cohen MV and Downey JM: The role of pyroptosis in ischemic and reperfusion injury of the heart. J Cardiovasc Pharmacol Ther. 26:562–574. 2021.PubMed/NCBI View Article : Google Scholar | |
Yang WS and Stockwell BR: Ferroptosis: Death by lipid peroxidation. Trends Cell Biol. 26:165–176. 2016.PubMed/NCBI View Article : Google Scholar | |
Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, Patel DN, Bauer AJ, Cantley AM, Yang WS, et al: Ferroptosis: An iron-dependent form of nonapoptotic cell death. Cell. 149:1060–1072. 2012.PubMed/NCBI View Article : Google Scholar | |
Sun X, Ou Z, Chen R, Niu X, Chen D, Kang R and Tang D: Activation of the p62-Keap1-NRF2 pathway protects against ferroptosis in hepatocellular carcinoma cells. Hepatology. 63:173–184. 2016.PubMed/NCBI View Article : Google Scholar | |
Yan N and Zhang J: Iron metabolism, ferroptosis, and the links with alzheimer's disease. Front Neurosci. 13(1443)2019.PubMed/NCBI View Article : Google Scholar | |
Weiland A, Wang Y, Wu W, Lan X, Han X, Li Q and Wang J: Ferroptosis and its role in diverse brain diseases. Mol Neurobiol. 56:4880–4893. 2019.PubMed/NCBI View Article : Google Scholar | |
Hu Z, Zhang H, Yang SK, Wu X, He D, Cao K and Zhang W: Emerging role of ferroptosis in acute kidney injury. Oxid Med Cell Longev. 2019(8010614)2019.PubMed/NCBI View Article : Google Scholar | |
Yu H, Guo P, Xie X, Wang Y and Chen G: Ferroptosis, a new form of cell death, and its relationships with tumourous diseases. J Cell Mol Med. 21:648–657. 2017.PubMed/NCBI View Article : Google Scholar | |
Su LJ, Zhang JH, Gomez H, Murugan R, Hong X, Xu D, Jiang F and Peng ZY: Reactive oxygen Species-Induced lipid peroxidation in apoptosis, autophagy, and ferroptosis. Oxid Med Cell Longev. 2019(5080843)2019.PubMed/NCBI View Article : Google Scholar | |
Stoyanovsky DA, Tyurina YY, Shrivastava I, Bahar I, Tyurin VA, Protchenko O, Jadhav S, Bolevich SB, Kozlov AV, Vladimirov YA, et al: Iron catalysis of lipid peroxidation in ferroptosis: Regulated enzymatic or random free radical reaction? Free Radic Biol Med. 133:153–1561. 2019.PubMed/NCBI View Article : Google Scholar | |
Zhao WK, Zhou Y, Xu TT and Wu Q: Ferroptosis: Opportunities and challenges in myocardial Ischemia-Reperfusion injury. Oxid Med Cell Longev. 2021(9929687)2021.PubMed/NCBI View Article : Google Scholar | |
Fang X, Wang H, Han D, Xie E, Yang X, Wei J, Gu S, Gao F, Zhu N, Yin X, et al: Ferroptosis as a target for protection against cardiomyopathy. Proc Natl Acad Sci USA. 116:2672–2680. 2019.PubMed/NCBI View Article : Google Scholar | |
Gao M, Monian P, Quadri N, Ramasamy R and Jiang X: Glutaminolysis and transferrin regulate ferroptosis. Mol Cell. 59:298–308. 2015.PubMed/NCBI View Article : Google Scholar | |
Ge ZD, Lian Q, Mao X and Xia Z: Current status and challenges of NRF2 as a potential therapeutic target for diabetic cardiomyopathy. Int Heart J. 60:512–520. 2019.PubMed/NCBI View Article : Google Scholar | |
Williams RE, Zweier JL and Flaherty JT: Treatment with deferoxamine during ischemia improves functional and metabolic recovery and reduces reperfusion-induced oxygen radical generation in rabbit hearts. Circulation. 83:1006–1014. 1991.PubMed/NCBI View Article : Google Scholar | |
Drossos G, Lazou A, Panagopoulos P and Westaby S: Deferoxamine cardioplegia reduces superoxide radical production in human myocardium. Ann Thorac Surg. 59:169–172. 1995.PubMed/NCBI View Article : Google Scholar | |
Omiya S, Hikoso S, Imanishi Y, Saito A, Yamaguchi O, Takeda T, Mizote I, Oka T, Taneike M, Nakano Y, et al: Downregulation of ferritin heavy chain increases labile iron pool, oxidative stress and cell death in cardiomyocytes. J Mol Cell Cardiol. 46:59–66. 2009.PubMed/NCBI View Article : Google Scholar | |
Baba Y, Higa JK, Shimada BK, Horiuchi KM, Suhara T, Kobayashi M, Woo JD, Aoyagi H, Marh KS, Kitaoka H and Matsui T: Protective effects of the mechanistic target of rapamycin against excess iron and ferroptosis in cardiomyocytes. Am J Physiol Heart Circ Physiol. 314:H659–H668. 2018.PubMed/NCBI View Article : Google Scholar | |
Murphy JM, Czabotar PE, Hildebrand JM, Lucet IS, Zhang JG, Alvarez-Diaz S, Lewis R, Lalaoui N, Metcalf D, Webb AI, et al: The pseudokinase MLKL mediates necroptosis via a molecular switch mechanism. Immunity. 39:443–453. 2013.PubMed/NCBI View Article : Google Scholar | |
Wu J, Huang Z, Ren J, Zhang Z, He P, Li Y, Ma J, Chen W, Zhang Y, Zhou X, et al: Mlkl knockout mice demonstrate the indispensable role of Mlkl in necroptosis. Cell Res. 23:994–1006. 2013.PubMed/NCBI View Article : Google Scholar | |
Sun L, Wang H, Wang Z, He S, Chen S, Liao D, Wang L, Yan J, Liu W, Lei X and Wang X: Mixed lineage kinase domain-like protein mediates necrosis signaling downstream of RIP3 kinase. Cell. 148:213–227. 2012.PubMed/NCBI View Article : Google Scholar | |
Li L, Tong A, Zhang Q, Wei Y and Wei X: The molecular mechanisms of MLKL-dependent and MLKL-independent necrosis. J Mol Cell Biol. 13:3–14. 2021.PubMed/NCBI View Article : Google Scholar | |
Wang L, Wang T, Li H, Liu Q, Zhang Z, Xie W, Feng Y, Socorburam T, Wu G, Xia Z and Wu Q: Receptor interacting protein 3-Mediated necroptosis promotes Lipopolysaccharide-Induced inflammation and acute respiratory distress syndrome in mice. PLoS One. 11(e155723)2016.PubMed/NCBI View Article : Google Scholar | |
Oberst A, Dillon CP, Weinlich R, McCormick LL, Fitzgerald P, Pop C, Hakem R, Salvesen GS and Green DR: Catalytic activity of the caspase-8-FLIP(L) complex inhibits RIPK3-dependent necrosis. Nature. 471:363–367. 2011.PubMed/NCBI View Article : Google Scholar | |
Dillon CP, Weinlich R, Rodriguez DA, Cripps JG, Quarato G, Gurung P, Verbist KC, Brewer TL, Llambi F, Gong YN, et al: RIPK1 blocks early postnatal lethality mediated by caspase-8 and RIPK3. Cell. 157:1189–1202. 2014.PubMed/NCBI View Article : Google Scholar | |
Dannappel M, Vlantis K, Kumari S, Polykratis A, Kim C, Wachsmuth L, Eftychi C, Lin J, Corona T, Hermance N, et al: RIPK1 maintains epithelial homeostasis by inhibiting apoptosis and necroptosis. Nature. 513:90–94. 2014.PubMed/NCBI View Article : Google Scholar | |
Zhang T, Zhang Y, Cui M, Jin L, Wang Y, Lv F, Liu Y, Zheng W, Shang H, Zhang J, et al: CaMKII is a RIP3 substrate mediating ischemia- and oxidative stress-induced myocardial necroptosis. Nat Med. 22:175–182. 2016.PubMed/NCBI View Article : Google Scholar | |
Bai J, Wang Q, Qi J, Yu H, Wang C, Wang X, Ren Y and Yang F: Promoting effect of baicalin on nitric oxide production in CMECs via activating the PI3K-AKT-eNOS pathway attenuates myocardial ischemia-reperfusion injury. Phytomedicine. 63(153035)2019.PubMed/NCBI View Article : Google Scholar | |
Zhou H, Li D, Zhu P, Ma Q, Toan S, Wang J, Hu S, Chen Y and Zhang Y: Inhibitory effect of melatonin on necroptosis via repressing the Ripk3-PGAM5-CypD-mPTP pathway attenuates cardiac microvascular ischemia-reperfusion injury. J Pineal Res. 65(e12503)2018.PubMed/NCBI View Article : Google Scholar | |
Yang J, Zhang F, Shi H, Gao Y, Dong Z, Ma L, Sun X, Li X, Chang S, Wang Z, et al: Neutrophil-derived advanced glycation end products-Nε-(carboxymethyl) lysine promotes RIP3-mediated myocardial necroptosis via RAGE and exacerbates myocardial ischemia/reperfusion injury. FASEB J. 33:14410–14422. 2019.PubMed/NCBI View Article : Google Scholar | |
Ying L, Benjanuwattra J, Chattipakorn SC and Chattipakorn N: The role of RIPK3-regulated cell death pathways and necroptosis in the pathogenesis of cardiac ischaemia-reperfusion injury. Acta Physiol (Oxf). 231(e13541)2021.PubMed/NCBI View Article : Google Scholar | |
Zhu P, Hu S, Jin Q, Li D, Tian F, Toan S, Li Y, Zhou H and Chen Y: Ripk3 promotes ER stress-induced necroptosis in cardiac IR injury: A mechanism involving calcium overload/XO/ROS/mPTP pathway. Redox Biol. 16:157–168. 2018.PubMed/NCBI View Article : Google Scholar | |
Yin W, Wang C, Peng Y, Yuan W, Zhang Z, Liu H, Xia Z, Ren C and Qian J: Dexmedetomidine alleviates H2O2-induced oxidative stress and cell necroptosis through activating of α2-adrenoceptor in H9C2 cells. Mol Biol Rep. 47:3629–3639. 2020.PubMed/NCBI View Article : Google Scholar | |
Liu X, Zhang D, Dong X, Zhu R, Ye Y, Li L and Jiang Y: Pharmacological activation of CB2 receptor protects against ethanol-induced myocardial injury related to RIP1/RIP3/MLKL-mediated necroptosis. Mol Cell Biochem. 474:1–14. 2020.PubMed/NCBI View Article : Google Scholar | |
Garcia-Dorado D, Rodríguez-Sinovas A, Ruiz-Meana M and Inserte J: Protection against myocardial ischemia-reperfusion injury in clinical practice. Rev Esp Cardiol (Engl Ed). 67:394–404. 2014.PubMed/NCBI View Article : Google Scholar | |
Tian Y, Li H, Liu P, Xu JM, Irwin MG, Xia Z and Tian G: Captopril pretreatment produces an additive cardioprotection to isoflurane preconditioning in attenuating myocardial ischemia reperfusion injury in rabbits and in humans. Mediators Inflamm. 2015(819232)2015.PubMed/NCBI View Article : Google Scholar | |
Huang Z, Zhong X, Irwin MG, Ji S, Wong GT, Liu Y, Xia ZY, Finegan BA and Xia Z: Synergy of isoflurane preconditioning and propofol postconditioning reduces myocardial reperfusion injury in patients. Clin Sci (Lond). 121:57–69. 2011.PubMed/NCBI View Article : Google Scholar | |
Xia Z, Gu J, Ansley DM, Xia F and Yu J: Antioxidant therapy with Salvia miltiorrhiza decreases plasma endothelin-1 and thromboxane B2 after cardiopulmonary bypass in patients with congenital heart disease. J Thorac Cardiovasc Surg. 126:1404–1410. 2003.PubMed/NCBI View Article : Google Scholar | |
Heusch G: Molecular basis of cardioprotection: Signal transduction in ischemic pre-, post-, and remote conditioning. Circ Res. 116:674–699. 2015.PubMed/NCBI View Article : Google Scholar |