MicroRNAs: Novel players in the diagnosis and treatment of cancer cachexia (Review)
- Authors:
- Xin Li
- Lidong Du
- Qiang Liu
- Zhong Lu
-
Affiliations: Department of Oncology, Affiliated Hospital of Weifang Medical College, Weifang, Shandong 261000, P.R. China, Graduate School, Weifang Medical College, Weifang, Shandong 261000, P.R. China - Published online on: May 16, 2022 https://doi.org/10.3892/etm.2022.11373
- Article Number: 446
-
Copyright: © Li et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Evans WJ, Morley JE, Argilés J, Bales C, Baracos V, Guttridge D, Jatoi A, Kalantar-Zadeh K, Lochs H, Mantovani G, et al: Cachexia: A new definition. Clin Nutr. 27:793–799. 2008.PubMed/NCBI View Article : Google Scholar | |
Holecek M: Muscle wasting in animal models of severe illness. Int J Exp Pathol. 93:157–171. 2012.PubMed/NCBI View Article : Google Scholar | |
Argilés JM, Busquets S, Stemmler B and López-Soriano FJ: Cancer cachexia: Understanding the molecular basis. Nat Rev Cancer. 14:754–762. 2014.PubMed/NCBI View Article : Google Scholar | |
Nixon DW, Heymsfield SB, Cohen AE, Kutner MH, Ansley J, Lawson DH and Rudman D: Protein-calorie undernutrition in hospitalized cancer patients. Am J Med. 68:683–690. 1980.PubMed/NCBI View Article : Google Scholar | |
Fearon KC, Glass DJ and Guttridge DC: Cancer cachexia: Mediators, signaling, and metabolic pathways. Cell Metab. 16:153–166. 2012.PubMed/NCBI View Article : Google Scholar | |
Narasimhan A, Ghosh S, Stretch C, Greiner R, Bathe OF, Baracos V and Damaraju S: Small RNAome profiling from human skeletal muscle: Novel miRNAs and their targets associated with cancer cachexia. J Cachexia Sarcopenia Muscle. 8:405–416. 2017.PubMed/NCBI View Article : Google Scholar | |
Anker MS, Holcomb R, Muscaritoli M, von Haehling S, Haverkamp W, Jatoi A, Morley JE, Strasser F, Landmesser U, Coats AJS and Anker SD: Orphan disease status of cancer cachexia in the USA and in the European Union: A systematic review. J Cachexia Sarcopenia Muscle. 10:22–34. 2019.PubMed/NCBI View Article : Google Scholar | |
Caillet P, Liuu E, Raynaud Simon A, Bonnefoy M, Guerin O, Berrut G, Lesourd B, Jeandel C, Ferry M, Rolland Y and Paillaud E: Association between cachexia, chemotherapy and outcomes in older cancer patients: A systematic review. Clin Nutr. 36:1473–1482. 2017.PubMed/NCBI View Article : Google Scholar | |
Fearon K, Strasser F, Anker SD, Bosaeus I, Bruera E, Fainsinger RL, Jatoi A, Loprinzi C, MacDonald N, Mantovani G, et al: Definition and classification of cancer cachexia: An international consensus. Lancet Oncol. 12:489–495. 2011.PubMed/NCBI View Article : Google Scholar | |
Thoresen L, Frykholm G, Lydersen S, Ulveland H, Baracos V, Prado CM, Birdsell L and Falkmer U: Nutritional status, cachexia and survival in patients with advanced colorectal carcinoma. Different assessment criteria for nutritional status provide unequal results. Clin Nutr. 32:65–72. 2013.PubMed/NCBI View Article : Google Scholar | |
Vander Heiden MG, Cantley LC and Thompson CB: Understanding the Warburg effect: The metabolic requirements of cell proliferation. Science. 324:1029–1033. 2009.PubMed/NCBI View Article : Google Scholar | |
Phypers B and Pierce JT: Lactate physiology in health and disease. CEACCP. 6:128–132. 2001. | |
Der-Torossian H, Gourin CG and Couch ME: Translational implications of novel findings in cancer cachexia: The use of metabolomics and the potential of cardiac malfunction. Curr Opin Support Palliat Care. 6:446–450. 2012.PubMed/NCBI View Article : Google Scholar | |
Muscaritoli M, Anker SD, Argilés J, Aversa Z, Bauer JM, Biolo G, Boirie Y, Bosaeus I, Cederholm T, Costelli P, et al: Consensus definition of sarcopenia, cachexia and pre-cachexia: Joint document elaborated by Special Interest Groups (SIG) ‘cachexia-anorexia in chronic wasting diseases’ and ‘nutrition in geriatrics’. Clin Nutr. 29:154–159. 2010.PubMed/NCBI View Article : Google Scholar | |
Freire PP, Fernandez GJ, Cury SS, de Moraes D, Oliveira JS, de Oliveira G, Dal-Pai-Silva M, Dos Reis PP and Carvalho RF: The pathway to cancer cachexia: MicroRNA-Regulated networks in muscle wasting based on integrative meta-analysis. Int J Mol Sci. 20(1962)2019.PubMed/NCBI View Article : Google Scholar | |
Schmidt SF, Rohm M, Herzig S and Berriel Diaz M: Cancer cachexia: More than skeletal muscle wasting. Trends Cancer. 4:849–860. 2018.PubMed/NCBI View Article : Google Scholar | |
Argilés JM, Anguera A and Stemmler B: A new look at an old drug for the treatment of cancer cachexia: Megestrol acetate. Clin Nutr. 32:319–324. 2013.PubMed/NCBI View Article : Google Scholar | |
He WA, Calore F, Londhe P, Canella A, Guttridge DC and Croce CM: Microvesicles containing miRNAs promote muscle cell death in cancer cachexia via TLR7. Proc Natl Acad Sci USA. 111:4525–4529. 2014.PubMed/NCBI View Article : Google Scholar | |
Wang YW, Ma X, Zhang YA, Wang MJ, Yatabe Y, Lam S, Girard L, Chen JY and Gazdar AF: ITPKA gene body methylation regulates gene expression and serves as an early diagnostic marker in lung and other cancers. J Thorac Oncol. 11:1469–1481. 2016.PubMed/NCBI View Article : Google Scholar | |
Lee DE, Brown JL, Rosa-Caldwell ME, Blackwell TA, Perry RA Jr, Brown LA, Khatri B, Seo D, Bottje WG, Washington TA, et al: Cancer cachexia-induced muscle atrophy: Evidence for alterations in microRNAs important for muscle size. Physiol Genomics. 49:253–260. 2017.PubMed/NCBI View Article : Google Scholar | |
Camargo RG, Quintas Teixeira Ribeiro H, Geraldo MV, Matos-Neto E, Neves RX, Carnevali LC Jr, Donatto FF, Alcântara PS, Ottoch JP and Seelaender M: Cancer cachexia and MicroRNAs. Mediators Inflamm. 2015(367561)2015.PubMed/NCBI View Article : Google Scholar | |
Li X, Wang S, Zhu R, Li H, Han Q and Zhao RC: Lung tumor exosomes induce a pro-inflammatory phenotype in mesenchymal stem cells via NFκB-TLR signaling pathway. J Hematol Oncol. 9(42)2016.PubMed/NCBI View Article : Google Scholar | |
Ha M and Kim VN: Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol. 15:509–524. 2014.PubMed/NCBI View Article : Google Scholar | |
Lee RC, Feinbaum RL and Ambros V: The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 75:843–854. 1993.PubMed/NCBI View Article : Google Scholar | |
Stegeman S, Amankwah E, Klein K, O'Mara TA, Kim D, Lin HY, Permuth-Wey J, Sellers TA, Srinivasan S, Eeles R, et al: A Large-scale analysis of genetic variants within putative miRNA binding sites in prostate cancer. Cancer Discov. 5:368–379. 2015.PubMed/NCBI View Article : Google Scholar | |
Lee Y, Kim M, Han J, Yeom KH, Lee S, Baek SH and Kim VN: MicroRNA genes are transcribed by RNA polymerase II. EMBO J. 23:4051–4060. 2004.PubMed/NCBI View Article : Google Scholar | |
Denli AM, Tops BB, Plasterk RH, Ketting RF and Hannon GJ: Processing of primary microRNAs by the Microprocessor complex. Nature. 432:231–235. 2004.PubMed/NCBI View Article : Google Scholar | |
Wilson RC, Tambe A, Kidwell MA, Noland CL, Schneider CP and Doudna JA: Dicer-TRBP complex formation ensures accurate mammalian microRNA biogenesis. Mol Cell. 57:397–407. 2015.PubMed/NCBI View Article : Google Scholar | |
Gregory RI, Chendrimada TP, Cooch N and Shiekhattar R: Human RISC couples microRNA biogenesis and posttranscriptional gene silencing. Cell. 123:631–640. 2005.PubMed/NCBI View Article : Google Scholar | |
Thomson DW, Bracken CP and Goodall GJ: Experimental strategies for microRNA target identification. Nucleic Acids Res. 39:6845–6853. 2011.PubMed/NCBI View Article : Google Scholar | |
Eisenberg I, Eran A, Nishino I, Moggio M, Lamperti C, Amato AA, Lidov HG, Kang PB, North KN, Mitrani-Rosenbaum S, et al: Distinctive patterns of microRNA expression in primary muscular disorders. Proc Natl Acad Sci USA. 104:17016–17021. 2007.PubMed/NCBI View Article : Google Scholar | |
Soares RJ, Cagnin S, Chemello F, Silvestrin M, Musaro A, De Pitta C, Lanfranchi G and Sandri M: Involvement of microRNAs in the regulation of muscle wasting during catabolic conditions. J Biol Chem. 289:21909–21925. 2014.PubMed/NCBI View Article : Google Scholar | |
Poy MN, Eliasson L, Krutzfeldt J, Kuwajima S, Ma X, Macdonald PE, Pfeffer S, Tuschl T, Rajewsky N, Rorsman P and Stoffel M: A pancreatic islet-specific microRNA regulates insulin secretion. Nature. 432:226–230. 2004.PubMed/NCBI View Article : Google Scholar | |
Zhou X, Hu S, Zhang Y, Du G and Li Y: The mechanism by which noncoding RNAs regulate muscle wasting in cancer cachexia. Precision Clin Med. 4:136–147. 2021. | |
Marceca GP, Nigita G, Calore F and Croce CM: MicroRNAs in skeletal muscle and hints on their potential role in muscle wasting during cancer cachexia. Front Oncol. 10(607196)2020.PubMed/NCBI View Article : Google Scholar | |
Kim DH: Nutritional issues in patients with cancer. Intest Res. 17:455–462. 2019.PubMed/NCBI View Article : Google Scholar | |
Zhu X, Burfeind KG, Michaelis KA, Braun TP, Olson B, Pelz KR, Morgan TK and Marks DL: MyD88 signalling is critical in the development of pancreatic cancer cachexia. J Cachexia Sarcopenia Muscle. 10:378–390. 2019.PubMed/NCBI View Article : Google Scholar | |
Du L, Dong F, Guo L, Hou Y, Yi F, Liu J and Xu D: Interleukin-1β increases permeability and upregulates the expression of vascular endothelial-cadherin in human renal glomerular endothelial cells. Mol Med Rep. 11:3708–3714. 2015.PubMed/NCBI View Article : Google Scholar | |
Lobb RJ, Lima LG and Möller A: Exosomes: Key mediators of metastasis and pre-metastatic niche formation. Semin Cell Dev Biol. 67:3–10. 2017.PubMed/NCBI View Article : Google Scholar | |
Tomasetti M, Lee W, Santarelli L and Neuzil J: Exosome-derived microRNAs in cancer metabolism: Possible implications in cancer diagnostics and therapy. Exp Mol Med. 49(e285)2017.PubMed/NCBI View Article : Google Scholar | |
Cordonnier M, Chanteloup G, Isambert N, Seigneuric R, Fumoleau P, Garrido C and Gobbo J: Exosomes in cancer theranostic: Diamonds in the rough. Cell Adh Migr. 11:151–163. 2017.PubMed/NCBI View Article : Google Scholar | |
Song W, Yan D, Wei T, Liu Q, Zhou X and Liu J: Tumor-derived extracellular vesicles in angiogenesis. Biomed Pharmacother. 102:1203–1208. 2018.PubMed/NCBI View Article : Google Scholar | |
Bilir C, Engin H, Can M, Temi YB and Demirtas D: The prognostic role of inflammation and hormones in patients with metastatic cancer with cachexia. Med Oncol. 32(56)2015.PubMed/NCBI View Article : Google Scholar | |
Batista ML Jr, Olivan M, Alcantara PS, Sandoval R, Peres SB, Neves RX, Silverio R, Maximiano LF, Otoch JP and Seelaender M: Adipose tissue-derived factors as potential biomarkers in cachectic cancer patients. Cytokine. 61:532–539. 2013.PubMed/NCBI View Article : Google Scholar | |
Nie M, Deng ZL, Liu J and Wang DZ: Noncoding RNAs, emerging regulators of skeletal muscle development and diseases. Biomed Res Int. 2015(676575)2015.PubMed/NCBI View Article : Google Scholar | |
Zhang Y, Yu M and Tian W: Physiological and pathological impact of exosomes of adipose tissue. Cell Prolif. 49:3–13. 2016.PubMed/NCBI View Article : Google Scholar | |
Lazar I, Clement E, Dauvillier S, Milhas D, Ducoux-Petit M, LeGonidec S, Moro C, Soldan V, Dalle S, Balor S, et al: Adipocyte exosomes promote melanoma aggressiveness through fatty acid oxidation: A novel mechanism linking obesity and cancer. Cancer Res. 76:4051–4057. 2016.PubMed/NCBI View Article : Google Scholar | |
Falzone L, Grimaldi M, Celentano E, Augustin LSA and Libra M: Identification of modulated MicroRNAs associated with breast cancer, diet, and physical activity. Cancers (Basel). 12(2555)2020.PubMed/NCBI View Article : Google Scholar | |
Fonseca A, Ramalhete SV, Mestre A, Pires das Neves R, Marreiros A, Castelo-Branco P and Roberto VP: Identification of colorectal cancer associated biomarkers: An integrated analysis of miRNA expression. Aging (Albany NY). 13:21991–22029. 2021.PubMed/NCBI View Article : Google Scholar | |
Falzone L, Lupo G, La Rosa GRM, Crimi S, Anfuso CD, Salemi R, Rapisarda E, Libra M and Candido S: Identification of novel MicroRNAs and their diagnostic and prognostic significance in oral cancer. Cancers (Basel). 11(610)2019.PubMed/NCBI View Article : Google Scholar | |
Ren ZP, Hou XB, Tian XD, Guo JT, Zhang LB, Xue ZQ, Deng JQ, Zhang SW, Pan JY and Chu XY: Identification of nine microRNAs as potential biomarkers for lung adenocarcinoma. FEBS Open Bio. 9:315–327. 2019.PubMed/NCBI View Article : Google Scholar | |
Kwon YJ, Cho YE, Cho AR, Choi WJ, Yun S, Park H, Kim HS, Cashion AK, Gill J, Lee H and Lee JW: The possible influence of mediterranean diet on extracellular vesicle miRNA expression in breast cancer survivors. Cancers (Basel). 12(1355)2020.PubMed/NCBI View Article : Google Scholar | |
Giambò F, Leone GM, Gattuso G, Rizzo R, Cosentino A, Cinà D, Teodoro M, Costa C, Tsatsakis A, Fenga C and Falzone L: Genetic and epigenetic alterations induced by pesticide exposure: Integrated analysis of gene expression, microRNA Expression, and DNA methylation datasets. Int J Environ Res Public Health. 18(8697)2021.PubMed/NCBI View Article : Google Scholar | |
Filetti V, Falzone L, Rapisarda V, Caltabiano R, Eleonora Graziano AC, Ledda C and Loreto C: Modulation of microRNA expression levels after naturally occurring asbestiform fibers exposure as a diagnostic biomarker of mesothelial neoplastic transformation. Ecotoxicol Environ Saf. 198(110640)2020.PubMed/NCBI View Article : Google Scholar | |
Kemik O, Sumer A, Kemik AS, Hasirci I, Purisa S, Dulger AC, Demiriz B and Tuzun S: The relationship among acute-phase response proteins, cytokines and hormones in cachectic patients with colon cancer. World J Surg Oncol. 8(85)2010.PubMed/NCBI View Article : Google Scholar | |
Guo L, Dong F, Hou Y, Cai W, Zhou X, Huang AL, Yang M, Allen TD and Liu J: Dihydroartemisinin inhibits vascular endothelial growth factor-induced endothelial cell migration by a p38 mitogen-activated protein kinase-independent pathway. Exp Ther Med. 8:1707–1712. 2014.PubMed/NCBI View Article : Google Scholar | |
Wei T, Jia J, Wada Y, Kapron CM and Liu J: Dose dependent effects of cadmium on tumor angiogenesis. Oncotarget. 8:44944–44959. 2017.PubMed/NCBI View Article : Google Scholar | |
Gao P, Wang LL, Liu J, Dong F, Song W, Liao L, Wang B, Zhang W, Zhou X, Xie Q, et al: Dihydroartemisinin inhibits endothelial cell tube formation by suppression of the STAT3 signaling pathway. Life Sci. 242(117221)2020.PubMed/NCBI View Article : Google Scholar | |
Liu J, Ren Y, Hou Y, Zhang C, Wang B, Li X, Sun R and Liu J: Dihydroartemisinin induces endothelial cell autophagy through suppression of the Akt/mTOR Pathway. J Cancer. 10:6057–6064. 2019.PubMed/NCBI View Article : Google Scholar | |
Xie Q, Cheng Z, Chen X, Lobe CG and Liu J: The role of Notch signalling in ovarian angiogenesis. J Ovarian Res. 10(13)2017.PubMed/NCBI View Article : Google Scholar | |
Kim KJ, Li B, Winer J, Armanini M, Gillett N, Phillips HS and Ferrara N: Inhibition of vascular endothelial growth factor-induced angiogenesis suppresses tumour growth in vivo. Nature. 362:841–844. 1993.PubMed/NCBI View Article : Google Scholar | |
Liu J, Li Y, Dong F, Li L, Masuda T, Allen TD and Lobe CG: Trichostatin A suppresses lung adenocarcinoma development in Grg1 overexpressing transgenic mice. Biochem Biophys Res Commun. 463:1230–1236. 2015.PubMed/NCBI View Article : Google Scholar | |
Muralidharan-Chari V, Clancy J, Plou C, Romao M, Chavrier P, Raposo G and D'Souza-Schorey C: ARF6-regulated shedding of tumor cell-derived plasma membrane microvesicles. Curr Biol. 19:1875–1885. 2009.PubMed/NCBI View Article : Google Scholar | |
Sabry D, El-Deek SEM, Maher M, El-Baz MAH, El-Bader HM, Amer E, Hassan EA, Fathy W and El-Deek HEM: Role of miRNA-210, miRNA-21 and miRNA-126 as diagnostic biomarkers in colorectal carcinoma: Impact of HIF-1α-VEGF signaling pathway. Mol Cell Biochem. 454:177–189. 2019.PubMed/NCBI View Article : Google Scholar | |
Cheng J, Chen Y, Zhao P, Liu X, Dong J, Li J, Huang C, Wu R and Lv Y: Downregulation of miRNA-638 promotes angiogenesis and growth of hepatocellular carcinoma by targeting VEGF. Oncotarget. 7:30702–30711. 2016.PubMed/NCBI View Article : Google Scholar | |
Yamada N, Tsujimura N, Kumazaki M, Shinohara H, Taniguchi K, Nakagawa Y, Naoe T and Akao Y: Colorectal cancer cell-derived microvesicles containing microRNA-1246 promote angiogenesis by activating Smad 1/5/8 signaling elicited by PML down-regulation in endothelial cells. Biochim Biophys Acta. 1839:1256–1272. 2014.PubMed/NCBI View Article : Google Scholar | |
Tisdale MJ: Cancer cachexia. Curr Opin Gastroenterol. 26:146–151. 2010.PubMed/NCBI View Article : Google Scholar | |
Bilodeau PA, Coyne ES and Wing SS: The ubiquitin proteasome system in atrophying skeletal muscle: Roles and regulation. Am J Physiol Cell Physiol. 311:C392–C403. 2016.PubMed/NCBI View Article : Google Scholar | |
Reed SA, Sandesara PB, Senf SM and Judge AR: Inhibition of FoxO transcriptional activity prevents muscle fiber atrophy during cachexia and induces hypertrophy. FASEB J. 26:987–1000. 2012.PubMed/NCBI View Article : Google Scholar | |
Xu J, Li R, Workeneh B, Dong Y, Wang X and Hu Z: Transcription factor FoxO1, the dominant mediator of muscle wasting in chronic kidney disease, is inhibited by microRNA-486. Kidney Int. 82:401–411. 2012.PubMed/NCBI View Article : Google Scholar | |
Suzuki T and Springer J: MicroRNAs in muscle wasting. J Cachexia Sarcopenia Muscle. 9:1209–1212. 2018.PubMed/NCBI View Article : Google Scholar | |
Sutandyo N: The role of microRNA in cancer cachexia and muscle wasting: A review article. Caspian J Intern Med. 12:124–128. 2021.PubMed/NCBI View Article : Google Scholar | |
Brzeszczyńska J, Brzeszczyński F, Hamilton DF, McGregor R and Simpson AHRW: Role of microRNA in muscle regeneration and diseases related to muscle dysfunction in atrophy, cachexia, osteoporosis, and osteoarthritis. Bone Joint Res. 9:798–807. 2020.PubMed/NCBI View Article : Google Scholar | |
Zhou L, Zhang T, Shao W, Lu R, Wang L, Liu H, Jiang B, Li S, Zhuo H, Wang S, et al: Amiloride ameliorates muscle wasting in cancer cachexia through inhibiting tumor-derived exosome release. Skeletal muscle. 11(17)2021.PubMed/NCBI View Article : Google Scholar | |
van de Worp WRPH, Schols AMWJ, Schols AMWJ, Dingemans AC, Op den Kamp CMH, Degens JHRJ, Kelders MCJM, Coort S, Woodruff HC, Kratassiouk G, et al: Identification of microRNAs in skeletal muscle associated with lung cancer cachexia. J Cachexia Sarcopenia Muscle. 11:452–463. 2020.PubMed/NCBI View Article : Google Scholar | |
Fernandez GJ, Ferreira JH, Vechetti IJ Jr, de Moraes LN, Cury SS, Freire PP, Gutiérrez J, Ferretti R, Dal-Pai-Silva M, Rogatto SR and Carvalho RF: MicroRNA-mRNA Co-sequencing identifies transcriptional and post-transcriptional regulatory networks underlying muscle wasting in cancer cachexia. Front Genet. 11(541)2020.PubMed/NCBI View Article : Google Scholar | |
Daas SI, Rizeq BR and Nasrallah GK: Adipose tissue dysfunction in cancer cachexia. J Cell Physiol. 234:13–22. 2018.PubMed/NCBI View Article : Google Scholar | |
Petruzzelli M, Schweiger M, Schreiber R, Campos-Olivas R, Tsoli M, Allen J, Swarbrick M, Rose-John S, Rincon M, Robertson G, et al: A switch from white to brown fat increases energy expenditure in cancer-associated cachexia. Cell Metab. 20:433–447. 2014.PubMed/NCBI View Article : Google Scholar | |
Neves RX, Rosa-Neto JC, Yamashita AS, Matos-Neto EM, Riccardi DM, Lira FS, Batista ML Jr and Seelaender M: White adipose tissue cells and the progression of cachexia: Inflammatory pathways. J Cachexia Sarcopenia Muscle. 7:193–203. 2016.PubMed/NCBI View Article : Google Scholar | |
Camargo RG, Riccardi DM, Ribeiro HQ, Carnevali LC Jr, de Matos-Neto EM, Enjiu L, Neves RX, Lima JD, Figuerêdo RG, de Alcântara PS, et al: NF-κBp65 and expression of its pro-inflammatory target genes are upregulated in the subcutaneous adipose tissue of cachectic cancer patients. Nutrients. 7:4465–4479. 2015.PubMed/NCBI View Article : Google Scholar | |
Aswad H, Forterre A, Wiklander OP, Vial G, Danty-Berger E, Jalabert A, Lamazière A, Meugnier E, Pesenti S, Ott C, et al: Exosomes participate in the alteration of muscle homeostasis during lipid-induced insulin resistance in mice. Diabetologia. 57:2155–2164. 2014.PubMed/NCBI View Article : Google Scholar | |
Kulyté A, Lorente-Cebrián S, Gao H, Mejhert N, Agustsson T, Arner P, Rydén M and Dahlman I: MicroRNA profiling links miR-378 to enhanced adipocyte lipolysis in human cancer cachexia. Am J Physiol Endocrinol Metab. 306:E267–E274. 2014.PubMed/NCBI View Article : Google Scholar | |
Chen X, Ba Y, Ma L, Cai X, Yin Y, Wang K, Guo J, Zhang Y, Chen J, Guo X, et al: Characterization of microRNAs in serum: A novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res. 18:997–1006. 2008.PubMed/NCBI View Article : Google Scholar | |
Donzelli S, Farneti A, Marucci L, Ganci F, Sacconi A, Strano S, Sanguineti G and Blandino G: Non-coding RNAs as putative biomarkers of cancer-associated cachexia. Front Cell Dev Biol. 8(257)2020.PubMed/NCBI View Article : Google Scholar | |
Hamaguchi Y, Kaido T, Okumura S, Kobayashi A, Hammad A, Tamai Y, Inagaki N and Uemoto S: Proposal for new diagnostic criteria for low skeletal muscle mass based on computed tomography imaging in Asian adults. Nutrition. 32:1200–1205. 2016.PubMed/NCBI View Article : Google Scholar | |
Kaido T: Selection criteria and current issues in liver transplantation for hepatocellular carcinoma. Liver Cancer. 5:121–127. 2016.PubMed/NCBI View Article : Google Scholar | |
Okugawa Y, Toiyama Y, Hur K, Yamamoto A, Yin C, Ide S, Kitajima T, Fujikawa H, Yasuda H, Koike Y, et al: Circulating miR-203 derived from metastatic tissues promotes myopenia in colorectal cancer patients. J Cachexia Sarcopenia Muscle. 10:536–548. 2019.PubMed/NCBI View Article : Google Scholar | |
Okugawa Y, Yao L, Toiyama Y, Yamamoto A, Shigemori T, Yin C, Omura Y, Ide S, Kitajima T, Shimura T, et al: Prognostic impact of sarcopenia and its correlation with circulating miR-21 in colorectal cancer patients. Oncol Rep. 39:1555–1564. 2018.PubMed/NCBI View Article : Google Scholar | |
Wang H and Wang B: Extracellular vesicle microRNAs mediate skeletal muscle myogenesis and disease. Biomed Rep. 5:296–300. 2016.PubMed/NCBI View Article : Google Scholar | |
Wu Q, Sun S, Li Z, Yang Q, Li B, Zhu S, Wang L, Wu J, Yuan J, Yang C, et al: Tumour-originated exosomal miR-155 triggers cancer-associated cachexia to promote tumour progression. Mol Cancer. 17(155)2018.PubMed/NCBI View Article : Google Scholar | |
Chitti SV, Fonseka P and Mathivanan S: Emerging role of extracellular vesicles in mediating cancer cachexia. Biochem Soc Trans. 46:1129–1136. 2018.PubMed/NCBI View Article : Google Scholar | |
Du G, Zhang Y, Hu S, Zhou X and Li Y: Non-coding RNAs in exosomes and adipocytes cause fat loss during cancer cachexia. Noncoding RNA Res. 6:80–85. 2021.PubMed/NCBI View Article : Google Scholar | |
Li L, Liu H, Tao W, Wen S, Fu X and Yu S: Pharmacological inhibition of HMGB1 prevents muscle wasting. Front Pharmacol. 12(731386)2021.PubMed/NCBI View Article : Google Scholar | |
Wan Z, Chen X, Gao X, Dong Y, Zhao Y, Wei M, Fan W, Yang G and Liu L: Chronic myeloid leukemia-derived exosomes attenuate adipogenesis of adipose derived mesenchymal stem cells via transporting miR-92a-3p. J Cell Physiol. 234:21274–21283. 2019.PubMed/NCBI View Article : Google Scholar | |
Köberle V, Kronenberger B, Pleli T, Trojan J, Imelmann E, Peveling-Oberhag J, Welker MW, Elhendawy M, Zeuzem S, Piiper A and Waidmann O: Serum microRNA-1 and microRNA-122 are prognostic markers in patients with hepatocellular carcinoma. Eur J Cancer. 49:3442–3449. 2013.PubMed/NCBI View Article : Google Scholar | |
Powrózek T, Mlak R, Brzozowska A, Mazurek M, Gołębiowski P and Małecka-Massalska T: MiRNA-130a significantly improves accuracy of SGA Nutritional assessment tool in prediction of malnutrition and cachexia in radiotherapy-treated head and neck cancer patients. Cancers (Basel). 10(294)2018.PubMed/NCBI View Article : Google Scholar | |
Chen D, Goswami CP, Burnett RM, Anjanappa M, Bhat-Nakshatri P, Muller W and Nakshatri H: Cancer affects microRNA expression, release, and function in cardiac and skeletal muscle. Cancer Res. 74:4270–4281. 2014.PubMed/NCBI View Article : Google Scholar | |
Lin J, Li J, Huang B, Liu J, Chen X, Chen XM, Xu YM, Huang LF and Wang XZ: Exosomes: Novel biomarkers for clinical diagnosis. ScientificWorldJournal. 2015(657086)2015.PubMed/NCBI View Article : Google Scholar | |
Belli R, Ferraro E, Molfino A, Carletti R, Tambaro F, Costelli P and Muscaritoli M: Liquid biopsy for cancer cachexia: Focus on muscle-derived microRNAs. Int J Mol Sci. 22(9007)2021.PubMed/NCBI View Article : Google Scholar | |
Li BS, Zhao YL, Guo G, Li W, Zhu ED, Luo X, Mao XH, Zou QM, Yu PW, Zuo QF, et al: Plasma microRNAs, miR-223, miR-21 and miR-218, as novel potential biomarkers for gastric cancer detection. PLoS One. 7(e41629)2012.PubMed/NCBI View Article : Google Scholar | |
Schrauder MG, Strick R, Schulz-Wendtland R, Strissel PL, Kahmann L, Loehberg CR, Lux MP, Jud SM, Hartmann A, Hein A, et al: Circulating micro-RNAs as potential blood-based markers for early stage breast cancer detection. PLoS One. 7(e29770)2012.PubMed/NCBI View Article : Google Scholar | |
Wang J, Chen J, Chang P, LeBlanc A, Li D, Abbruzzesse JL, Frazier ML, Killary AM and Sen S: MicroRNAs in plasma of pancreatic ductal adenocarcinoma patients as novel blood-based biomarkers of disease. Cancer Prev Res (Phila). 2:807–813. 2009.PubMed/NCBI View Article : Google Scholar | |
Kottorou A, Dimitrakopoulos FI and Tsezou A: Non-coding RNAs in cancer-associated cachexia: Clinical implications and future perspectives. Transl Oncol. 14(101101)2021.PubMed/NCBI View Article : Google Scholar | |
Yao P, Potdar AA, Arif A, Ray PS, Mukhopadhyay R, Willard B, Xu Y, Yan J, Saidel GM and Fox PL: Coding region polyadenylation generates a truncated tRNA synthetase that counters translation repression. Cell. 149:88–100. 2012.PubMed/NCBI View Article : Google Scholar | |
Gao P, Niu N, Wei T, Tozawa H, Chen X, Zhang C, Zhang J, Wada Y, Kapron CM and Liu J: The roles of signal transducer and activator of transcription factor 3 in tumor angiogenesis. Oncotarget. 8:69139–69161. 2017.PubMed/NCBI View Article : Google Scholar | |
Margolis LM and Rivas DA: Potential Role of MicroRNA in the anabolic capacity of skeletal muscle with aging. Exerc Sport Sci Rev. 46:86–91. 2018.PubMed/NCBI View Article : Google Scholar | |
Hou B, Xu S, Xu Y, Gao Q, Zhang C, Liu L, Yang H, Jiang X and Che Y: Grb2 binds to PTEN and regulates its nuclear translocation to maintain the genomic stability in DNA damage response. Cell Death Dis. 10(546)2019.PubMed/NCBI View Article : Google Scholar | |
Carr RM, Enriquez-Hesles E, Olson RL, Jatoi A, Doles J and Fernandez-Zapico ME: Epigenetics of cancer-associated muscle catabolism. Epigenomics. 9:1259–1265. 2017.PubMed/NCBI View Article : Google Scholar | |
György B, Hung ME, Breakefield XO and Leonard JN: Therapeutic applications of extracellular vesicles: Clinical promise and open questions. Annu Rev Pharmacol Toxicol. 55:439–464. 2015.PubMed/NCBI View Article : Google Scholar | |
Kalra H, Drummen GP and Mathivanan S: Focus on extracellular vesicles: Introducing the next small big thing. Int J Mol Sci. 17(170)2016.PubMed/NCBI View Article : Google Scholar | |
Terasawa K, Shimizu K and Tsujimoto G: Synthetic Pre-miRNA-Based shRNA as Potent RNAi Triggers. J Nucleic Acids. 2011(131579)2011.PubMed/NCBI View Article : Google Scholar | |
Bonneau E, Neveu B, Kostantin E, Tsongalis GJ and De Guire V: How close are miRNAs from clinical practice? A perspective on the diagnostic and therapeutic market. EJIFCC. 30:114–127. 2019.PubMed/NCBI | |
van Zandwijk N, Pavlakis N, Kao SC, Linton A, Boyer MJ, Clarke S, Huynh Y, Chrzanowska A, Fulham MJ, Bailey DL, et al: Safety and activity of microRNA-loaded minicells in patients with recurrent malignant pleural mesothelioma: A first-in-man, phase 1, open-label, dose-escalation study. Lancet Oncol. 18:1386–1396. 2017.PubMed/NCBI View Article : Google Scholar | |
Ebner N, Anker SD and von Haehling S: Recent developments in the field of cachexia, sarcopenia, and muscle wasting: Highlights from the 12th cachexia conference. J Cachexia Sarcopenia Muscle. 11:274–285. 2020.PubMed/NCBI View Article : Google Scholar |