Phenotypic and genotypic detection methods for antimicrobial resistance in ESKAPE pathogens (Review)
- Authors:
- Mădălina Maria Muntean
- Andrei-Alexandru Muntean
- Mădălina Preda
- Loredana Sabina Cornelia Manolescu
- Cerasella Dragomirescu
- Mircea-Ioan Popa
- Gabriela Loredana Popa
-
Affiliations: Department of Microbiology, ‘Carol Davila’ University of Medicine and Pharmacy, 050474 Bucharest, Romania - Published online on: June 9, 2022 https://doi.org/10.3892/etm.2022.11435
- Article Number: 508
-
Copyright: © Muntean et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Reardon S: WHO warns against ‘post-antibiotic’ era. Nature, 2014. | |
Rice LB: Federal funding for the study of antimicrobial resistance in nosocomial pathogens: No ESKAPE. J Infect Dis. 197:1079–1081. 2008.PubMed/NCBI View Article : Google Scholar | |
van Duin D and Paterson DL: Multidrug-resistant bacteria in the community: Trends and lessons learned. Infect Dis Clin North Am. 30:377–390. 2016.PubMed/NCBI View Article : Google Scholar | |
Bengtsson B and Greko C: Antibiotic resistance-consequences for animal health, welfare, and food production. Ups J Med Sci. 119:96–102. 2014.PubMed/NCBI View Article : Google Scholar | |
Singer A, Shaw H, Rhodes V and Hart A: Review of antimicrobial resistance in the environment and its relevance to environmental regulators. Front Microbiol. 7(1728)2016.PubMed/NCBI View Article : Google Scholar | |
Agudelo Higuita NI, Huycke MM, Gilmore MS, Clewell DB, Ike Y and Shankar N: Enterococcal disease, epidemiology, and implications for treatment. In: Enterococci: From commensals to leading causes of drug resistant infection. Massachusetts Eye and Ear Infirmary, Boston, 2014. | |
Hollenbeck BL and Rice LB: Intrinsic and acquired resistance mechanisms in enterococcus. Virulence. 3:421–433. 2012.PubMed/NCBI View Article : Google Scholar | |
Coudron PE, Markowitz SM and Wong ES: Isolation of a beta-lactamase-producing, aminoglycoside-resistant strain of Enterococcus faecium. Antimicrob Agents Chemother. 36:1125–1126. 1992.PubMed/NCBI View Article : Google Scholar | |
Belhaj M, Boutiba-Ben Boubaker I and Slim A: Penicillin-binding protein 5 sequence alteration and levels of plp5 mRNA expression in clinical isolates of Enterococcus faecium with different levels of ampicillin resistance. Microb Drug Resist. 22:202–210. 2016.PubMed/NCBI View Article : Google Scholar | |
European Committee on Antimicrobial Susceptibility Testing: EUCAST expert rules version 3.1: Intrinsic resistance and exceptional phenotypes tables. https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Expert_Rules/Expert_rules_intrinsic_exceptional_V3.1.pdf. | |
Top J, Willems R and Bonten M: Emergence of CC17 Enterococcus faecium: From commensal to hospital-adapted pathogen. FEMS Immunol Med Microbiol. 52:297–308. 2008.PubMed/NCBI View Article : Google Scholar | |
Arthur M and Quintiliani R: Regulation of VanA- and VanB-type glycopeptide resistance in enterococci. Antimicrob Agents Chemother. 45:375–381. 2001.PubMed/NCBI View Article : Google Scholar | |
Rice LB, Lakticová V, Helfand MS and Hutton-Thomas R: In vitro antienterococcal activity explains associations between exposures to antimicrobial agents and risk of colonization by multiresistant enterococci. J Inbfect Dis. 190:2162–2166. 2004.PubMed/NCBI View Article : Google Scholar | |
Miller WR, Munita JM and Arias CA: Mechanisms of antibiotic resistance in enterococci. Expert Rev Anti Infect Ther. 12:1221–1236. 2014.PubMed/NCBI View Article : Google Scholar | |
Tong SYC, Davis JS, Eichenberger E, Holland TL and Fowler VG: Staphylococcus aureus infections: Epidemiology, pathophysiology, clinical manifestations, and management. Clin Microbiol Rev. 28:603–661. 2015.PubMed/NCBI View Article : Google Scholar | |
Siddiqui AH and Koirala J: Methicillin Resistant Staphylococcus Aureus. StatPearls Publishing, Treasure Island, FL, 2022. | |
McGuinness WA, Malachowa N and DeLeo FR: Vancomycin resistance in Staphylococcus aureus. Yale J Biol Med. 90:269–281. 2017.PubMed/NCBI | |
Lowy FD: Antimicrobial resistance: The example of Staphylococcus aureus. J Clin Invest. 111:1265–1273. 2003.PubMed/NCBI View Article : Google Scholar | |
LeClercq R, Courvalin P and Rice LB (eds): Antibiogram. American Society of Microbiology. Washington, DC, pp99-107, 2010. | |
Fuda CCS, Fisher JF and Mobashery S: Beta-lactam resistance in Staphylococcus aureus: The adaptive resistance of a plastic genome. Cell Mol Life Sci. 62:2617–2633. 2005.PubMed/NCBI View Article : Google Scholar | |
Baig S, Johannesen TB, Overballe-Petersen S, Larsen J, Larsen AR and Stegger M: Novel SCCmec type XIII (9A) identified in an ST152 methicillin-resistant Staphylococcus aureus. Infect Genet Evol. 61:74–76. 2018.PubMed/NCBI View Article : Google Scholar | |
Sianipar O, Asmara W, Dwiprahasto I and Budi M: Mortality risk of bloodstream infection caused by either Escherichia coli or Klebsiella pneumoniae producing extended-spectrum β-lactamase: A prospective cohort study. BMC Res Notes. 12(719)2019.PubMed/NCBI View Article : Google Scholar | |
Rottier WC, Deelen JWT, Caruana G, Buiting AGM, Dorigo-Zetsma JW, Kluytmans JAJW, van der Linden PD, Thijsen SFT, Vlaminckx BJM, Weersink AJL, et al: Attributable mortality of antibiotic resistance in gram-negative infections in the Netherlands: A parallel matched cohort study. Clin Microbiol Infect: Jul 19, 2021 (Epub ahead of print). | |
De Angelis G, Del Giacomo P, Posteraro B, Sanguinetti M and Tumbarello M: Molecular mechanisms, epidemiology, and clinical importance of β-lactam resistance in enterobacteriaceae. Int J Mol Sci. 21(5090)2020.PubMed/NCBI View Article : Google Scholar | |
Hall BG and Barlow M: Revised Ambler classification of {beta}-lactamases. J Antimicrob Chemother. 55:1050–1051. 2005.PubMed/NCBI View Article : Google Scholar | |
Bush K and Jacoby GA: Updated functional classification of beta-lactamases. Antimicrob Agents Chemother. 54:969–976. 2010.PubMed/NCBI View Article : Google Scholar | |
van Duin D and Doi Y: The global epidemiology of carbapenemase-producing Enterobacteriaceae. Virulence. 8:460–469. 2017.PubMed/NCBI View Article : Google Scholar | |
Bonomo RA, Burd EM, Conly J, Limbago BM, Poirel L, Segre JA and Westblade LF: Carbapenemase-producing organisms: A global scourge. Clin Infect Dis. 66:1290–1297. 2018.PubMed/NCBI View Article : Google Scholar | |
Shields RK, Chen L, Cheng S, Chavda KD, Press EG, Snyder A, Pandey R, Doi Y, Kreiswirth BN, Nguyenet MH, et al: Emergence of Ceftazidime-avibactam resistance due to plasmid-borne blaKPC-3 mutations during treatment of carbapenem-resistant Klebsiella pneumoniae infections. Antimicrob Agents Chemother. 61:e02097–16. 2017.PubMed/NCBI View Article : Google Scholar | |
Sun D, Rubio-Aparicio D, Nelson K, Dudley MN and Lomovskaya O: Meropenem-vaborbactam resistance selection, resistance prevention, and molecular mechanisms in mutants of KPC-Producing Klebsiella pneumoniae. Antimicrob Agents Chemother. 61:e01694–17. 2017.PubMed/NCBI View Article : Google Scholar | |
Osei Sekyere J, Govinden U, Bester LA and Essack SY: Colistin and tigecycline resistance in carbapenemase-producing Gram-negative bacteria: Emerging resistance mechanisms and detection methods. J Appl Microbiol. 121:601–617. 2016.PubMed/NCBI View Article : Google Scholar | |
Kim WY, Moon JY, Huh JW, Choi SH, Lim CM, Koh Y, Chong YP and Hong SB: Comparable efficacy of tigecycline versus colistin therapy for multidrug-resistant and extensively drug-resistant Acinetobacter baumannii pneumonia in Critically Ill patients. PLoS One. 11(e0150642)2016.PubMed/NCBI View Article : Google Scholar | |
Sato Y, Ubagai T, Tansho-Nagakawa S, Yoshino Y and Ono Y: Effects of colistin and tigecycline on multidrug-resistant Acinetobacter baumannii biofilms: Advantages and disadvantages of their combination. Sci Rep. 11(11700)2021.PubMed/NCBI View Article : Google Scholar | |
Petrosillo N, Taglietti F and Granata G: Treatment options for colistin resistant Klebsiella pneumoniae: Present and future. J Clin Med. 8(934)2019.PubMed/NCBI View Article : Google Scholar | |
Lupo A, Haenni M and Madec JY: Antimicrobial resistance in Acinetobacter spp. and Pseudomonas spp. Microbiol Spectr: 6, 2018. doi: 10.1128/microbiolspec.ARBA-0007-20172018. | |
Nguyen M and Joshi S: Carbapenem resistance in Acinetobacter baumannii, and their importance in hospital-acquired infections: A scientific review. J Appl Microbiol. 131:2715–2738. 2021.PubMed/NCBI View Article : Google Scholar | |
Yoon EJ and Jeong SH: Mobile carbapenemase genes in pseudomonas aeruginosa. Front Microbiol. 12(614058)2021.PubMed/NCBI View Article : Google Scholar | |
Tomás M, Doumith M, Warner M, Turton JF, Beceiro A, Bou G, Livermore DM and Woodford N: Efflux Pumps, OprD Porin, AmpC β-Lactamase, and Multiresistance in pseudomonas aeruginosa isolates from cystic fibrosis patients. Antimicrob Agents Chemother. 54:2219–2224. 2010.PubMed/NCBI View Article : Google Scholar | |
Zhu Yl, Mei Q, Hu Lf, Cheng J, Ye Y and Li JB: Vancomycin MICs of the resistant mutants of S. aureus ATCC43300 vary based on the susceptibility test methods used. J Antibiot. 65:307–310. 2012.PubMed/NCBI View Article : Google Scholar | |
Rybak MJ, Vidaillac C, Sader HS, Rhomberg PR, Salimnia H, Briski LE, Wanger A and Jones RN: Evaluation of vancomycin susceptibility testing for methicillin-resistant Staphylococcus aureus: Comparison of Etest and three automated testing methods. J Clin Microbiol. 51:2077–2081. 2013.PubMed/NCBI View Article : Google Scholar | |
Rogers LA, Strong K, Cork SC, McAllister TA, Liljebjelke K, Zaheer R and Checkley SL: The role of whole genome sequencing in the surveillance of antimicrobial resistant Enterococcus spp.: A scoping review. Front Public Health. 9(599285)2021.PubMed/NCBI View Article : Google Scholar | |
Leclercq R, Cantón R, Brown DFJ, Giske CG, Heisig P, MacGowan AP, Mouton JW, Nordmann P, Rodloff AC, Rossolini GM, et al: EUCAST expert rules in antimicrobial susceptibility testing. Clin Microbiol Infect. 19:141–160. 2013.PubMed/NCBI View Article : Google Scholar | |
The European Committee on Antimicrobial Susceptibility Testing: Breakpoint tables for interpretation of MICs and zone diameters. Version 10, 2020. https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Breakpoint_tables/v_10.0_Breakpoint_Tables.pdf. | |
Hegstad K, Giske CG, Haldorsen B, Matuschek E, Schønning K, Leegaard TM, Kahlmeter G and Sundsfjord A: NordicAST VRE Detection Study Group. Performance of the EUCAST disk diffusion method, the CLSI agar screen method, and the Vitek 2 automated antimicrobial susceptibility testing system for detection of clinical isolates of Enterococci with low- and medium-level VanB-type vancomycin resistance: A multicenter study. J Clin Microbiol. 52:1582–1589. 2014.PubMed/NCBI View Article : Google Scholar | |
Kohler P, Eshaghi A, Kim HC, Plevneshi A, Green K, Willey BM, McGeer A and Patel SN: Prevalence of vancomycin-variable Enterococcus faecium (VVE) among vanA-positive sterile site isolates and patient factors associated with VVE bacteremia. PLoS One. 13(e0193926)2018.PubMed/NCBI View Article : Google Scholar | |
Grabsch EA, Chua K, Xie S, Byrne J, Ballard SA, Ward PB and Grayson ML: Improved detection of vanB2-containing Enterococcus faecium with vancomycin susceptibility by Etest using oxgall supplementation. J Clin Microbiol. 46:1961–1964. 2008.PubMed/NCBI View Article : Google Scholar | |
Horner C, Mushtaq S and Livermore DM: BSAC Resistance Surveillance Standing Committee. Activity of ceftaroline versus ceftobiprole against staphylococci and pneumococci in the UK and Ireland: Analysis of BSAC surveillance data. J Antimicrob Chemother. 75:3239–3243. 2020.PubMed/NCBI View Article : Google Scholar | |
Sakoulas G, Gold HS, Venkataraman L, DeGirolami PC, Eliopoulos GM and Qian Q: Methicillin-resistant Staphylococcus aureus: Comparison of susceptibility testing methods and analysis of mecA-positive susceptible strains. J Clin Microbiol. 39:3946–3951. 2001.PubMed/NCBI View Article : Google Scholar | |
Limbago BM, Kallen AJ, Zhu W, Eggers P, McDougal LK and Albrecht VS: Report of the 13th vancomycin-resistant Staphylococcus aureus isolate from the United States. J Clin Microbiol. 52:998–1002. 2014.PubMed/NCBI View Article : Google Scholar | |
Shariati A, Dadashi M, Moghadam MT, van Belkum A, Yaslianifard S and Darban-Sarokhalil D: Global prevalence and distribution of vancomycin resistant, vancomycin intermediate and heterogeneously vancomycin intermediate Staphylococcus aureus clinical isolates: A systematic review and meta-analysis. Sci Rep. 10(12689)2020.PubMed/NCBI View Article : Google Scholar | |
Satola SW, Farley MM, Anderson KF and Patel JB: Comparison of detection methods for heteroresistant vancomycin-intermediate Staphylococcus aureus, with the population analysis profile method as the reference method. J Clin Microbiol. 49:177–183. 2011.PubMed/NCBI View Article : Google Scholar | |
Wootton M, Howe RA, Hillman R, Walsh TR, Bennett PM and MacGowan AP: A modified population analysis profile (PAP) method to detect hetero-resistance to vancomycin in Staphylococcus aureus in a UK hospital. J Antimicrob Chemother. 47:399–403. 2001.PubMed/NCBI View Article : Google Scholar | |
Jackson CR, Fedorka-Cray PJ and Barrett JB: Use of a genus- and species-specific multiplex PCR for identification of enterococci. J Clin Microbiol. 42:3558–3565. 2004.PubMed/NCBI View Article : Google Scholar | |
Holzknecht BJ, Hansen DS, Nielsen L, Kailow A and Jarløv JO: Screening for vancomycin-resistant enterococci with Xpert® vanA/vanB: Diagnostic accuracy and impact on infection control decision making. New Microbes New Infect. 16:54–59. 2017.PubMed/NCBI View Article : Google Scholar | |
Tyson GH, Sabo JL, Rice-Trujillo C, Hernandez J and McDermott PF: Whole-genome sequencing based characterization of antimicrobial resistance in Enterococcus. Pathog Dis. 76:2018.PubMed/NCBI View Article : Google Scholar : doi: 10.1093/femspd/fty018. | |
Paterson GK, Harrison EM and Holmes MA: The emergence of mecC methicillin-resistant Staphylococcus aureus. Trends Microbiol. 22:42–47. 2014.PubMed/NCBI View Article : Google Scholar | |
Périchon B and Courvalin P: VanA-type vancomycin-resistant Staphylococcus aureus. Antimicrob Agents Chemother. 53:4580–4587. 2009.PubMed/NCBI View Article : Google Scholar | |
Madigan T, Cunningham SA, Patel R, Greenwood-Quaintance KE, Barth JE, Sampathkumar P, Cole NC, Kohner PC, Colby CE, Asay GE, et al: Whole-genome sequencing for methicillin-resistant Staphylococcus aureus (MRSA) outbreak investigation in a neonatal intensive care unit. Infect Control Hosp Epidemiol. 39:1412–1418. 2018.PubMed/NCBI View Article : Google Scholar | |
Girlich D, Poirel L and Nordmann P: Do CTX-M-lactamases hydrolyse ertapenem? J Antimicrob Chemother. 62:1155–1156. 2008.PubMed/NCBI View Article : Google Scholar | |
Jacoby GA, Mills DM and Chow N: Role of beta-lactamases and porins in resistance to ertapenem and other beta-lactams in Klebsiella pneumoniae. Antimicrob Agents Chemother. 48:3203–3206. 2004.PubMed/NCBI View Article : Google Scholar | |
Lartigue MF, Poirel L, Poyart C, Réglier-Poupet H and Nordmann P: Ertapenem resistance of Escherichia coli. Emerging Infect Dis. 13:315–317. 2007.PubMed/NCBI View Article : Google Scholar | |
Guillon H, Tande D and Mammeri H: Emergence of ertapenem resistance in an Escherichia coli clinical isolate producing extended-spectrum beta-lactamase AmpC. Antimicrob Agents Chemother. 55:4443–4446. 2011.PubMed/NCBI View Article : Google Scholar | |
Thomson KS: Extended-spectrum-beta-lactamase, AmpC, and Carbapenemase issues. J Clin Microbiol. 48:1019–1025. 2010.PubMed/NCBI View Article : Google Scholar | |
Dortet L, Cuzon G, Plésiat P and Naas T: Prospective evaluation of an algorithm for the phenotypic screening of carbapenemase-producing Enterobacteriaceae. J Antimicrob Chemother. 71:135–140. 2016.PubMed/NCBI View Article : Google Scholar | |
Dortet L, Bernabeu S, Gonzalez C and Naas T: Evaluation of the carbapenem detection Set™ for the detection and characterization of carbapenemase-producing Enterobacteriaceae. Diagn Microbiol Infect Dis. 91:220–225. 2018.PubMed/NCBI View Article : Google Scholar | |
Dortet L, Bernabeu S, Gonzalez C and Naas T: Comparison of two phenotypic algorithms to detect carbapenemase-producing enterobacteriaceae. Antimicrob Agents Chemother. 61:e00796–17. 2017.PubMed/NCBI View Article : Google Scholar | |
Reuland EA, Hays JP, de Jongh DMC, Abdelrehim E, Willemsen I, Kluytmans JA, Savelkoul PH, Vandenbroucke-Grauls CM and al Naiemi N: Detection and occurrence of plasmid-mediated AmpC in highly resistant gram-negative rods. PLoS One. 9(e91396)2014.PubMed/NCBI View Article : Google Scholar | |
Lee K, Chong Y, Shin HB, Kim YA, Yong D and Yum JH: Modified Hodge and EDTA-disk synergy tests to screen metallo-beta-lactamase-producing strains of Pseudomonas and Acinetobacter species. Clin Microbiol Infect. 7:88–91. 2001.PubMed/NCBI View Article : Google Scholar | |
van Dijk K, Voets GM, Scharringa J, Voskuil S, Fluit AC, Rottier WC, Leverstein-Van Hall MA and Cohen Stuart JWT: A disc diffusion assay for detection of class A, B and OXA-48 carbapenemases in Enterobacteriaceae using phenyl boronic acid, dipicolinic acid and temocillin. Clin Microbiol Infect. 20:345–349. 2014.PubMed/NCBI View Article : Google Scholar | |
Pires J, Novais A and Peixe L: Blue-carba, an easy biochemical test for detection of diverse carbapenemase producers directly from bacterial cultures. J Clin Microbiol. 51:4281–4283. 2013.PubMed/NCBI View Article : Google Scholar | |
Kabir MH, Meunier D, Hopkins KL, Giske CG and Woodford N: A two-centre evaluation of RAPIDEC® CARBA NP for carbapenemase detection in Enterobacteriaceae, Pseudomomnas aeruginosa and Acinetobacter spp. J Antimicrob Chemother. 71:1213–1216. 2016.PubMed/NCBI View Article : Google Scholar | |
Bernabeu S, Dortet L and Naas T: Evaluation of the β-CARBATM test, a colorimetric test for the rapid detection of carbapenemase activity in Gram-negative bacilli. J Antimicrob Chemother. 72:1646–1658. 2017.PubMed/NCBI View Article : Google Scholar | |
Novais A, Brilhante M, Pires J and Peixe L: Evaluation of the recently launched rapid carb blue kit for detection of carbapenemase-producing gram-negative bacteria. J Clin Microbiol. 53:3105–3107. 2015.PubMed/NCBI View Article : Google Scholar | |
Gauthier L, Bonnin RA, Dortet L and Naas T: Retrospective and prospective evaluation of the Carbapenem inactivation method for the detection of carbapenemase-producing Enterobacteriaceae. PLoS One. 12(e0170769)2017.PubMed/NCBI View Article : Google Scholar | |
van der Zwaluw K, de Haan A, Pluister GN, Bootsma HJ, de Neeling AJ and Schouls LM: The carbapenem inactivation method (CIM), a simple and low-cost alternative for the Carba NP test to assess phenotypic carbapenemase activity in gram-negative rods. PLoS One. 10(e0123690)2015.PubMed/NCBI View Article : Google Scholar | |
Yamada K, Kashiwa M, Arai K, Nagano N and Saito R: Evaluation of the modified carbapenem inactivation method and sodium mercaptoacetate-combination method for the detection of metallo-β-lactamase production by carbapenemase-producing Enterobacteriaceae. J Microbiol Methods. 132:112–115. 2017.PubMed/NCBI View Article : Google Scholar | |
Muntean MM, Muntean AA, Gauthier L, Creton E, Cotellon G, Popa MI, Bonnin RA and Naas T: Evaluation of the rapid carbapenem inactivation method (rCIM): A phenotypic screening test for carbapenemase-producing Enterobacteriaceae. J Antimicrob Chemother. 73:900–908. 2018.PubMed/NCBI View Article : Google Scholar | |
Muntean AA, Poenaru A, Neagu A, Caracoti C, Muntean MM, Popa VT, Bogdan MA, Naas T and Popa MI: Use of the rapid carbapenem inactivation method (rCIM) with carbapenemase inhibitors: A proof of concept experiment. Rom Arch Microbiol Immunol. 77:50–57. 2018. | |
Baeza LL, Pfennigwerth N, Greissl C, Göttig S, Saleh A, Stelzer Y, Gatermann SG and Hamprecht A: Comparison of five methods for detection of carbapenemases in Enterobacterales with proposal of a new algorithm. Clin Microbiol Infect. 25:1286.e9–1286.e15. 2019.PubMed/NCBI View Article : Google Scholar | |
Oviaño M, Ramírez CL, Barbeyto LP and Bou G: Rapid direct detection of carbapenemase-producing Enterobacteriaceae in clinical urine samples by MALDI-TOF MS analysis. J Antimicrob Chemother. 72:1350–1354. 2017.PubMed/NCBI View Article : Google Scholar | |
Ghebremedhin B, Halstenbach A, Smiljanic M, Kaase M and Ahmad-Nejad P: MALDI-TOF MS based carbapenemase detection from culture isolates and from positive blood culture vials. Ann Clin Microbiol Antimicrob. 15(5)2016.PubMed/NCBI View Article : Google Scholar | |
Jayol A, Nordmann P, Lehours P, Poirel L and Dubois V: Comparison of methods for detection of plasmid-mediated and chromosomally encoded colistin resistance in Enterobacteriaceae. Clin Microbiol Infect. 24:175–179. 2018.PubMed/NCBI View Article : Google Scholar | |
Bardet L and Rolain JM: Development of new tools to detect colistin-resistance among enterobacteriaceae strains. Can J Infect Dis Med Microbiol. 2018(3095249)2018.PubMed/NCBI View Article : Google Scholar | |
Büdel T, Clément M, Bernasconi OJ, Principe L, Perreten V, Luzzaro F and Endimiani A: Evaluation of EDTA- and DPA-based Microdilution phenotypic tests for the detection of MCR-mediated colistin resistance in enterobacteriaceae. Microb Drug Resist. 25:494–500. 2019.PubMed/NCBI View Article : Google Scholar | |
Simner PJ, Bergman Y, Trejo M, Roberts AA, Marayan R, Tekle T, Campeau S, Kazmi AQ, Bell DT, Lewis S, et al: Two-site evaluation of the colistin broth disk elution test to determine colistin in vitro activity against Gram-negative Bacilli. J Clin Microbiol. 57:e01163–18. 2019.PubMed/NCBI View Article : Google Scholar | |
Nordmann P, Jayol A and Poirel L: Rapid detection of polymyxin resistance in enterobacteriaceae. Emerging Infect Dis. 22:1038–1043. 2016.PubMed/NCBI View Article : Google Scholar | |
Dortet L, Bonnin RA, Pennisi I, Gauthier L, Jousset AB, Dabos L, Furniss RCD, Mavridou DAI, Bogaerts P, Glupczynski Y, et al: Rapid detection and discrimination of chromosome- and MCR-plasmid-mediated resistance to polymyxins by MALDI-TOF MS in Escherichia coli: The MALDIxin test. J Antimicrob Chemother. 73:3359–3367. 2018.PubMed/NCBI View Article : Google Scholar | |
Volland H, Dortet L, Bernabeu S, Boutal H, Haenni M, Madec JY, Robin F, Beyrouthy R, Naas T and Simon S: Development and Multicentric validation of a lateral flow immunoassay for rapid detection of MCR-1-producing Enterobacteriaceae. J Clin Microbiol. 57:e01454–18. 2019.PubMed/NCBI View Article : Google Scholar | |
Tato M, Ruiz-Garbajosa P, Traczewski M, Dodgson A, McEwan A, Humphries R, Hindler J, Veltman J, Wang H and Cantón R: Multisite evaluation of Cepheid Xpert Carba-R assay for detection of carbapenemase-producing organisms in rectal swabs. J Clin Microbiol. 54:1814–1819. 2016.PubMed/NCBI View Article : Google Scholar | |
Dortet L, Fusaro M and Naas T: Improvement of the Xpert Carba-R Kit for the detection of carbapenemase-producing enterobacteriaceae. Antimicrob Agents Chemother. 60:3832–3837. 2016.PubMed/NCBI View Article : Google Scholar | |
Girlich D, Bernabeu S, Fortineau N, Dortet L and Naas T: Evaluation of the CRE and ESBL ELITe MGB® kits for the accurate detection of carbapenemase- or CTX-M-producing bacteria. Diagn Microbiol Infect Dis. 92:1–7. 2018.PubMed/NCBI View Article : Google Scholar | |
Girlich D, Bernabeu S, Grosperrin V, Langlois I, Begasse C, Arangia N, Creton E, Cotellon G, Sauvadet A, Dortet L and Naas T: Evaluation of the Amplidiag CarbaR + MCR Kit for accurate detection of carbapenemase-producing and colistin-resistant bacteria. J Clin Microbiol. 57:e01800–18. 2019.PubMed/NCBI View Article : Google Scholar | |
Zhang H, Hou M, Xu Y, Srinivas S, Huang M, Liu L and Feng Y: Action and mechanism of the colistin resistance enzyme MCR-4. Commun Biol. 2(36)2019.PubMed/NCBI View Article : Google Scholar | |
Wang X and Wang Y, Zhou Y, Li J, Yin W, Wang S, Zhang S, Shen J, Shen Z and Wang Y: Emergence of a novel mobile colistin resistance gene, mcr-8, in NDM-producing Klebsiella pneumoniae. Emerg Microbes Infect. 7(122)2018.PubMed/NCBI View Article : Google Scholar | |
Li J, Shi X, Yin W, Wang Y, Shen Z, Ding S and Wang S: A multiplex SYBR green real-time PCR assay for the detection of three colistin resistance genes from cultured bacteria, feces, and environment samples. Front Microbiol. 8(2078)2017.PubMed/NCBI View Article : Google Scholar | |
Imirzalioglu C, Falgenhauer L, Schmiedel J, Waezsada SE, Gwozdzinski K, Roschanski N, Roesler U, Kreienbrock L, Schiffmann AP, Irrgang A, et al: Evaluation of a loop-mediated isothermal amplification-based assay for the rapid detection of plasmid-encoded colistin resistance gene mcr-1 in enterobacteriaceae isolates. Antimicrob Agents Chemother. 61:e02326–16. 2017.PubMed/NCBI View Article : Google Scholar | |
Bernasconi OJ, Principe L, Tinguely R, Karczmarek A, Perreten V, Luzzaro F and Endimiani A: Evaluation of a new commercial microarray platform for the simultaneous detection of β-lactamase and mcr-1 and mcr-2 genes in enterobacteriaceae. J Clin Microbiol. 55:3138–3141. 2017.PubMed/NCBI View Article : Google Scholar | |
Chan WS, Au CH, Ho DN, Chan TL, Ma ESK and Tang BSF: Prospective study on human fecal carriage of Enterobacteriaceae possessing mcr-1 and mcr-2 genes in a regional hospital in Hong Kong. BMC Infect Dis. 18(81)2018.PubMed/NCBI View Article : Google Scholar | |
Simner PJ, Opene BNA, Chambers KK, Naumann ME, Carroll KC and Tamma PD: Carbapenemase detection among carbapenem-resistant glucose-nonfermenting gram-negative Bacilli. J Clin Microbiol. 55:2858–2864. 2017.PubMed/NCBI View Article : Google Scholar | |
Elsherif R, Ismail D, Elawady S, Jastaniah S, Al-Masaudi S, Harakeh S and Karrouf G: Boronic acid disk diffusion for the phenotypic detection of polymerase chain reaction-confirmed, carbapenem-resistant, gram-negative bacilli isolates. BMC Microbiol. 16(135)2016.PubMed/NCBI View Article : Google Scholar | |
Walsh TR, Bolmström A, Qwärnström A and Gales A: Evaluation of a new Etest for detecting metallo-beta-lactamases in routine clinical testing. J Clin Microbiol. 40:2755–2759. 2002.PubMed/NCBI View Article : Google Scholar | |
Lee K, Yong D, Yum JH, Bolmström A, Qwärnström A, Karlsson A and Chong Y: Evaluation of Etest MBL for detection of blaIMP-1 and blaVIM-2 allele-positive clinical isolates of Pseudomonas spp. and Acinetobacter spp. J Clin Microbiol. 43:942–944. 2005.PubMed/NCBI View Article : Google Scholar | |
Simner PJ, Johnson JK, Brasso WB, Anderson K, Lonsway DR, Pierce VM, Bobenchik AM, Lockett ZC, Charnot-Katsikas A, Westblade LF, et al: Multicenter evaluation of the modified carbapenem inactivation method and the Carba NP for detection of carbapenemase-producing pseudomomnas aeruginosa and Acinetobacter baumannii. J Clin Microbiol. 56:e01369–17. 2017.PubMed/NCBI View Article : Google Scholar | |
Aktaş E, Malkoçoğlu G, Otlu B, Çiçek AÇ, Külah C, Cömert F, Sandallı C, Gürsoy NC, Erdemir D and Bulut ME: Evaluation of the carbapenem inactivation method for detection of carbapenemase-producing gram-negative bacteria in comparison with the RAPIDEC CARBA NP. Microb Drug Resist. 23:457–461. 2017.PubMed/NCBI View Article : Google Scholar | |
Uechi K, Tada T, Shimada K, Kuwahara-Arai K, Arakaki M, Tome T, Nakasone I, Maeda S, Kirikae T and Fujita J: A modified carbapenem inactivation method, cimtris, for carbapenemase production in acinetobacter and pseudomonas species. J Clin Microbiol. 55:3405–3410. 2017.PubMed/NCBI View Article : Google Scholar | |
Bakour S, Garcia V, Loucif L, Brunel JM, Gharout-Sait A, Touati A and Rolain JM: Rapid identification of carbapenemase-producing Enterobacteriaceae, Pseudomomnas aeruginosa and Acinetobacter baumannii using a modified Carba NP test. New Microbes New Infect. 7:89–93. 2015.PubMed/NCBI View Article : Google Scholar | |
Literacka E, Herda M, Baraniak A, Żabicka D, Hryniewicz W, Skoczyńska A and Gniadkowski M: Evaluation of the Carba NP test for carbapenemase detection in Enterobacteriaceae, Pseudomonas spp. and Acinetobacter spp., and its practical use in the routine work of a national reference laboratory for susceptibility testing. Eur J Clin Microbiol Infect Dis. 36:2281–2287. 2017.PubMed/NCBI View Article : Google Scholar | |
Srisrattakarn A, Lulitanond A, Wilailuckana C, Charoensri N, Daduang J and Chanawong A: A novel GoldNano Carb test for rapid phenotypic detection of carbapenemases, particularly OXA type, in Enterobacteriaceae, Pseudomomnas aeruginosa and Acinetobacter spp. J Antimicrob Chemother. 72:2519–2527. 2017.PubMed/NCBI View Article : Google Scholar | |
Noël A, Huang TD, Berhin C, Hoebeke M, Bouchahrouf W, Yunus S, Bogaerts P and Glupczynski Y: Comparative evaluation of four phenotypic tests for detection of carbapenemase-producing gram-negative bacteria. J Clin Microbiol. 55:510–518. 2017.PubMed/NCBI View Article : Google Scholar | |
Workneh M, Yee R and Simner PJ: Phenotypic methods for detection of carbapenemase production in carbapenem-resistant organisms: What method should your laboratory choose? Clin Microbiol Newsl. 41:11–22. 2019. | |
Lescat M, Poirel L, Tinguely C and Nordmann P: A Resazurin reduction-based assay for rapid detection of Polymyxin Resistance in Acinetobacter baumannii and Pseudomomnas aeruginosa. J Clin Microbiol. 57:e01563–18. 2019.PubMed/NCBI View Article : Google Scholar | |
Ellington MJ, Ekelund O, Aarestrup FM, Canton R, Doumith M, Giske C, Grundman H, Hasman H, Holden MTG, Hopkins KL, et al: The role of whole genome sequencing in antimicrobial susceptibility testing of bacteria: Report from the EUCAST subcommittee. Clin Microbiol Infect. 23:2–22. 2017.PubMed/NCBI View Article : Google Scholar | |
Kos VN, Déraspe M, McLaughlin RE, Whiteaker JD, Roy PH, Alm RA, Corbeil J and Gardner H: The resistome of Pseudomomnas aeruginosa in relationship to phenotypic susceptibility. Antimicrob Agents Chemother. 59:427–436. 2015.PubMed/NCBI View Article : Google Scholar | |
Tamayo M, Santiso R, Otero F, Bou G, Lepe JA, McConnell MJ, Cisneros JM, Gosálvez J and Fernández JL: Rapid determination of colistin resistance in clinical strains of Acinetobacter baumannii by use of the micromax assay. J Clin Microbiol. 51:3675–3682. 2013.PubMed/NCBI View Article : Google Scholar | |
European Medicines Agency: Advice on impacts of using antimicrobials in animals, 2013. https://www.ema.europa.eu/en/veterinary-regulatory/overview/antimicrobial-resistance/advice-impacts-using-antimicrobials-animals. Accessed September 15, 2021. | |
EMA Committee for Medicinal Products for Veterinary Use (CVMP) and EFSA Panel on Biological Hazards (BIOHAZ). Murphy D, Ricci A, Auce Z, Beechinor JE, Bergendahl H, Breathnach R, Bures J, Silva J, Hederová J, et al: EMA and EFSA Joint Scientific Opinion on measures to reduce the need to use antimicrobial agents in animal husbandry in the European Union, and the resulting impacts on food safety (RONAFA). EFSA J. 15(e04666)2017.PubMed/NCBI View Article : Google Scholar | |
ECDC (European Centre for Disease Prevention and Control), EFSA (European Food Safety Authority) and EMA (European Medicines Agency). ECDC/EFSA/EMA first joint report on the integrated analysis of the consumption of antimicrobial agents and occurrence of antimicrobial resistance in bacteria from humans and food-producing animals. Stockholm/Parma/London: ECDC/EFSA/EMA. EFSA J. 13(e04006)2015. | |
ECDC (European Centre for Disease Prevention and Control), EFSA (European Food Safety Authority), and EMA (European Medicines Agency). ECDC/EFSA/EMA second joint report on the integrated analysis of the consumption of antimicrobial agents and occurrence of antimicrobial resistance in bacteria from humans and food-producing animals: Joint Interagency Antimicrobial Consumption and Resistance Analysis (JIACRA) report. EFSA J. 15(e04872)2017.PubMed/NCBI View Article : Google Scholar | |
European Centre for Disease Prevention and Control (ECDC); European Food Safety Authority (EFSA) and European Medicines Agency (EMA). Third joint inter-agency report on integrated analysis of consumption of antimicrobial agents and occurrence of antimicrobial resistance in bacteria from humans and food-producing animals in the EU/EEA, JIACRA III 2016-2018. EFSA J. 19(e06712)2021.PubMed/NCBI View Article : Google Scholar | |
Bates J, Jordens JZ and Griffiths DT: Farm animals as a putative reservoir for vancomycin-resistant enterococcal infection in man. J Antimicrob Chemother. 34:507–514. 1994.PubMed/NCBI View Article : Google Scholar | |
Bager F, Aarestrup FM, Madsen M and Wegener HC: Glycopeptide resistance in Enterococcus faecium from broilers and pigs following discontinued use of avoparcin. Microb Drug Resist. 5:53–56. 1999.PubMed/NCBI View Article : Google Scholar | |
Hoelzer K, Wong N, Thomas J, Talkington K, Jungman E and Coukell A: Antimicrobial drug use in food-producing animals and associated human health risks: What, and how strong, is the evidence? BMC Vet Res. 13(211)2017.PubMed/NCBI View Article : Google Scholar | |
Huijsdens XW, van Dijke BJ, Spalburg E, van Santen-Verheuvel MG, Heck M, Pluister GN, Voss A, Wannet WJB and de Neeling AJ: Community-acquired MRSA and pig-farming. Ann Clin Microbiol Antimicrob. 5(26)2006.PubMed/NCBI View Article : Google Scholar | |
Monte DF, Mem A, Fernandes MR, Cerdeira L, Esposito F, Galvão JA, Franco BDGM, Lincopan N and Landgraf M: Chicken meat as a reservoir of colistin-resistant Escherichia coli Strains Carrying mcr-1 Genes in South America. Antimicrob Agents Chemother. 61:e02718–16. 2017.PubMed/NCBI View Article : Google Scholar | |
Zhou X, Qiao M, Wang FH and Zhu YG: Use of commercial organic fertilizer increases the abundance of antibiotic resistance genes and antibiotics in soil. Environ Sci Pollut Res Int. 24:701–710. 2017.PubMed/NCBI View Article : Google Scholar | |
Cadena M, Durso LM, Miller DN, Waldrip HM, Castleberry BL, Drijber RA and Wortmann C: Tetracycline and sulfonamide antibiotic resistance genes in soils from Nebraska organic farming operations. Front Microbiol. 9(1283)2018.PubMed/NCBI View Article : Google Scholar | |
Li J, Cao J, Zhu YG, Chen QL, Shen F, Wu Y, Xu S, Fan H, Da G, Huang RJ, et al: Global survey of antibiotic resistance genes in air. Environ Sci Technol. 52:10975–10984. 2018.PubMed/NCBI View Article : Google Scholar | |
Hu J, Zhao F, Zhang X-X, Li K, Li C, Ye L and Li M: Metagenomic profiling of ARGs in airborne particulate matters during a severe smog event. Sci Total Environ. 615:1332–1340. 2018.PubMed/NCBI View Article : Google Scholar | |
Fernando DM, Tun HM, Poole J, Patidar R, Li R, Mi R, Amarawansha GEA, Fernando WGD, Khafipour E and Kumar A: Detection of antibiotic resistance genes in source and drinking water samples from a first nations community in Canada. Appl Environ Microbiol. 82:4767–4775. 2016.PubMed/NCBI View Article : Google Scholar | |
Brown KD, Kulis J, Thomson B, Chapman TH and Mawhinney DB: Occurrence of antibiotics in hospital, residential, and dairy effluent, municipal wastewater, and the Rio Grande in New Mexico. Sci Total Environ. 366:772–783. 2006.PubMed/NCBI View Article : Google Scholar |