Properties of flavonoids in the treatment of bladder cancer (Review)
- Authors:
- Yue Lv
- Zhonghao Liu
- Haixing Jia
- Youcheng Xiu
- Zan Liu
- Leihong Deng
-
Affiliations: Department of Urology, The First Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang 150000, P.R. China, Department of Ultrasound Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China - Published online on: September 19, 2022 https://doi.org/10.3892/etm.2022.11612
- Article Number: 676
-
Copyright: © Lv et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA and Jemal A: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 68:394–424. 2018.PubMed/NCBI View Article : Google Scholar | |
Dobruch J, Daneshmand S, Fisch M, Lotan Y, Noon AP, Resnick MJ, Shariat SF, Zlotta AR and Boorjian SA: Gender and bladder cancer: A collaborative review of etiology, biology, and outcomes. Eur Urol. 69:300–310. 2016.PubMed/NCBI View Article : Google Scholar | |
Richters A, Aben KKH and Kiemeney LALM: The global burden of urinary bladder cancer: An update. World J Urol. 38:1895–1904. 2020.PubMed/NCBI View Article : Google Scholar | |
Xia Y, Chen R, Lu G, Li C, Lian S, Kang TW and Jung YD: Natural phytochemicals in bladder cancer prevention and therapy. Front Oncol. 11(652033)2021.PubMed/NCBI View Article : Google Scholar | |
Han J, Gu X, Li Y and Wu Q: Mechanisms of BCG in the treatment of bladder cancer-current understanding and the prospect. Biomed Pharmacother. 129(110393)2020.PubMed/NCBI View Article : Google Scholar | |
Kimura T, Ishikawa H, Kojima T, Kandori S, Kawahara T, Sekino Y, Sakurai H and Nishiyama H: Bladder preservation therapy for muscle invasive bladder cancer: The past, present and future. Jpn J Clin Oncol. 50:1097–1107. 2020.PubMed/NCBI View Article : Google Scholar | |
Tran L, Xiao JF, Agarwal N, Duex JE and Theodorescu D: Advances in bladder cancer biology and therapy. Nat Rev Cancer. 21:104–121. 2021.PubMed/NCBI View Article : Google Scholar | |
Bednova O and Leyton JV: Targeted molecular therapeutics for bladder cancer-A new option beyond the mixed fortunes of immune checkpoint inhibitors? Int J Mol Sci. 21(7268)2020.PubMed/NCBI View Article : Google Scholar | |
Rutz J, Janicova A, Woidacki K, Chun FK, Blaheta RA and Relja B: Curcumin-A viable agent for better bladder cancer treatment. Int J Mol Sci. 21(3761)2020.PubMed/NCBI View Article : Google Scholar | |
Zanoaga O, Braicu C, Jurj A, Rusu A, Buiga R and Berindan-Neagoe I: Progress in research on the role of flavonoids in lung cancer. Int J Mol Sci. 20(4291)2019.PubMed/NCBI View Article : Google Scholar | |
Niedzwiecki A, Roomi MW, Kalinovsky T and Rath M: Anticancer efficacy of polyphenols and their combinations. Nutrients. 8(552)2016.PubMed/NCBI View Article : Google Scholar | |
Kumar S and Pandey AK: Chemistry and biological activities of flavonoids: An overview. ScientificWorldJournal. 2013(162750)2013.PubMed/NCBI View Article : Google Scholar | |
Amawi H, Ashby CR Jr and Tiwari AK: Cancer chemoprevention through dietary flavonoids: What's limiting? Chin J Cancer. 36(50)2017.PubMed/NCBI View Article : Google Scholar | |
Lama-Sherpa TD and Shevde LA: An emerging regulatory role for the tumor microenvironment in the DNA damage response to double-strand breaks. Mol Cancer Res. 18:185–193. 2020.PubMed/NCBI View Article : Google Scholar | |
Srinivas US, Tan BWQ, Vellayappan BA and Jeyasekharan AD: ROS and the DNA damage response in cancer. Redox Biol. 25(101084)2019.PubMed/NCBI View Article : Google Scholar | |
Harashima H, Dissmeyer N and Schnittger A: Cell cycle control across the eukaryotic kingdom. Trends Cell Biol. 23:345–356. 2013.PubMed/NCBI View Article : Google Scholar | |
Lim S and Kaldis P: Cdks, cyclins and CKIs: Roles beyond cell cycle regulation. Development. 140:3079–3093. 2013.PubMed/NCBI View Article : Google Scholar | |
Carusillo A and Mussolino C: DNA Damage: From threat to treatment. Cells. 9(1665)2020.PubMed/NCBI View Article : Google Scholar | |
Solier S, Zhang YW, Ballestrero A, Pommier Y and Zoppoli G: DNA damage response pathways and cell cycle checkpoints in colorectal cancer: Current concepts and future perspectives for targeted treatment. Curr Cancer Drug Targets. 12:356–371. 2012.PubMed/NCBI View Article : Google Scholar | |
Kastan MB and Bartek J: Cell-cycle checkpoints and cancer. Nature. 432:316–323. 2004.PubMed/NCBI View Article : Google Scholar | |
de Sá Junior PL, Câmara DAD, Porcacchia AS, Fonseca PMM, Jorge SD, Araldi RP and Ferreira AK: The roles of ROS in cancer heterogeneity and therapy. Oxid Med Cell Longev. 2017(2467940)2017.PubMed/NCBI View Article : Google Scholar | |
Aggarwal V, Tuli HS, Varol A, Thakral F, Yerer MB, Sak K, Varol M, Jain A, Khan MA and Sethi G: Role of reactive oxygen species in cancer progression: Molecular mechanisms and recent advancements. Biomolecules. 9(735)2019.PubMed/NCBI View Article : Google Scholar | |
Perillo B, Di Donato M, Pezone A, Di Zazzo E, Giovannelli P, Galasso G, Castoria G and Migliaccio A: ROS in cancer therapy: the bright side of the moon. Exp Mol Med. 52:192–203. 2020.PubMed/NCBI View Article : Google Scholar | |
Xu X, Lai Y and Hua ZC: Apoptosis and apoptotic body: Disease message and therapeutic target potentials. Biosci Rep. 39(BSR20180992)2019.PubMed/NCBI View Article : Google Scholar | |
Hengartner MO: Apoptosis: Corralling the corpses. Cell. 104:325–328. 2001.PubMed/NCBI View Article : Google Scholar | |
Schneider P and Tschopp J: Apoptosis induced by death receptors. Pharm Acta Helv. 74:281–286. 2000.PubMed/NCBI View Article : Google Scholar | |
Indran IR, Tufo G, Pervaiz S and Brenner C: Recent advances in apoptosis, mitochondria and drug resistance in cancer cells. Biochim Biophys Acta. 1807:735–745. 2011.PubMed/NCBI View Article : Google Scholar | |
Bertheloot D, Latz E and Franklin BS: Necroptosis, pyroptosis and apoptosis: An intricate game of cell death. Cell Mol Immunol. 18:1106–1121. 2021.PubMed/NCBI View Article : Google Scholar | |
Wong RS: Apoptosis in cancer: From pathogenesis to treatment. J Exp Clin Cancer Res. 30(87)2011.PubMed/NCBI View Article : Google Scholar | |
Szegezdi E, Fitzgerald U and Samali A: Caspase-12 and ER-stress-mediated apoptosis: The story so far. Ann N Y Acad Sci. 1010:186–194. 2003.PubMed/NCBI View Article : Google Scholar | |
Levy JMM, Towers CG and Thorburn A: Targeting autophagy in cancer. Nat Rev Cancer. 17:528–542. 2017.PubMed/NCBI View Article : Google Scholar | |
Amaravadi RK, Kimmelman AC and Debnath J: Targeting autophagy in cancer: Recent advances and future directions. Cancer Discov. 9:1167–1181. 2019.PubMed/NCBI View Article : Google Scholar | |
White E, Mehnert JM and Chan CS: Autophagy, metabolism, and cancer. Clin Cancer Res. 21:5037–5046. 2015.PubMed/NCBI View Article : Google Scholar | |
Amaravadi R, Kimmelman AC and White E: Recent insights into the function of autophagy in cancer. Genes Dev. 30:1913–1930. 2016.PubMed/NCBI View Article : Google Scholar | |
Mou Y, Wang J, Wu J, He D, Zhang C, Duan C and Li B: Ferroptosis, a new form of cell death: Opportunities and challenges in cancer. J Hematol Oncol. 12(34)2019.PubMed/NCBI View Article : Google Scholar | |
Xu T, Ding W, Ji X, Ao X, Liu Y, Yu W and Wang J: Molecular mechanisms of ferroptosis and its role in cancer therapy. J Cell Mol Med. 23:4900–4912. 2019.PubMed/NCBI View Article : Google Scholar | |
Bebber CM, Müller F, Prieto Clemente L, Weber J and von Karstedt S: Ferroptosis in cancer cell biology. Cancers (Basel). 12(164)2020.PubMed/NCBI View Article : Google Scholar | |
Li J, Cao F, Yin HL, Huang ZJ, Lin ZT, Mao N, Sun B and Wang G: Ferroptosis: past, present and future. Cell Death Dis. 11(88)2020.PubMed/NCBI View Article : Google Scholar | |
Tiffon C: The impact of nutrition and environmental epigenetics on human health and disease. Int J Mol Sci. 19(3425)2018.PubMed/NCBI View Article : Google Scholar | |
Margueron R and Reinberg D: Chromatin structure and the inheritance of epigenetic information. Nat Rev Genet. 11:285–296. 2010.PubMed/NCBI View Article : Google Scholar | |
Mahmoud AM and Ali MM: Methyl donor micronutrients that modify DNA methylation and cancer outcome. Nutrients. 11(608)2019.PubMed/NCBI View Article : Google Scholar | |
Jasek K, Kubatka P, Samec M, Liskova A, Smejkal K, Vybohova D, Bugos O, Biskupska-Bodova K, Bielik T, Zubor P, et al: DNA methylation status in cancer disease: Modulations by plant-derived natural compounds and dietary interventions. Biomolecules. 9(289)2019.PubMed/NCBI View Article : Google Scholar | |
Huang Z, Huang Q, Ji L, Wang Y, Qi X, Liu L, Liu Z and Lu L: Epigenetic regulation of active Chinese herbal components for cancer prevention and treatment: A follow-up review. Pharmacol Res. 114:1–12. 2016.PubMed/NCBI View Article : Google Scholar | |
Qin J, Wen B, Liang Y, Yu W and Li H: Histone modifications and their role in colorectal cancer (Review). Pathol Oncol Res. 26:2023–2033. 2020.PubMed/NCBI View Article : Google Scholar | |
Audia JE and Campbell RM: Histone modifications and cancer. Cold Spring Harb Perspect Biol. 8(a019521)2016.PubMed/NCBI View Article : Google Scholar | |
Lee YS and Dutta A: MicroRNAs in cancer. Annu Rev Pathol. 4:199–227. 2009.PubMed/NCBI View Article : Google Scholar | |
Ali Syeda Z, Langden SSS, Munkhzul C, Lee M and Song SJ: Regulatory mechanism of MicroRNA expression in cancer. Int J Mol Sci. 21(1723)2020.PubMed/NCBI View Article : Google Scholar | |
Tay Y, Rinn J and Pandolfi PP: The multilayered complexity of ceRNA crosstalk and competition. Nature. 505:344–352. 2014.PubMed/NCBI View Article : Google Scholar | |
Hanahan D and Folkman J: Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell. 86:353–364. 1996.PubMed/NCBI View Article : Google Scholar | |
Koch AE and Distler O: Vasculopathy and disordered angiogenesis in selected rheumatic diseases: Rheumatoid arthritis and systemic sclerosis. Arthritis Res Ther. 9 (Suppl 2)(S3)2007.PubMed/NCBI View Article : Google Scholar | |
Ramjiawan RR, Griffioen AW and Duda DG: Anti-angiogenesis for cancer revisited: Is there a role for combinations with immunotherapy? Angiogenesis. 20:185–204. 2017.PubMed/NCBI View Article : Google Scholar | |
Rajabi M and Mousa SA: The role of angiogenesis in cancer treatment. Biomedicines. 5(34)2017.PubMed/NCBI View Article : Google Scholar | |
Pan G, Liu Y, Shang L, Zhou F and Yang S: EMT-associated microRNAs and their roles in cancer stemness and drug resistance. Cancer Commun (Lond). 41:199–217. 2021.PubMed/NCBI View Article : Google Scholar | |
Eun K, Ham SW and Kim H: Cancer stem cell heterogeneity: Origin and new perspectives on CSC targeting. BMB Rep. 50:117–125. 2017.PubMed/NCBI View Article : Google Scholar | |
Barzegar Behrooz A, Syahir A and Ahmad S: CD133: Beyond a cancer stem cell biomarker. J Drug Target. 27:257–269. 2019.PubMed/NCBI View Article : Google Scholar | |
Huang T, Song X, Xu D, Tiek D, Goenka A, Wu B, Sastry N, Hu B and Cheng SY: Stem cell programs in cancer initiation, progression, and therapy resistance. Theranostics. 10:8721–8743. 2020.PubMed/NCBI View Article : Google Scholar | |
Lamouille S, Xu J and Derynck R: Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol. 15:178–196. 2014.PubMed/NCBI View Article : Google Scholar | |
Du B and Shim JS: Targeting epithelial-mesenchymal transition (EMT) to overcome drug resistance in cancer. Molecules. 21(965)2016.PubMed/NCBI View Article : Google Scholar | |
Lehman HL, Kidacki M and Stairs DB: Twist2 is NFkB-responsive when p120-catenin is inactivated and EGFR is overexpressed in esophageal keratinocytes. Sci Rep. 10(18829)2020.PubMed/NCBI View Article : Google Scholar | |
Luongo F, Colonna F, Calapà F, Vitale S, Fiori ME and De Maria R: PTEN tumor-suppressor: The dam of stemness in cancer. Cancers (Basel). 11(1076)2019.PubMed/NCBI View Article : Google Scholar | |
Kopustinskiene DM, Jakstas V, Savickas A and Bernatoniene J: Flavonoids as anticancer agents. Nutrients. 12(457)2020.PubMed/NCBI View Article : Google Scholar | |
Abotaleb M, Samuel SM, Varghese E, Varghese S, Kubatka P, Liskova A and Büsselberg D: Flavonoids in cancer and apoptosis. Cancers (Basel). 11(28)2018.PubMed/NCBI View Article : Google Scholar | |
Panche AN, Diwan AD and Chandra SR: Flavonoids: An overview. J Nutr Sci. 5(e47)2016.PubMed/NCBI View Article : Google Scholar | |
Hostetler GL, Ralston RA and Schwartz SJ: Flavones: Food sources, bioavailability, metabolism, and bioactivity. Adv Nutr. 8:423–435. 2017.PubMed/NCBI View Article : Google Scholar | |
Shi MD, Shiao CK, Lee YC and Shih YW: Apigenin, a dietary flavonoid, inhibits proliferation of human bladder cancer T-24 cells via blocking cell cycle progression and inducing apoptosis. Cancer Cell Int. 15(33)2015.PubMed/NCBI View Article : Google Scholar | |
Zhu Y, Mao Y, Chen H, Lin Y, Hu Z, Wu J, Xu X, Xu X, Qin J and Xie L: Apigenin promotes apoptosis, inhibits invasion and induces cell cycle arrest of T24 human bladder cancer cells. Cancer Cell Int. 13(54)2013.PubMed/NCBI View Article : Google Scholar | |
Xia Y, Yuan M, Li S, Thuan UT, Nguyen TT, Kang TW, Liao W, Lian S and Jung YD: Apigenin Suppresses the IL-1β-induced expression of the urokinase-type plasminogen activator receptor by inhibiting MAPK-Mediated AP-1 and NF-κB signaling in human bladder cancer T24 cells. J Agric Food Chem. 66:7663–7673. 2018.PubMed/NCBI View Article : Google Scholar | |
Lin Y, Shi R, Wang X and Shen HM: Luteolin, a flavonoid with potential for cancer prevention and therapy. Curr Cancer Drug Targets. 8:634–646. 2008.PubMed/NCBI View Article : Google Scholar | |
Kilani-Jaziri S, Frachet V, Bhouri W, Ghedira K, Chekir-Ghedira L and Ronot X: Flavones inhibit the proliferation of human tumor cancer cell lines by inducing apoptosis. Drug Chem Toxicol. 35:1–10. 2012.PubMed/NCBI View Article : Google Scholar | |
Iida K, Naiki T, Naiki-Ito A, Suzuki S, Kato H, Nozaki S, Nagai T, Etani T, Nagayasu Y, Ando R, et al: Luteolin suppresses bladder cancer growth via regulation of mechanistic target of rapamycin pathway. Cancer Sci. 111:1165–1179. 2020.PubMed/NCBI View Article : Google Scholar | |
Yang G, Wang Z, Wang W, Zhou X, Hu X and Yang J: Anticancer activity of Luteolin and its synergism effect with BCG on human bladder cancer cell line BIU-87. Zhong Nan Da Xue Xue Bao Yi Xue Ban. 39:371–378. 2014.PubMed/NCBI View Article : Google Scholar : (In Chinese). | |
Lin JJ, Huang CC, Su YL, Luo HL, Lee NL, Sung MT and Wu YJ: Proteomics analysis of tangeretin-induced apoptosis through mitochondrial dysfunction in bladder cancer cells. Int J Mol Sci. 20(1017)2019.PubMed/NCBI View Article : Google Scholar | |
Mani R and Natesan V: Chrysin: Sources, beneficial pharmacological activities, and molecular mechanism of action. Phytochemistry. 145:187–196. 2018.PubMed/NCBI View Article : Google Scholar | |
Xu Y, Tong Y, Ying J, Lei Z, Wan L, Zhu X, Ye F, Mao P, Wu X, Pan R, et al: Chrysin induces cell growth arrest, apoptosis, and ER stress and inhibits the activation of STAT3 through the generation of ROS in bladder cancer cells. Oncol Lett. 15:9117–9125. 2018.PubMed/NCBI View Article : Google Scholar | |
Lima APB, Almeida TC, Barros TMB, Rocha LCM, Garcia CCM and da Silva GN: Toxicogenetic and antiproliferative effects of chrysin in urinary bladder cancer cells. Mutagenesis: Aug 13, 2020 (Epub ahead of print). | |
Yang Y, Liu K, Yang L and Zhang G: Bladder cancer cell viability inhibition and apoptosis induction by baicalein through targeting the expression of anti-apoptotic genes. Saudi J Biol Sci. 25:1478–1482. 2018.PubMed/NCBI View Article : Google Scholar | |
Choi EO, Park C, Hwang HJ, Hong SH, Kim GY, Cho EJ, Kim WJ and Choi YH: Baicalein induces apoptosis via ROS-dependent activation of caspases in human bladder cancer 5637 cells. Int J Oncol. 49:1009–1018. 2016.PubMed/NCBI View Article : Google Scholar | |
Li HL, Zhang S, Wang Y, Liang RR, Li J, An P, Wang ZM, Yang J and Li ZF: Baicalein induces apoptosis via a mitochondrial-dependent caspase activation pathway in T24 bladder cancer cells. Mol Med Rep. 7:266–270. 2013.PubMed/NCBI View Article : Google Scholar | |
Kong N, Chen X, Feng J, Duan T, Liu S, Sun X, Chen P, Pan T, Yan L, Jin T, et al: Baicalin induces ferroptosis in bladder cancer cells by downregulating FTH1. Acta Pharm Sin B. 11:4045–4054. 2021.PubMed/NCBI View Article : Google Scholar | |
Wu JY, Tsai KW, Li YZ, Chang YS, Lai YC, Laio YH, Wu JD and Liu YW: Anti-bladder-tumor effect of baicalein from scutellaria baicalensis georgi and its application in vivo. Evid Based Complement Alternat Med. 2013(579751)2013.PubMed/NCBI View Article : Google Scholar | |
Peng L, Wen L, Shi QF, Gao F, Huang B, Meng J, Hu CP and Wang CM: Scutellarin ameliorates pulmonary fibrosis through inhibiting NF-κB/NLRP3-mediated epithelial-mesenchymal transition and inflammation. Cell Death Dis. 11(978)2020.PubMed/NCBI View Article : Google Scholar | |
Lv WL, Liu Q, An JH and Song XY: Scutellarin inhibits hypoxia-induced epithelial-mesenchymal transition in bladder cancer cells. J Cell Physiol. 234:23169–23175. 2019.PubMed/NCBI View Article : Google Scholar | |
Ashrafizadeh M, Zarrabi A, Saberifar S, Hashemi F, Hushmandi K, Hashemi F, Moghadam ER, Mohammadinejad R, Najafi M and Garg M: Nobiletin in cancer therapy: How this plant derived-natural compound targets various oncogene and onco-suppressor pathways. Biomedicines. 8(110)2020.PubMed/NCBI View Article : Google Scholar | |
Goan YG, Wu WT, Liu CI, Neoh CA and Wu YJ: Involvement of mitochondrial dysfunction, endoplasmic reticulum stress, and the PI3K/AKT/mTOR pathway in nobiletin-induced apoptosis of human bladder cancer cells. Molecules. 24(2881)2019.PubMed/NCBI View Article : Google Scholar | |
Tian F, Tong M, Li Z, Huang W, Jin Y, Cao Q, Zhou X and Tong G: The effects of orientin on proliferation and apoptosis of T24 human bladder carcinoma cells occurs through the inhibition of nuclear factor-kappaB and the hedgehog signaling pathway. Med Sci Monit. 25:9547–9554. 2019.PubMed/NCBI View Article : Google Scholar | |
Stavric B: Quercetin in our diet: From potent mutagen to probable anticarcinogen. Clin Biochem. 27:245–248. 1994.PubMed/NCBI View Article : Google Scholar | |
Rauf A, Imran M, Khan IA, Ur-Rehman M, Gilani SA, Mehmood Z and Mubarak MS: Anticancer potential of quercetin: A comprehensive review. Phytother Res. 32:2109–2130. 2018.PubMed/NCBI View Article : Google Scholar | |
Adami BS, Diz FM, Oliveira Gonçalves GP, Reghelin CK, Scherer M, Dutra AP, Papaléo RM, de Oliveira JR, Morrone FB, Wieck A and Xavier LL: Morphological and mechanical changes induced by quercetin in human T24 bladder cancer cells. Micron. 151(103152)2021.PubMed/NCBI View Article : Google Scholar | |
Oršolić N, Karač I, Sirovina D, Kukolj M, Kunštić M, Gajski G, Garaj-Vrhovac V and Štajcar D: Chemotherapeutic potential of quercetin on human bladder cancer cells. J Environ Sci Health A Tox Hazard Subst Environ Eng. 51:776–781. 2016.PubMed/NCBI View Article : Google Scholar | |
Su Q, Peng M, Zhang Y, Xu W, Darko KO, Tao T, Huang Y, Tao X and Yang X: Quercetin induces bladder cancer cells apoptosis by activation of AMPK signaling pathway. Am J Cancer Res. 6:498–508. 2016.PubMed/NCBI | |
Wei L, Liu JJ, Cao J, Du NC, Ji LN and Yang XL: Role of autophagy in quercetin-induced apoptosis in human bladder carcinoma BIU-87 cells. Zhonghua Zhong Liu Za Zhi. 34:414–418. 2012.PubMed/NCBI(In Chinese). | |
Tan DQ and Liu XH: Mechanism in growth inhibition of quercetin on human bladder cancer cell line. Zhongguo Zhong Yao Za Zhi. 42:1742–1746. 2017.PubMed/NCBI View Article : Google Scholar : (In Chinese). | |
Rockenbach L, Bavaresco L, Fernandes Farias P, Cappellari AR, Barrios CH, Bueno Morrone F and Oliveira Battastini AM: Alterations in the extracellular catabolism of nucleotides are involved in the antiproliferative effect of quercetin in human bladder cancer T24 cells. Urol Oncol. 31:1204–1211. 2013.PubMed/NCBI View Article : Google Scholar | |
Berger SI and Iyengar R: Network analyses in systems pharmacology. Bioinformatics. 25:2466–2472. 2009.PubMed/NCBI View Article : Google Scholar | |
Dong Y, Hao L, Fang K, Han XX, Yu H, Zhang JJ, Cai LJ, Fan T, Zhang WD, Pang K, et al: A network pharmacology perspective for deciphering potential mechanisms of action of Solanum nigrum L. in bladder cancer. BMC Complement Med Ther. 21(45)2021.PubMed/NCBI View Article : Google Scholar | |
Cho CJ, Yu CP, Wu CL, Ho JY, Yang CW and Yu DS: Decreased drug resistance of bladder cancer using phytochemicals treatment. Kaohsiung J Med Sci. 37:128–135. 2021.PubMed/NCBI View Article : Google Scholar | |
Oršolić N, Odeh D, Jembrek MJ, Knežević J and Kučan D: Interactions between cisplatin and quercetin at physiological and hyperthermic conditions on cancer cells in vitro and in vivo. Molecules. 25(3271)2020.PubMed/NCBI View Article : Google Scholar | |
Lee YH and Tuyet PT: Synthesis and biological evaluation of quercetin-zinc (II) complex for anti-cancer and anti-metastasis of human bladder cancer cells. In Vitro Cell Dev Biol Anim. 55:395–404. 2019.PubMed/NCBI View Article : Google Scholar | |
Tao T, He C, Deng J, Huang Y, Su Q, Peng M, Yi M, Darko KO, Zou H and Yang X: A novel synthetic derivative of quercetin, 8-trifluoromethyl-3,5,7,3',4'-O-pentamethyl-quercetin, inhibits bladder cancer growth by targeting the AMPK/mTOR signaling pathway. Oncotarget. 8:71657–71671. 2017.PubMed/NCBI View Article : Google Scholar | |
Alban L, Monteiro WF, Diz FM, Miranda GM, Scheid CM, Zotti ER, Morrone FB and Ligabue R: New quercetin-coated titanate nanotubes and their radiosensitization effect on human bladder cancer. Mater Sci Eng C Mater Biol Appl. 110(110662)2020.PubMed/NCBI View Article : Google Scholar | |
Shui L, Wang W, Xie M, Ye B, Li X, Liu Y and Zheng M: Isoquercitrin induces apoptosis and autophagy in hepatocellular carcinoma cells via AMPK/mTOR/p70S6K signaling pathway. Aging (Albany NY). 12:24318–24332. 2020.PubMed/NCBI View Article : Google Scholar | |
Chen F, Chen X, Yang D, Che X, Wang J, Li X, Zhang Z, Wang Q, Zheng W, Wang L, et al: Isoquercitrin inhibits bladder cancer progression in vivo and in vitro by regulating the PI3K/Akt and PKC signaling pathways. Oncol Rep. 36:165–172. 2016.PubMed/NCBI View Article : Google Scholar | |
Wu P, Liu S, Su J, Chen J, Li L, Zhang R and Chen T: Apoptosis triggered by isoquercitrin in bladder cancer cells by activating the AMPK-activated protein kinase pathway. Food Funct. 8:3707–3722. 2017.PubMed/NCBI View Article : Google Scholar | |
Ran J, Wang Y, Zhang W, Ma M and Zhang H: Research on the bioactivity of isoquercetin extracted from marestail on bladder cancer EJ cell and the mechanism of its occurrence. Artif Cells Nanomed Biotechnol. 44:859–864. 2016.PubMed/NCBI View Article : Google Scholar | |
Imran M, Salehi B, Sharifi-Rad J, Aslam Gondal T, Saeed F, Imran A, Shahbaz M, Tsouh Fokou PV, Umair Arshad M, Khan H, et al: Kaempferol: A key emphasis to its anticancer potential. Molecules. 24(2277)2019.PubMed/NCBI View Article : Google Scholar | |
Qiu W, Lin J, Zhu Y, Zhang J, Zeng L, Su M and Tian Y: Kaempferol modulates DNA methylation and downregulates DNMT3B in bladder cancer. Cell Physiol Biochem. 41:1325–1335. 2017.PubMed/NCBI View Article : Google Scholar | |
Wu P, Meng X, Zheng H, Zeng Q, Chen T, Wang W, Zhang X and Su J: Kaempferol attenuates ROS-Induced hemolysis and the molecular mechanism of its induction of apoptosis on bladder cancer. Molecules. 23(2592)2018.PubMed/NCBI View Article : Google Scholar | |
Dang Q, Song W, Xu D, Ma Y, Li F, Zeng J, Zhu G, Wang X, Chang LS, He D and Li L: Kaempferol suppresses bladder cancer tumor growth by inhibiting cell proliferation and inducing apoptosis. Mol Carcinog. 54:831–840. 2015.PubMed/NCBI View Article : Google Scholar | |
Xie F, Su M, Qiu W, Zhang M, Guo Z, Su B, Liu J, Li X and Zhou L: Kaempferol promotes apoptosis in human bladder cancer cells by inducing the tumor suppressor, PTEN. Int J Mol Sci. 14:21215–21226. 2013.PubMed/NCBI View Article : Google Scholar | |
DE Oliveira DT, Savio AL, Marcondes JP, Barros TM, Barbosa LC, Salvadori DM and DA Silva GN: Cytotoxic and toxicogenomic effects of silibinin in bladder cancer cells with different TP53 status. J Biosci. 42:91–101. 2017.PubMed/NCBI View Article : Google Scholar | |
Barros TMB, Lima APB, Almeida TC and da Silva GN: Inhibition of urinary bladder cancer cell proliferation by silibinin. Environ Mol Mutagen. 61:445–455. 2020.PubMed/NCBI View Article : Google Scholar | |
Li F, Sun Y, Jia J, Yang C, Tang X, Jin B, Wang K, Guo P, Ma Z, Chen Y, et al: Silibinin attenuates TGF-β1-induced migration and invasion via EMT suppression and is associated with COX-2 downregulation in bladder transitional cell carcinoma. Oncol Rep. 40:3543–3550. 2018.PubMed/NCBI View Article : Google Scholar | |
Wu K, Ning Z, Zeng J, Fan J, Zhou J, Zhang T, Zhang L, Chen Y, Gao Y, Wang B, et al: Silibinin inhibits β-catenin/ZEB1 signaling and suppresses bladder cancer metastasis via dual-blocking epithelial-mesenchymal transition and stemness. Cell Signal. 25:2625–2633. 2013.PubMed/NCBI View Article : Google Scholar | |
Imai-Sumida M, Chiyomaru T, Majid S, Saini S, Nip H, Dahiya R, Tanaka Y and Yamamura S: Silibinin suppresses bladder cancer through down-regulation of actin cytoskeleton and PI3K/Akt signaling pathways. Oncotarget. 8:92032–92042. 2017.PubMed/NCBI View Article : Google Scholar | |
Sun Y, Guan Z, Zhao W, Jiang Y, Li Q, Cheng Y and Xu Y: Silibinin suppresses bladder cancer cell malignancy and chemoresistance in an NF-κB signal-dependent and signal-independent manner. Int J Oncol. 51:1219–1226. 2017.PubMed/NCBI View Article : Google Scholar | |
Prack Mc Cormick B, Langle Y, Belgorosky D, Vanzulli S, Balarino N, Sandes E and Eiján AM: Flavonoid silybin improves the response to radiotherapy in invasive bladder cancer. J Cell Biochem. 119:5402–5412. 2018.PubMed/NCBI View Article : Google Scholar | |
Gándara L, Sandes E, Di Venosa G, Prack Mc Cormick B, Rodriguez L, Mamone L, Batlle A, Eiján AM and Casas A: The natural flavonoid silybin improves the response to Photodynamic Therapy of bladder cancer cells. J Photochem Photobiol B. 133:55–64. 2014.PubMed/NCBI View Article : Google Scholar | |
Ramchandani S, Naz I, Lee JH, Khan MR and Ahn KS: An Overview of the potential antineoplastic effects of casticin. Molecules. 25(1287)2020.PubMed/NCBI View Article : Google Scholar | |
Xu H, Shi HL, Hao JW, Shu KP, Zhang YT and Hou TQ: Casticin inhibits the proliferation, migration and invasion of bladder cancer cells by inhibition of TM7SF4 expression. Zhonghua Zhong Liu Za Zhi. 44:334–340. 2022.PubMed/NCBI View Article : Google Scholar : (In Chinese). | |
Huang AC, Cheng YD, Huang LH, Hsiao YT, Peng SF, Lu KW, Lien JC, Yang JL, Lin TS and Chung JG: Casticin induces DNA damage and impairs DNA repair in human bladder cancer TSGH-8301 cells. Anticancer Res. 39:1839–1847. 2019.PubMed/NCBI View Article : Google Scholar | |
Chung YH and Kim D: RIP kinase-mediated ROS production triggers XAF1 expression through activation of TAp73 in casticin-treated bladder cancer cells. Oncol Rep. 36:1135–1142. 2016.PubMed/NCBI View Article : Google Scholar | |
Gao X, Xu J, Jiang L, Liu W, Hong H, Qian Y, Li S, Huang W, Zhao H, Yang Z, et al: Morin alleviates aflatoxin B1-induced liver and kidney injury by inhibiting heterophil extracellular traps release, oxidative stress and inflammatory responses in chicks. Poult Sci. 100(101513)2021.PubMed/NCBI View Article : Google Scholar | |
Shin SS, Won SY, Noh DH, Hwang B, Kim WJ and Moon SK: Morin inhibits proliferation, migration, and invasion of bladder cancer EJ cells via modulation of signaling pathways, cell cycle regulators, and transcription factor-mediated MMP-9 expression. Drug Dev Res. 78:81–90. 2017.PubMed/NCBI View Article : Google Scholar | |
Pan XW, Li L, Huang Y, Huang H, Xu DF, Gao Y, Chen L, Ren JZ, Cao JW, Hong Y and Cui XG: Icaritin acts synergistically with epirubicin to suppress bladder cancer growth through inhibition of autophagy. Oncol Rep. 35:334–342. 2016.PubMed/NCBI View Article : Google Scholar | |
Stevens Y, Rymenant EV, Grootaert C, Camp JV, Possemiers S, Masclee A and Jonkers D: The intestinal fate of citrus flavanones and their effects on gastrointestinal health. Nutrients. 11(1464)2019.PubMed/NCBI View Article : Google Scholar | |
Kim DI, Lee SJ, Lee SB, Park K, Kim WJ and Moon SK: Requirement for Ras/Raf/ERK pathway in naringin-induced G1-cell-cycle arrest via p21WAF1 expression. Carcinogenesis. 29:1701–1709. 2008.PubMed/NCBI View Article : Google Scholar | |
Liao AC, Kuo CC, Huang YC, Yeh CW, Hseu YC, Liu JY and Hsu LS: Naringenin inhibits migration of bladder cancer cells through downregulation of AKT and MMP-2. Mol Med Rep. 10:1531–1536. 2014.PubMed/NCBI View Article : Google Scholar | |
Juhem A, Boumendjel A, Touquet B, Guillot A, Popov A, Ronot X and Martel-Frachet V: AG11, a novel dichloroflavanone derivative with anti-mitotic activity towards human bladder cancer cells. Anticancer Res. 33:4445–4452. 2013.PubMed/NCBI | |
Khan N, Afaq F and Mukhtar H: Cancer chemoprevention through dietary antioxidants: Progress and promise. Antioxid Redox Signal. 10:475–510. 2008.PubMed/NCBI View Article : Google Scholar | |
Khan N and Mukhtar H: Tea polyphenols in promotion of human health. Nutrients. 11(39)2018.PubMed/NCBI View Article : Google Scholar | |
Bernatoniene J and Kopustinskiene DM: The role of catechins in cellular responses to oxidative stress. Molecules. 23(965)2018.PubMed/NCBI View Article : Google Scholar | |
Khan N, Afaq F, Saleem M, Ahmad N and Mukhtar H: Targeting multiple signaling pathways by green tea polyphenol (-)-epigallocatechin-3-gallate. Cancer Res. 66:2500–2505. 2006.PubMed/NCBI View Article : Google Scholar | |
Yasuda T, Miyata Y, Nakamura Y, Sagara Y, Matsuo T, Ohba K and Sakai H: High Consumption of Green tea suppresses urinary tract recurrence of urothelial cancer via down-regulation of human antigen-R expression in never smokers. In Vivo. 32:721–729. 2018.PubMed/NCBI View Article : Google Scholar | |
Matsuo T, Miyata Y, Asai A, Sagara Y, Furusato B, Fukuoka J and Sakai H: Green tea polyphenol induces changes in cancer-related factors in an animal model of bladder cancer. PLoS One. 12(e0171091)2017.PubMed/NCBI View Article : Google Scholar | |
Chen Z, Yu T, Zhou B, Wei J, Fang Y, Lu J, Guo L, Chen W, Liu ZP and Luo J: Mg(II)-Catechin nanoparticles delivering siRNA targeting EIF5A2 inhibit bladder cancer cell growth in vitro and in vivo. Biomaterials. 81:125–134. 2016.PubMed/NCBI View Article : Google Scholar | |
Jankun J, Keck RW and Selman SH: Epigallocatechin-3-gallate prevents tumor cell implantation/growth in an experimental rat bladder tumor model. Int J Oncol. 44:147–152. 2014.PubMed/NCBI View Article : Google Scholar | |
Lee HY, Chen YJ, Chang WA, Li WM, Ke HL, Wu WJ and Kuo PL: Effects of epigallocatechin gallate (EGCG) on urinary bladder urothelial carcinoma-next-generation sequencing and bioinformatics approaches. Medicina (Kaunas). 55(768)2019.PubMed/NCBI View Article : Google Scholar | |
Luo KW, Wei Chen, Lung WY, Wei XY, Cheng BH, Cai ZM and Huang WR: EGCG inhibited bladder cancer SW780 cell proliferation and migration both in vitro and in vivo via down-regulation of NF-κB and MMP-9. J Nutr Biochem. 41:56–64. 2017.PubMed/NCBI View Article : Google Scholar | |
Luo KW, Lung WY, Chun-Xie Luo XL and Huang WR: EGCG inhibited bladder cancer T24 and 5637 cell proliferation and migration via PI3K/AKT pathway. Oncotarget. 9:12261–12272. 2018.PubMed/NCBI View Article : Google Scholar | |
Qin J, Wang Y, Bai Y, Yang K, Mao Q, Lin Y, Kong D, Zheng X and Xie L: Epigallocatechin-3-gallate inhibits bladder cancer cell invasion via suppression of NF-κB-mediated matrix metalloproteinase-9 expression. Mol Med Rep. 6:1040–1044. 2012.PubMed/NCBI View Article : Google Scholar | |
Feng C, Ho Y, Sun C, Xia G, Ding Q and Gu B: Epigallocatechin gallate inhibits the growth and promotes the apoptosis of bladder cancer cells. Exp Ther Med. 14:3513–3518. 2017.PubMed/NCBI View Article : Google Scholar | |
Yin Z, Li J, Kang L, Liu X, Luo J, Zhang L, Li Y and Cai J: Epigallocatechin-3-gallate induces autophagy-related apoptosis associated with LC3B II and Beclin expression of bladder cancer cells. J Food Biochem. 45(e13758)2021.PubMed/NCBI View Article : Google Scholar | |
Sun X, Song J, Li E, Geng H, Li Y, Yu D and Zhong C: (-)-Epigallocatechin-3-gallate inhibits bladder cancer stem cells via suppression of sonic hedgehog pathway. Oncol Rep. 42:425–435. 2019.PubMed/NCBI View Article : Google Scholar | |
Luo KW, Zhu XH, Zhao T, Zhong J, Gao HC, Luo XL and Huang WR: EGCG enhanced the anti-tumor effect of doxorubicine in bladder cancer via NF-κB/MDM2/p53 pathway. Front Cell Dev Biol. 8(606123)2020.PubMed/NCBI View Article : Google Scholar | |
Mottaghipisheh J, Doustimotlagh AH, Irajie C, Tanideh N, Barzegar A and Iraji A: The promising therapeutic and preventive properties of anthocyanidins/anthocyanins on prostate cancer. Cells. 11(1070)2022.PubMed/NCBI View Article : Google Scholar | |
Alappat B and Alappat J: Anthocyanin pigments: Beyond aesthetics. Molecules. 25(5500)2020.PubMed/NCBI View Article : Google Scholar | |
Higgins JA, Zainol M, Brown K and Jones GD: Anthocyans as tertiary chemopreventive agents in bladder cancer: Anti-oxidant mechanisms and interaction with mitomycin C. Mutagenesis. 29:227–235. 2014.PubMed/NCBI View Article : Google Scholar | |
Li WL, Ji GH, Zhang XZ and Yu HY: The influence and mechanisms of purple sweet potato anthocyanins on the growth of bladder cancer BIU87 cell. Zhonghua Yi Xue Za Zhi. 98:457–459. 2018.PubMed/NCBI View Article : Google Scholar : (In Chinese). | |
Li WL, Yu HY, Zhang XJ, Ke M and Hong T: Purple sweet potato anthocyanin exerts antitumor effect in bladder cancer. Oncol Rep. 40:73–82. 2018.PubMed/NCBI View Article : Google Scholar | |
Yang N, Gao J, Hou R, Xu X, Yang N and Huang S: Grape seed proanthocyanidins inhibit migration and invasion of bladder cancer cells by reversing EMT through suppression of TGF-β signaling pathway. Oxid Med Cell Longev. 2021(5564312)2021.PubMed/NCBI View Article : Google Scholar | |
Fishman AI, Johnson B, Alexander B, Won J, Choudhury M and Konno S: Additively enhanced antiproliferative effect of interferon combined with proanthocyanidin on bladder cancer cells. J Cancer. 3:107–112. 2012.PubMed/NCBI View Article : Google Scholar | |
Liu J, Zhang WY, Kong ZH and Ding DG: Induction of cell cycle arrest and apoptosis by grape seed procyanidin extract in human bladder cancer BIU87 cells. Eur Rev Med Pharmacol Sci. 20:3282–3291. 2016.PubMed/NCBI | |
Křížová L, Dadáková K, Kašparovská J and Kašparovský T: Isoflavones. Molecules. 24(1076)2019.PubMed/NCBI View Article : Google Scholar | |
He Y, Wu X, Cao Y, Hou Y, Chen H, Wu L, Lu L, Zhu W and Gu Y: Daidzein exerts anti-tumor activity against bladder cancer cells via inhibition of FGFR3 pathway. Neoplasma. 63:523–531. 2016.PubMed/NCBI View Article : Google Scholar | |
Russo M, Russo GL, Daglia M, Kasi PD, Ravi S, Nabavi SF and Nabavi SM: Understanding genistein in cancer: The ‘good’ and the ‘bad’ effects: A review. Food Chem. 196:589–600. 2016.PubMed/NCBI View Article : Google Scholar | |
Park C, Cha HJ, Lee H, Hwang-Bo H, Ji SY, Kim MY, Hong SH, Jeong JW, Han MH, Choi SH, et al: Induction of G2/M cell cycle arrest and apoptosis by genistein in human bladder cancer T24 cells through Inhibition of the ROS-Dependent PI3k/Akt signal transduction pathway. Antioxidants (Basel). 8(327)2019.PubMed/NCBI View Article : Google Scholar | |
Wang Y, Wang H, Zhang W, Shao C, Xu P, Shi CH, Shi JG, Li YM, Fu Q, Xue W, et al: Genistein sensitizes bladder cancer cells to HCPT treatment in vitro and in vivo via ATM/NF-κB/IKK pathway-induced apoptosis. PLoS One. 8(e50175)2013.PubMed/NCBI View Article : Google Scholar | |
Köksal Karayildirim Ç, Nalbantsoy A and Karabay Yavaşoğlu NU: Prunetin inhibits nitric oxide activity and induces apoptosis in urinary bladder cancer cells via CASP3 and TNF-α genes. Mol Biol Rep. 48:7251–7259. 2021.PubMed/NCBI View Article : Google Scholar | |
Zhou YX, Zhang H and Peng C: Puerarin: A review of pharmacological effects. Phytother Res. 28:961–975. 2014.PubMed/NCBI View Article : Google Scholar | |
Jiang K, Chen H, Tang K, Guan W, Zhou H, Guo X, Chen Z, Ye Z and Xu H: Puerarin inhibits bladder cancer cell proliferation through the mTOR/p70S6K signaling pathway. Oncol Lett. 15:167–174. 2018.PubMed/NCBI View Article : Google Scholar | |
Ye G, Kan S, Chen J and Lu X: Puerarin in inducing apoptosis of bladder cancer cells through inhibiting SIRT1/p53 pathway. Oncol Lett. 17:195–200. 2019.PubMed/NCBI View Article : Google Scholar | |
Jiang QQ, Liu B and Yuan T: MicroRNA-16 inhibits bladder cancer proliferation by targeting Cyclin D1. Asian Pac J Cancer Prev. 14:4127–4130. 2013.PubMed/NCBI View Article : Google Scholar | |
Liu X, Li S, Li Y, Cheng B, Tan B and Wang G: Puerarin inhibits proliferation and induces apoptosis by upregulation of miR-16 in bladder cancer cell line T24. Oncol Res. 26:1227–1234. 2018.PubMed/NCBI View Article : Google Scholar | |
Du L, Zhang L and Sun F: Puerarin inhibits the progression of bladder cancer by regulating circ_0020394/miR-328-3p/NRBP1 axis. Cancer Biother Radiopharm. 37:435–450. 2020.PubMed/NCBI View Article : Google Scholar | |
Wu Y, Zhang X, Li Z, Yan H, Qin J and Li T: Formononetin inhibits human bladder cancer cell proliferation and invasiveness via regulation of miR-21 and PTEN. Food Funct. 8:1061–1066. 2017.PubMed/NCBI View Article : Google Scholar | |
Ouyang Y, Li J, Chen X, Fu X, Sun S and Wu Q: Chalcone derivatives: Role in anticancer therapy. Biomolecules. 11(894)2021.PubMed/NCBI View Article : Google Scholar | |
Yuan X, Li D, Zhao H, Jiang J, Wang P, Ma X, Sun X and Zheng Q: Licochalcone A-induced human bladder cancer T24 cells apoptosis triggered by mitochondria dysfunction and endoplasmic reticulum stress. Biomed Res Int. 2013(474272)2013.PubMed/NCBI View Article : Google Scholar | |
Yang X, Jiang J, Yang X, Han J and Zheng Q: Licochalcone A induces T24 bladder cancer cell apoptosis by increasing intracellular calcium levels. Mol Med Rep. 14:911–919. 2016.PubMed/NCBI View Article : Google Scholar | |
Jiang J, Yuan X, Zhao H, Yan X, Sun X and Zheng Q: Licochalcone A inhibiting proliferation of bladder cancer T24 cells by inducing reactive oxygen species production. Biomed Mater Eng. 24:1019–1025. 2014.PubMed/NCBI View Article : Google Scholar | |
Hong SH, Cha HJ, Hwang-Bo H, Kim MY, Kim SY, Ji SY, Cheong J, Park C, Lee H, Kim GY, et al: Anti-proliferative and pro-apoptotic effects of licochalcone A through ROS-Mediated cell cycle arrest and apoptosis in human bladder cancer cells. Int J Mol Sci. 20(3820)2019.PubMed/NCBI View Article : Google Scholar | |
Zhao H, Yuan X, Jiang J, Wang P, Sun X, Wang D and Zheng Q: Antimetastatic effects of licochalcone B on human bladder carcinoma T24 by inhibition of matrix metalloproteinases-9 and NF-кB activity. Basic Clin Pharmacol Toxicol. 115:527–533. 2014.PubMed/NCBI View Article : Google Scholar | |
Yuan X, Li T, Xiao E, Zhao H, Li Y, Fu S, Gan L and Wang Z, Zheng Q and Wang Z: Licochalcone B inhibits growth of bladder cancer cells by arresting cell cycle progression and inducing apoptosis. Food Chem Toxicol. 65:242–251. 2014.PubMed/NCBI View Article : Google Scholar | |
Wang P, Yuan X, Wang Y, Zhao H, Sun X and Zheng Q: Licochalcone C induces apoptosis via B-cell lymphoma 2 family proteins in T24 cells. Mol Med Rep. 12:7623–7628. 2015.PubMed/NCBI View Article : Google Scholar | |
Wang KL, Yu TC and Hsia SM: Perspectives on the role of isoliquiritigenin in cancer. Cancers (Basel). 13(115)2021.PubMed/NCBI View Article : Google Scholar | |
Patricia Moreno-Londoño A, Bello-Alvarez C and Pedraza-Chaverri J: Isoliquiritigenin pretreatment attenuates cisplatin induced proximal tubular cells (LLC-PK1) death and enhances the toxicity induced by this drug in bladder cancer T24 cell line. Food Chem Toxicol. 109(Pt 1):143–154. 2017.PubMed/NCBI View Article : Google Scholar | |
Li X, Xu X, Ji T, Liu Z, Gu M, Hoang BH and Zi X: Dietary feeding of Flavokawain A, a Kava chalcone, exhibits a satisfactory safety profile and its association with enhancement of phase II enzymes in mice. Toxicol Rep. 1:2–11. 2014.PubMed/NCBI View Article : Google Scholar | |
Liu Z, Xu X, Li X, Liu S, Simoneau AR, He F, Wu XR and Zi X: Kava chalcone, flavokawain A, inhibits urothelial tumorigenesis in the UPII-SV40T transgenic mouse model. Cancer Prev Res (Phila). 6:1365–1375. 2013.PubMed/NCBI View Article : Google Scholar | |
Liu Z, Song L, Xie J, Simoneau AR, Uchio E and Zi X: Chemoprevention of urothelial cell carcinoma tumorigenesis by dietary flavokawain A in UPII-Mutant Ha-ras transgenic mice. Pharmaceutics. 14(496)2022.PubMed/NCBI View Article : Google Scholar | |
Wu CM, Lin KW, Teng CH, Huang AM, Chen YC, Yen MH, Wu WB, Pu YS and Lin CN: Chalcone derivatives inhibit human platelet aggregation and inhibit growth in human bladder cancer cells. Biol Pharm Bull. 37:1191–1198. 2014.PubMed/NCBI View Article : Google Scholar | |
Martel-Frachet V, Keramidas M, Nurisso A, DeBonis S, Rome C, Coll JL, Boumendjel A, Skoufias DA and Ronot X: IPP51, a chalcone acting as a microtubule inhibitor with in vivo antitumor activity against bladder carcinoma. Oncotarget. 6:14669–14686. 2015.PubMed/NCBI View Article : Google Scholar | |
Martel-Frachet V, Areguian J, Blanc M, Touquet B, Lamarca A, Ronot X and Boumendjel A: Investigation of a new 1,3-diarylpropenone as a potential antimitotic agent targeting bladder carcinoma. Anticancer Drugs. 20:469–476. 2009.PubMed/NCBI View Article : Google Scholar | |
Desilets A, Adam JP and Soulières D: Management of cisplatin-associated toxicities in bladder cancer patients. Curr Opin Support Palliat Care. 14:286–292. 2020.PubMed/NCBI View Article : Google Scholar | |
Cai Z, Zhang F, Chen W, Zhang J and Li H: MiRNAs: A promising target in the chemoresistance of bladder cancer. Onco Targets Ther. 12:11805–11816. 2019.PubMed/NCBI View Article : Google Scholar | |
Dobrzynska M, Napierala M and Florek E: Flavonoid nanoparticles: A promising approach for cancer therapy. Biomolecules. 10(1268)2020.PubMed/NCBI View Article : Google Scholar | |
Sun T, Zhang YS, Pang B, Hyun DC, Yang M and Xia Y: Engineered nanoparticles for drug delivery in cancer therapy. Angew Chem Int Ed Engl. 53:12320–12364. 2014.PubMed/NCBI View Article : Google Scholar | |
Kim S, Chen J, Cheng T, Gindulyte A, He J, He S, Li Q, Shoemaker BA, Thiessen PA, Yu B, et al: PubChem in 2021: New data content and improved web interfaces. Nucleic Acids Res. 49(D1):D1388–D1395. 2021.PubMed/NCBI View Article : Google Scholar | |
Patil M, Pabla N and Dong Z: Checkpoint kinase 1 in DNA damage response and cell cycle regulation. Cell Mol Life Sci. 70:4009–4021. 2013.PubMed/NCBI View Article : Google Scholar | |
Schmitt E, Paquet C, Beauchemin M and Bertrand R: DNA-damage response network at the crossroads of cell-cycle checkpoints, cellular senescence and apoptosis. J Zhejiang Univ Sci B. 8:377–397. 2007.PubMed/NCBI View Article : Google Scholar | |
Yang L, Shi P, Zhao G, Xu J, Peng W, Zhang J, Zhang G, Wang X, Dong Z, Chen F and Cui H: Targeting cancer stem cell pathways for cancer therapy. Signal Transduct Target Ther. 5(8)2020.PubMed/NCBI View Article : Google Scholar |